Name

DEPOD Substrates of Phosphatases Dataset

From Dephosphorylation Database

phosphatase-substrate interactions manually curated from literature and databases of protein annotations or protein interactions

KEA Substrates of Kinases Dataset

From Kinase Enrichment Analysis

protein substrates of kinases from published low-throughput and high-throughput phosphoproteomics studies

PhosphoSitePlus Substrates of Kinases Dataset

From PhosphoSitePlus

kinase-substrate interactions curated from low-throughput or high-throughput phosphoproteomics studies

Achilles Cell Line Gene Essentiality Profiles Dataset

From Achilles

fitness scores for cell lines following single gene knockdowns

BioGPS Cell Line Gene Expression Profiles Dataset

From BioGPS

mRNA expression profiles for the NCI-60 panel of cancer cell lines

BioGPS Human Cell Type and Tissue Gene Expression Profiles Dataset

From BioGPS

mRNA expression profiles for human tissues and cell types

BioGPS Mouse Cell Type and Tissue Gene Expression Profiles Dataset

From BioGPS

mRNA expression profiles for mouse tissues and cell types

CCLE Cell Line Gene CNV Profiles Dataset

From Cancer Cell Line Encyclopedia

gene-level copy number variation profiles for cancer cell lines

CCLE Cell Line Gene Expression Profiles Dataset

From Cancer Cell Line Encyclopedia

mRNA expression profiles for cancer cell lines

CCLE Cell Line Gene Mutation Profiles Dataset

From Cancer Cell Line Encyclopedia

gene-level mutation profiles for cancer cell lines

COSMIC Cell Line Gene CNV Profiles Dataset

From Catalogue of Somatic Mutations In Cancer

gene-level copy number variation profiles for cancer cell lines

COSMIC Cell Line Gene Mutation Profiles Dataset

From Catalogue of Somatic Mutations In Cancer

gene mutations in cancer cell lines from low-throughput or high-throughput studies

GDSC Cell Line Gene Expression Profiles Dataset

From Genomics of Drug Sensitivity in Cancer

mRNA expression profiles for cancer cell lines

Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles Dataset

From Heiser et al., PNAS, 2011

mRNA expression profiles for breast cancer cell lines measured by microarray

HPA Cell Line Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for cell lines

HPM Cell Type and Tissue Protein Expression Profiles Dataset

From Human Proteome Map

protein expression profiles for tissues and cell types

Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles Dataset

From Klijn et al., Nat. Biotechnol., 2015

gene-level copy number variation profiles for cancer cell lines

Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles Dataset

From Klijn et al., Nat. Biotechnol., 2015

mRNA expression profiles for cancer cell lines

Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles Dataset

From Klijn et al., Nat. Biotechnol., 2015

gene mutations in cancer cell lines

ProteomicsDB Cell Type and Tissue Protein Expression Profiles Dataset

From Proteomics Database

protein expression profiles for tissues and cell types reprocessed from many proteomics datasets

Roadmap Epigenomics Cell and Tissue DNA Accessibility Profiles Dataset

From Roadmap Epigenomics

DNA accessibility profiles for primary cell types and tissues

Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles Dataset

From Roadmap Epigenomics

DNA methylation profiles for primary cell types and tissues

Roadmap Epigenomics Cell and Tissue Gene Expression Profiles Dataset

From Roadmap Epigenomics

mRNA expression profiles for primary cell types and tissues

DRAIC Gene

downregulated RNA in cancer, inhibitor of cell invasion and migration

CEMIP Gene

cell migration inducing protein, hyaluronan binding

SENCR Gene

smooth muscle and endothelial cell enriched migration/differentiation-associated long non-coding RNA

NUCKS1 Gene

nuclear casein kinase and cyclin-dependent kinase substrate 1

This gene encodes a nuclear protein that is highly conserved in vertebrates. The conserved regions of the protein contain several consensus phosphorylation sites for casein kinase II and cyclin-dependent kinases, two putative nuclear localization signals, and a basic DNA-binding domain. It is phosphorylated in vivo by Cdk1 during mitosis of the cell cycle. [provided by RefSeq, Aug 2010]

LOC101060637 Gene

nuclear ubiquitous casein and cyclin-dependent kinase substrate 1-like

LOC100130466 Gene

nuclear ubiquitous casein and cyclin-dependent kinase substrate 1-like

NM Gene

neutrophil migration

MIEN1 Gene

migration and invasion enhancer 1

NSMF Gene

NMDA receptor synaptonuclear signaling and neuronal migration factor

The protein encoded by this gene is involved in guidance of olfactory axon projections and migration of luteinizing hormone-releasing hormone neurons. Defects in this gene are a cause of idiopathic hypogonadotropic hypogonadism (IHH). Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2010]

MIIP Gene

migration and invasion inhibitory protein

This gene encodes a protein that interacts with the oncogene protein insulin-like growth factor binding protein 2 and may function as an inhibitor of cell migration and invasion. This protein also interacts with the cell division protein 20 and may be involved in regulating mitotic progression. This protein may function as a tumor suppressor by inhibiting the growth or certain cancers. [provided by RefSeq, Sep 2011]

MIF Gene

macrophage migration inhibitory factor (glycosylation-inhibiting factor)

This gene encodes a lymphokine involved in cell-mediated immunity, immunoregulation, and inflammation. It plays a role in the regulation of macrophage function in host defense through the suppression of anti-inflammatory effects of glucocorticoids. This lymphokine and the JAB1 protein form a complex in the cytosol near the peripheral plasma membrane, which may indicate an additional role in integrin signaling pathways. [provided by RefSeq, Jul 2008]

HCLS1 Gene

hematopoietic cell-specific Lyn substrate 1

SAFB Gene

scaffold attachment factor B

This gene encodes a DNA-binding protein which has high specificity for scaffold or matrix attachment region DNA elements (S/MAR DNA). This protein is thought to be involved in attaching the base of chromatin loops to the nuclear matrix but there is conflicting evidence as to whether this protein is a component of chromatin or a nuclear matrix protein. Scaffold attachment factors are a specific subset of nuclear matrix proteins (NMP) that specifically bind to S/MAR. The encoded protein is thought to serve as a molecular base to assemble a 'transcriptosome complex' in the vicinity of actively transcribed genes. It is involved in the regulation of heat shock protein 27 transcription, can act as an estrogen receptor co-repressor and is a candidate for breast tumorigenesis. This gene is arranged head-to-head with a similar gene whose product has the same functions. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jan 2011]

SAFB2 Gene

scaffold attachment factor B2

LOC100420658 Gene

post-GPI attachment to proteins 2 pseudogene

HNRNPU Gene

heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A)

This gene belongs to the subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNPs are RNA binding proteins and they form complexes with heterogeneous nuclear RNA (hnRNA). These proteins are associated with pre-mRNAs in the nucleus and appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. While all of the hnRNPs are present in the nucleus, some seem to shuttle between the nucleus and the cytoplasm. The hnRNP proteins have distinct nucleic acid binding properties. The protein encoded by this gene contains a RNA binding domain and scaffold-associated region (SAR)-specific bipartite DNA-binding domain. This protein is also thought to be involved in the packaging of hnRNA into large ribonucleoprotein complexes. During apoptosis, this protein is cleaved in a caspase-dependent way. Cleavage occurs at the SALD site, resulting in a loss of DNA-binding activity and a concomitant detachment of this protein from nuclear structural sites. But this cleavage does not affect the function of the encoded protein in RNA metabolism. At least two alternatively spliced transcript variants have been identified for this gene. [provided by RefSeq, Jul 2008]

LOC100418692 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene

LOC100418690 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene

LOC100288570 Gene

glycosylphosphatidylinositol anchor attachment protein 1 homolog (yeast) pseudogene

GPAA1 Gene

glycosylphosphatidylinositol anchor attachment 1

Posttranslational glycosylphosphatidylinositol (GPI) anchor attachment serves as a general mechanism for linking proteins to the cell surface membrane. The protein encoded by this gene presumably functions in GPI anchoring at the GPI transfer step. The mRNA transcript is ubiquitously expressed in both fetal and adult tissues. The anchor attachment protein 1 contains an N-terminal signal sequence, 1 cAMP- and cGMP-dependent protein kinase phosphorylation site, 1 leucine zipper pattern, 2 potential N-glycosylation sites, and 8 putative transmembrane domains. [provided by RefSeq, Jul 2008]

NAPG Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma

This gene encodes soluble NSF attachment protein gamma. The soluble NSF attachment proteins (SNAPs) enable N-ethyl-maleimide-sensitive fusion protein (NSF) to bind to target membranes. NSF and SNAPs appear to be general components of the intracellular membrane fusion apparatus, and their action at specific sites of fusion must be controlled by SNAP receptors particular to the membranes being fused. The product of this gene mediates platelet exocytosis and controls the membrane fusion events of this process.[provided by RefSeq, Dec 2008]

NAPB Gene

N-ethylmaleimide-sensitive factor attachment protein, beta

NAPA Gene

N-ethylmaleimide-sensitive factor attachment protein, alpha

This gene encodes a member of the soluble NSF attachment protein (SNAP) family. SNAP proteins play a critical role in the docking and fusion of vesicles to target membranes as part of the 20S NSF-SNAP-SNARE complex. The encoded protein plays a role in the completion of membrane fusion by mediating the interaction of N-ethylmaleimide-sensitive factor (NSF) with the vesicle-associated and membrane-associated SNAP receptor (SNARE) complex, and stimulating the ATPase activity of NSF. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Jun 2011]

GPAA1P1 Gene

glycosylphosphatidylinositol anchor attachment 1 pseudogene 1

PGAP1 Gene

post-GPI attachment to proteins 1

PGAP1 catalyzes the inositol deacylation of glycosylphosphatidylinositol (GPI) at an early step in GPI biosynthesis. Inositol deacylation is essential for the generation of mature GPI capable of attachment to proteins (Tanaka et al., 2004 [PubMed 14734546]).[supplied by OMIM, Mar 2008]

PGAP3 Gene

post-GPI attachment to proteins 3

This gene encodes a glycosylphosphatidylinositol (GPI)-specific phospholipase that primarily localizes to the Golgi apparatus. This ubiquitously expressed gene is predicted to encode a seven-transmembrane protein that removes unsaturated fatty acids from the sn-2 position of GPI. The remodeling of the constituent fatty acids on GPI is thought to be important for the proper association between GPI-anchored proteins and lipid rafts. The tethering of proteins to plasma membranes via posttranslational GPI-anchoring is thought to play a role in protein sorting and trafficking. Mutations in this gene cause the autosomal recessive neurologic disorder hyperphosphatasia with mental retardation syndrome 4 (HPMRS4). Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Apr 2014]

PGAP2 Gene

post-GPI attachment to proteins 2

LOC100418689 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene

LOC100418691 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene

LOC100418688 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene

NAPGP2 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene 2

NAPGP1 Gene

N-ethylmaleimide-sensitive factor attachment protein, gamma pseudogene 1

LOC100133102 Gene

ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) pseudogene

KIDINS220 Gene

kinase D-interacting substrate, 220kDa

RAC1P5 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 5

This locus encodes one of the pseudogenes of the functional ras-related C3 botulinum toxin substrate 1 gene (RAC1, GeneID:5879) located on chr 7. It is intronless, shares overall 93% sequence identity with the RAC1 gene, and has enough differences in the coding region so as not to be able to code for a functional protein. There is no evidence of transcription at this pseudogene locus on chr 4. [provided by RefSeq, Jul 2008]

RAC1P4 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 4

RAC1P1 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 1

RAC1P3 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 3

RAC1P2 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 2

EPS15L1 Gene

epidermal growth factor receptor pathway substrate 15-like 1

PRKCSH Gene

protein kinase C substrate 80K-H

This gene encodes the beta-subunit of glucosidase II, an N-linked glycan-processing enzyme in the endoplasmic reticulum. The encoded protein is an acidic phosphoprotein known to be a substrate for protein kinase C. Mutations in this gene have been associated with the autosomal dominant polycystic liver disease. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

MARCKS Gene

myristoylated alanine-rich protein kinase C substrate

The protein encoded by this gene is a substrate for protein kinase C. It is localized to the plasma membrane and is an actin filament crosslinking protein. Phosphorylation by protein kinase C or binding to calcium-calmodulin inhibits its association with actin and with the plasma membrane, leading to its presence in the cytoplasm. The protein is thought to be involved in cell motility, phagocytosis, membrane trafficking and mitogenesis. [provided by RefSeq, Jul 2008]

FRS3 Gene

fibroblast growth factor receptor substrate 3

This gene encodes a substrate for the fibroblast growth factor receptor. The encoded protein is found in the peripheral plasma membrane and links fibroblast growth factor receptor stimulation to activators of Ras. The encoded protein down-regulates extracellular regulated kinase 2 through direct binding. [provided by RefSeq, Jul 2013]

FRS2 Gene

fibroblast growth factor receptor substrate 2

TSKS Gene

testis-specific serine kinase substrate

This gene may play a role in testicular physiology, spermatogenesis or spermiogenesis. Expression of the encoded protein is highest in the testis and down-regulated in testicular cancer. The gene is localized to the region 19q13.3 among the related RAS viral oncogene homolog (RRAS) and interferon regulatory factor 3 (IRF3) genes, which are both involved in tumorigenesis pathways and progression. [provided by RefSeq, Jul 2008]

MARCKSP1 Gene

myristoylated alanine-rich protein kinase C substrate pseudogene 1

EPS15 Gene

epidermal growth factor receptor pathway substrate 15

This gene encodes a protein that is part of the EGFR pathway. The protein is present at clatherin-coated pits and is involved in receptor-mediated endocytosis of EGF. Notably, this gene is rearranged with the HRX/ALL/MLL gene in acute myelogeneous leukemias. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, May 2009]

NRGN Gene

neurogranin (protein kinase C substrate, RC3)

Neurogranin (NRGN) is the human homolog of the neuron-specific rat RC3/neurogranin gene. This gene encodes a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. The NRGN gene contains four exons and three introns. The exons 1 and 2 encode the protein and exons 3 and 4 contain untranslated sequences. It is suggested that the NRGN is a direct target for thyroid hormone in human brain, and that control of expression of this gene could underlay many of the consequences of hypothyroidism on mental states during development as well as in adult subjects. [provided by RefSeq, Jul 2008]

IRS3P Gene

insulin receptor substrate 3, pseudogene

EFS Gene

embryonal Fyn-associated substrate

The longest protein isoform encoded by this gene contains an SH3 domain, which is known to be important in intracellular signal transduction. The protein encoded by a similiar gene in mice was shown to bind to SH3 domains of protein-tyrosine kinases. The function of this gene is unknown. Three alternatively spliced variants encoding different isoforms have been described for this gene. [provided by RefSeq, Mar 2013]

RAC2 Gene

ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)

This gene encodes a member of the Ras superfamily of small guanosine triphosphate (GTP)-metabolizing proteins. The encoded protein localizes to the plasma membrane, where it regulates diverse processes, such as secretion, phagocytosis, and cell polarization. Activity of this protein is also involved in the generation of reactive oxygen species. Mutations in this gene are associated with neutrophil immunodeficiency syndrome. There is a pseudogene for this gene on chromosome 6. [provided by RefSeq, Jul 2013]

RAC3 Gene

ras-related C3 botulinum toxin substrate 3 (rho family, small GTP binding protein Rac3)

The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. [provided by RefSeq, Jul 2008]

RAC1 Gene

ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)

The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

EPS8 Gene

epidermal growth factor receptor pathway substrate 8

This gene encodes a member of the EPS8 family. This protein contains one PH domain and one SH3 domain. It functions as part of the EGFR pathway, though its exact role has not been determined. Highly similar proteins in other organisms are involved in the transduction of signals from Ras to Rac and growth factor-mediated actin remodeling. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

IRS4 Gene

insulin receptor substrate 4

IRS4 encodes the insulin receptor substrate 4, a cytoplasmic protein that contains many potential tyrosine and serine/threonine phosphorylation sites. Tyrosine-phosphorylated IRS4 protein has been shown to associate with cytoplasmic signalling molecules that contain SH2 domains. The IRS4 protein is phosphorylated by the insulin receptor tyrosine kinase upon receptor stimulation.. [provided by RefSeq, Jul 2008]

IRS1 Gene

insulin receptor substrate 1

This gene encodes a protein which is phosphorylated by insulin receptor tyrosine kinase. Mutations in this gene are associated with type II diabetes and susceptibility to insulin resistance. [provided by RefSeq, Nov 2009]

IRS2 Gene

insulin receptor substrate 2

This gene encodes the insulin receptor substrate 2, a cytoplasmic signaling molecule that mediates effects of insulin, insulin-like growth factor 1, and other cytokines by acting as a molecular adaptor between diverse receptor tyrosine kinases and downstream effectors. The product of this gene is phosphorylated by the insulin receptor tyrosine kinase upon receptor stimulation, as well as by an interleukin 4 receptor-associated kinase in response to IL4 treatment. [provided by RefSeq, Jul 2008]

CABLES1 Gene

Cdk5 and Abl enzyme substrate 1

This gene encodes a protein involved in regulation of the cell cycle through interactions with several cyclin-dependent kinases. One study (PMID: 16177568) reported aberrant splicing of transcripts from this gene which results in removal of the cyclin binding domain only in human cancer cells, and reduction in gene expression was shown in colorectal cancers (PMID: 17982127).Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

CABLES2 Gene

Cdk5 and Abl enzyme substrate 2

HGS Gene

hepatocyte growth factor-regulated tyrosine kinase substrate

The protein encoded by this gene regulates endosomal sorting and plays a critical role in the recycling and degradation of membrane receptors. The encoded protein sorts monoubiquitinated membrane proteins into the multivesicular body, targeting these proteins for lysosome-dependent degradation. [provided by RefSeq, Dec 2010]

AKT1S1 Gene

AKT1 substrate 1 (proline-rich)

AKT1S1 is a proline-rich substrate of AKT (MIM 164730) that binds 14-3-3 protein (see YWHAH, MIM 113508) when phosphorylated (Kovacina et al., 2003 [PubMed 12524439]).[supplied by OMIM, Mar 2008]

EPS15P1 Gene

epidermal growth factor receptor pathway substrate 15 pseudogene 1

PACSIN1 Gene

protein kinase C and casein kinase substrate in neurons 1

PACSIN3 Gene

protein kinase C and casein kinase substrate in neurons 3

This gene is a member of the protein kinase C and casein kinase substrate in neurons family. The encoded protein is involved in linking the actin cytoskeleton with vesicle formation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

PACSIN2 Gene

protein kinase C and casein kinase substrate in neurons 2

This gene is a member of the protein kinase C and casein kinase substrate in neurons family. The encoded protein is involved in linking the actin cytoskeleton with vesicle formation by regulating tubulin polymerization. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

RAC1P9 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 9

RAC1P8 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 8

RAC1P6 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 6

RAC1P7 Gene

ras-related C3 botulinum toxin substrate 1 pseudogene 7

HCFC1R1 Gene

host cell factor C1 regulator 1 (XPO1 dependent)

GLYCAM1 Gene

glycosylation dependent cell adhesion molecule 1 (pseudogene)

CLNK Gene

cytokine-dependent hematopoietic cell linker

MIST is a member of the SLP76 family of adaptors (see LCP2, MIM 601603; BLNK, MIM 604515). MIST plays a role in the regulation of immunoreceptor signaling, including PLC-gamma (PLCG1; MIM 172420)-mediated B cell antigen receptor (BCR) signaling and FC-epsilon R1 (see FCER1A, MIM 147140)-mediated mast cell degranulation (Cao et al., 1999 [PubMed 10562326]; Goitsuka et al., 2000, 2001 [PubMed 10744659] [PubMed 11463797]).[supplied by OMIM, Mar 2008]

CADPS2 Gene

Ca++-dependent secretion activator 2

This gene encodes a member of the calcium-dependent activator of secretion (CAPS) protein family, which are calcium binding proteins that regulate the exocytosis of synaptic and dense-core vesicles in neurons and neuroendocrine cells. Mutations in this gene may contribute to autism susceptibility. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2009]

ADPGK Gene

ADP-dependent glucokinase

ADPGK (EC 2.7.1.147) catalyzes the ADP-dependent phosphorylation of glucose to glucose-6-phosphate and may play a role in glycolysis, possibly during ischemic conditions (Ronimus and Morgan, 2004 [PubMed 14975750]).[supplied by OMIM, Mar 2008]

PRKAR2A Gene

protein kinase, cAMP-dependent, regulatory, type II, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins and determine the subcellular localization of cAMP-dependent protein kinase. This subunit has been shown to regulate protein transport from endosomes to the Golgi apparatus and further to the endoplasmic reticulum (ER). [provided by RefSeq, Jul 2008]

PRKAR2B Gene

protein kinase, cAMP-dependent, regulatory, type II, beta

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding protein 1 (CREB1) in activated T cells. Knockout studies in mice suggest that this subunit may play an important role in regulating energy balance and adiposity. The studies also suggest that this subunit may mediate the gene induction and cataleptic behavior induced by haloperidol. [provided by RefSeq, Jul 2008]

CAMKK2 Gene

calcium/calmodulin-dependent protein kinase kinase 2, beta

The product of this gene belongs to the Serine/Threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. The major isoform of this gene plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade by phosphorylating the downstream kinases CaMK1 and CaMK4. Protein products of this gene also phosphorylate AMP-activated protein kinase (AMPK). This gene has its strongest expression in the brain and influences signalling cascades involved with learning and memory, neuronal differentiation and migration, neurite outgrowth, and synapse formation. Alternative splicing results in multiple transcript variants encoding distinct isoforms. The identified isoforms differ in their ability to undergo autophosphorylation and to phosphorylate downstream kinases. [provided by RefSeq, Jul 2012]

CAMKK1 Gene

calcium/calmodulin-dependent protein kinase kinase 1, alpha

The product of this gene belongs to the Serine/Threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. This protein plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade. Three transcript variants encoding two distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

LRIF1 Gene

ligand dependent nuclear receptor interacting factor 1

VDAC1P1 Gene

voltage-dependent anion channel 1 pseudogene 1

VDAC1P2 Gene

voltage-dependent anion channel 1 pseudogene 2

VDAC1P4 Gene

voltage-dependent anion channel 1 pseudogene 4

VDAC4 belongs to a family of small, abundant pore-forming proteins found in the outer mitochondrial membrane. These channels are thought to form the major pathway for movement of adenine nucleotides through the outer membrane and may also function as the mitochondrial binding site for hexokinase (see HK1; MIM 142600) and glycerol kinase (GK; MIM 300474) (Blachly-Dyson et al., 1994 [PubMed 7517385]).[supplied by OMIM, Mar 2008]

VDAC1P5 Gene

voltage-dependent anion channel 1 pseudogene 5

VDAC1P6 Gene

voltage-dependent anion channel 1 pseudogene 6

VDAC1P7 Gene

voltage-dependent anion channel 1 pseudogene 7

VDAC1P9 Gene

voltage-dependent anion channel 1 pseudogene 9

SMARCE1P5 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 pseudogene 5

CDK2AP1 Gene

cyclin-dependent kinase 2 associated protein 1

The protein encoded by this gene is a cyclin-dependent kinase 2 (CDK2) -associated protein which is thought to negatively regulate CDK2 activity by sequestering monomeric CDK2, and targeting CDK2 for proteolysis. This protein was found to also interact with DNA polymerase alpha/primase and mediate the phosphorylation of the large p180 subunit, which suggests a regulatory role in DNA replication during the S-phase of the cell cycle. This protein also forms a core subunit of the nucleosome remodeling and histone deacetylation (NURD) complex that epigenetically regulates embryonic stem cell differentiation. This gene thus plays a role in both cell-cycle and epigenetic regulation. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2012]

CDK2AP2 Gene

cyclin-dependent kinase 2 associated protein 2

This gene encodes a protein that interacts with cyclin-dependent kinase 2 associated protein 1. Pseudogenes associated with this gene are located on chromosomes 7 and 9. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Dec 2012]

SMARCC2 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 2

The protein encoded by this gene is a member of the SWI/SNF family of proteins, whose members display helicase and ATPase activities and which are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI and contains a predicted leucine zipper motif typical of many transcription factors. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SMARCC1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 1

The protein encoded by this gene is a member of the SWI/SNF family of proteins, whose members display helicase and ATPase activities and which are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI and contains a predicted leucine zipper motif typical of many transcription factors. [provided by RefSeq, Jul 2008]

PDPK2P Gene

3-phosphoinositide dependent protein kinase 2, pseudogene

LOC101929421 Gene

cyclin-dependent kinase 2-associated protein 1 pseudogene

LOC101929483 Gene

cyclin-dependent kinase 2-associated protein 1 pseudogene

CDK7PS Gene

cyclin-dependent kinase 7 pseudogene

NFATC1 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1

The product of this gene is a component of the nuclear factor of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation, and an inducible nuclear component. Proteins belonging to this family of transcription factors play a central role in inducible gene transcription during immune response. The product of this gene is an inducible nuclear component. It functions as a major molecular target for the immunosuppressive drugs such as cyclosporin A. Multiple alternatively spliced transcript variants encoding distinct isoforms have been identified for this gene. Different isoforms of this protein may regulate inducible expression of different cytokine genes. [provided by RefSeq, Jul 2013]

NFATC2 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2

This gene is a member of the nuclear factor of activated T cells (NFAT) family. The product of this gene is a DNA-binding protein with a REL-homology region (RHR) and an NFAT-homology region (NHR). This protein is present in the cytosol and only translocates to the nucleus upon T cell receptor (TCR) stimulation, where it becomes a member of the nuclear factors of activated T cells transcription complex. This complex plays a central role in inducing gene transcription during the immune response. Alternate transcriptional splice variants encoding different isoforms have been characterized. [provided by RefSeq, Apr 2012]

NFATC4 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4

This gene encodes a member of the nuclear factor of activated T cells (NFAT) protein family. The encoded protein is part of a DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor stimulation and an inducible nuclear component. NFAT proteins are activated by the calmodulin-dependent phosphatase, calcineurin. The encoded protein plays a role in the inducible expression of cytokine genes in T cells, especially in the induction of interleukin-2 and interleukin-4. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

CDK20 Gene

cyclin-dependent kinase 20

The protein encoded by this gene contains a kinase domain most closely related to the cyclin-dependent protein kinases. The encoded kinase may activate cyclin-dependent kinase 2 and is involved in cell growth. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Dec 2009]

PKIG Gene

protein kinase (cAMP-dependent, catalytic) inhibitor gamma

This gene encodes a member of the protein kinase inhibitor family. Studies of a similar protein in mice suggest that this protein acts as a potent competitive cAMP-dependent protein kinase inhibitor, and is a predominant form of inhibitor in various tissues. The encoded protein may be involved in osteogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

PKIA Gene

protein kinase (cAMP-dependent, catalytic) inhibitor alpha

The protein encoded by this gene is a member of the cAMP-dependent protein kinase (PKA) inhibitor family. This protein was demonstrated to interact with and inhibit the activities of both C alpha and C beta catalytic subunits of the PKA. Alternatively spliced transcript variants encoding the same protein have been reported. [provided by RefSeq, Jul 2008]

PKIB Gene

protein kinase (cAMP-dependent, catalytic) inhibitor beta

This gene encodes a member of the cAMP-dependent protein kinase inhibitor family. The encoded protein may play a role in the protein kinase A (PKA) pathway by interacting with the catalytic subunit of PKA, and overexpression of this gene may play a role in prostate cancer. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

VDAC1P3 Gene

voltage-dependent anion channel 1 pseudogene 3

VDAC1P8 Gene

voltage-dependent anion channel 1 pseudogene 8

FOXRED2 Gene

FAD-dependent oxidoreductase domain containing 2

FOXRED1 Gene

FAD-dependent oxidoreductase domain containing 1

This gene encodes a protein that contains a FAD-dependent oxidoreductase domain. The encoded protein is localized to the mitochondria and may function as a chaperone protein required for the function of mitochondrial complex I. Mutations in this gene are associated with mitochondrial complex I deficiency. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Dec 2010]

SFR1 Gene

SWI5-dependent recombination repair 1

C2CD4A Gene

C2 calcium-dependent domain containing 4A

C2CD4B Gene

C2 calcium-dependent domain containing 4B

C2CD4C Gene

C2 calcium-dependent domain containing 4C

C2CD4D Gene

C2 calcium-dependent domain containing 4D

CDKN3 Gene

cyclin-dependent kinase inhibitor 3

The protein encoded by this gene belongs to the dual specificity protein phosphatase family. It was identified as a cyclin-dependent kinase inhibitor, and has been shown to interact with, and dephosphorylate CDK2 kinase, thus prevent the activation of CDK2 kinase. This gene was reported to be deleted, mutated, or overexpressed in several kinds of cancers. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]

LOC400026 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene

MTHFD2P6 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase pseudogene 6

CDK11A Gene

cyclin-dependent kinase 11A

This gene encodes a member of the p34Cdc2 protein kinase family. p34Cdc2 kinase family members are known to be essential for eukaryotic cell cycle control. This gene is in close proximity to CDC2L1, a nearly identical gene in the same chromosomal region. The gene loci including this gene, CDC2L1, as well as metalloprotease MMP21/22, consist of two identical, tandemly linked genomic regions, which are thought to be a part of the larger region that has been duplicated. This gene and CDC2L1 were shown to be deleted or altered frequently in neuroblastoma with amplified MYCN genes. The protein kinase encoded by this gene could be cleaved by caspases and was demonstrated to play roles in cell apoptosis. Many transcript variants encoding several different isoforms have been found for this gene, but the full-length nature of only two have been determined so far. [provided by RefSeq, Jul 2008]

CDK11B Gene

cyclin-dependent kinase 11B

This gene encodes a member of the serine/threonine protein kinase family. Members of this kinase family are known to be essential for eukaryotic cell cycle control. Due to a segmental duplication, this gene shares very high sequence identity with a neighboring gene. These two genes are frequently deleted or altered in neuroblastoma. The protein kinase encoded by this gene can be cleaved by caspases and may play a role in cell apoptosis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

MTHFD2P1 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase pseudogene 1

MTHFD2P7 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase pseudogene 7

MTHFD2P5 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase pseudogene 5

MTHFD2P4 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase pseudogene 4

PDXDC1 Gene

pyridoxal-dependent decarboxylase domain containing 1

CAMK2D Gene

calcium/calmodulin-dependent protein kinase II delta

The product of this gene belongs to the serine/threonine protein kinase family and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. In mammalian cells, the enzyme is composed of four different chains: alpha, beta, gamma, and delta. The product of this gene is a delta chain. Alternative splicing results in multiple transcript variants encoding distinct isoforms. Distinct isoforms of this chain have different expression patterns.[provided by RefSeq, Nov 2008]

CAMK2G Gene

calcium/calmodulin-dependent protein kinase II gamma

The product of this gene is one of the four subunits of an enzyme which belongs to the serine/threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. In mammalian cells the enzyme is composed of four different chains: alpha, beta, gamma, and delta. The product of this gene is a gamma chain. Many alternatively spliced transcripts encoding different isoforms have been described but the full-length nature of all the variants has not been determined.[provided by RefSeq, Mar 2011]

CAMK2A Gene

calcium/calmodulin-dependent protein kinase II alpha

The product of this gene belongs to the serine/threonine protein kinases family, and to the Ca(2+)/calmodulin-dependent protein kinases subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. This calcium calmodulin-dependent protein kinase is composed of four different chains: alpha, beta, gamma, and delta. The alpha chain encoded by this gene is required for hippocampal long-term potentiation (LTP) and spatial learning. In addition to its calcium-calmodulin (CaM)-dependent activity, this protein can undergo autophosphorylation, resulting in CaM-independent activity. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Nov 2008]

CAMK2B Gene

calcium/calmodulin-dependent protein kinase II beta

The product of this gene belongs to the serine/threonine protein kinase family and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. In mammalian cells, the enzyme is composed of four different chains: alpha, beta, gamma, and delta. The product of this gene is a beta chain. It is possible that distinct isoforms of this chain have different cellular localizations and interact differently with calmodulin. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

PRKAR1AP Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha pseudogene

CDK2AP2P1 Gene

cyclin-dependent kinase 2 associated protein 2 pseudogene 1

CDK2AP2P3 Gene

cyclin-dependent kinase 2 associated protein 2 pseudogene 3

PRKRAP1 Gene

protein kinase, interferon-inducible double stranded RNA dependent activator pseudogene 1

MTHFD2 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase

This gene encodes a nuclear-encoded mitochondrial bifunctional enzyme with methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities. The enzyme functions as a homodimer and is unique in its absolute requirement for magnesium and inorganic phosphate. Formation of the enzyme-magnesium complex allows binding of NAD. Alternative splicing results in two different transcripts, one protein-coding and the other not protein-coding. This gene has a pseudogene on chromosome 7. [provided by RefSeq, Mar 2009]

CACNA2D1 Gene

calcium channel, voltage-dependent, alpha 2/delta subunit 1

The preproprotein encoded by this gene is cleaved into multiple chains that comprise the alpha-2 and delta subunits of the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization. Mutations in this gene can cause cardiac deficiencies, including Brugada syndrome and short QT syndrome. Alternate splicing results in multiple transcript variants, some of which may lack the delta subunit portion. [provided by RefSeq, Nov 2014]

DQX1 Gene

DEAQ box RNA-dependent ATPase 1

RNLS Gene

renalase, FAD-dependent amine oxidase

Renalase is a flavin adenine dinucleotide-dependent amine oxidase that is secreted into the blood from the kidney (Xu et al., 2005 [PubMed 15841207]).[supplied by OMIM, Mar 2008]

NIDDM4 Gene

Diabetes mellitus, noninsulin-dependent

PREX2 Gene

phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2

PREX1 Gene

phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1

The protein encoded by this gene acts as a guanine nucleotide exchange factor for the RHO family of small GTP-binding proteins (RACs). It has been shown to bind to and activate RAC1 by exchanging bound GDP for free GTP. The encoded protein, which is found mainly in the cytoplasm, is activated by phosphatidylinositol-3,4,5-trisphosphate and the beta-gamma subunits of heterotrimeric G proteins. [provided by RefSeq, Jul 2008]

SLC13A2 Gene

solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 2

SLC13A3 Gene

solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3

Mammalian sodium-dicarboxylate cotransporters transport succinate and other Krebs cycle intermediates. They fall into 2 categories based on their substrate affinity: low affinity and high affinity. Both the low- and high-affinity transporters play an important role in the handling of citrate by the kidneys. The protein encoded by this gene represents the high-affinity form. Alternatively spliced transcript variants encoding different isoforms have been found for this gene, although the full-length nature of some of them have not been characterized yet. [provided by RefSeq, Jul 2008]

SLC13A5 Gene

solute carrier family 13 (sodium-dependent citrate transporter), member 5

This gene encodes a protein belonging to the solute carrier family 13 group of proteins. This family member is a sodium-dependent citrate cotransporter that may regulate metabolic processes. Mutations in this gene cause early infantile epileptic encephalopathy 25. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2014]

ADNP Gene

activity-dependent neuroprotector homeobox

Vasoactive intestinal peptide is a neuroprotective factor that has a stimulatory effect on the growth of some tumor cells and an inhibitory effect on others. This gene encodes a protein that is upregulated by vasoactive intestinal peptide and may be involved in its stimulatory effect on certain tumor cells. The encoded protein contains one homeobox and nine zinc finger domains, suggesting that it functions as a transcription factor. This gene is also upregulated in normal proliferative tissues. Finally, the encoded protein may increase the viability of certain cell types through modulation of p53 activity. Alternatively spliced transcript variants encoding the same protein have been described. [provided by RefSeq, Jul 2008]

PRKACG Gene

protein kinase, cAMP-dependent, catalytic, gamma

Cyclic AMP-dependent protein kinase (PKA) consists of two catalytic subunits and a regulatory subunit dimer. This gene encodes the gamma form of its catalytic subunit. The gene is intronless and is thought to be a retrotransposon derived from the gene for the alpha form of the PKA catalytic subunit. [provided by RefSeq, Jul 2008]

PRKACA Gene

protein kinase, cAMP-dependent, catalytic, alpha

This gene encodes one of the catalytic subunits of protein kinase A, which exists as a tetrameric holoenzyme with two regulatory subunits and two catalytic subunits, in its inactive form. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. cAMP-dependent phosphorylation of proteins by protein kinase A is important to many cellular processes, including differentiation, proliferation, and apoptosis. Constitutive activation of this gene caused either by somatic mutations, or genomic duplications of regions that include this gene, have been associated with hyperplasias and adenomas of the adrenal cortex and are linked to corticotropin-independent Cushing's syndrome. Alternative splicing results in multiple transcript variants encoding different isoforms. Tissue-specific isoforms that differ at the N-terminus have been described, and these isoforms may differ in the post-translational modifications that occur at the N-terminus of some isoforms. [provided by RefSeq, Jan 2015]

PRKACB Gene

protein kinase, cAMP-dependent, catalytic, beta

The protein encoded by this gene is a member of the serine/threonine protein kinase family. The encoded protein is a catalytic subunit of cAMP (cyclic AMP)-dependent protein kinase, which mediates signalling though cAMP. cAMP signaling is important to a number of processes, including cell proliferaton and differentiation. Multiple alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2014]

LOC100418693 Gene

protein kinase, interferon-inducible double stranded RNA dependent activator pseudogene

LOC100418694 Gene

protein kinase, interferon-inducible double stranded RNA dependent activator pseudogene

LOC101154643 Gene

cyclin-dependent kinase 2 associated protein 2 pseudogene

ME2P1 Gene

malic enzyme 2, NAD(+)-dependent, mitochondrial pseudogene 1

PRKRIR Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)

NFATC2IP Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 interacting protein

ME3 Gene

malic enzyme 3, NADP(+)-dependent, mitochondrial

Malic enzyme catalyzes the oxidative decarboxylation of malate to pyruvate using either NAD+ or NADP+ as a cofactor. Mammalian tissues contain 3 distinct isoforms of malic enzyme: a cytosolic NADP(+)-dependent isoform, a mitochondrial NADP(+)-dependent isoform, and a mitochondrial NAD(+)-dependent isoform. This gene encodes a mitochondrial NADP(+)-dependent isoform. Multiple alternatively spliced transcript variants have been found for this gene, but the biological validity of some variants has not been determined. [provided by RefSeq, Jul 2008]

ME2 Gene

malic enzyme 2, NAD(+)-dependent, mitochondrial

This gene encodes a mitochondrial NAD-dependent malic enzyme, a homotetrameric protein, that catalyzes the oxidative decarboxylation of malate to pyruvate. It had previously been weakly linked to a syndrome known as Friedreich ataxia that has since been shown to be the result of mutation in a completely different gene. Certain single-nucleotide polymorphism haplotypes of this gene have been shown to increase the risk for idiopathic generalized epilepsy. Alternatively spliced transcript variants encoding different isoforms found for this gene. [provided by RefSeq, Dec 2009]

PLA2G4A Gene

phospholipase A2, group IVA (cytosolic, calcium-dependent)

This gene encodes a member of the cytosolic phospholipase A2 group IV family. The enzyme catalyzes the hydrolysis of membrane phospholipids to release arachidonic acid which is subsequently metabolized into eicosanoids. Eicosanoids, including prostaglandins and leukotrienes, are lipid-based cellular hormones that regulate hemodynamics, inflammatory responses, and other intracellular pathways. The hydrolysis reaction also produces lysophospholipids that are converted into platelet-activating factor. The enzyme is activated by increased intracellular Ca(2+) levels and phosphorylation, resulting in its translocation from the cytosol and nucleus to perinuclear membrane vesicles. [provided by RefSeq, Jul 2008]

SMARCE1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1

The protein encoded by this gene is part of the large ATP-dependent chromatin remodeling complex SWI/SNF, which is required for transcriptional activation of genes normally repressed by chromatin. The encoded protein, either alone or when in the SWI/SNF complex, can bind to 4-way junction DNA, which is thought to mimic the topology of DNA as it enters or exits the nucleosome. The protein contains a DNA-binding HMG domain, but disruption of this domain does not abolish the DNA-binding or nucleosome-displacement activities of the SWI/SNF complex. Unlike most of the SWI/SNF complex proteins, this protein has no yeast counterpart. [provided by RefSeq, Jul 2008]

LIG4 Gene

ligase IV, DNA, ATP-dependent

The protein encoded by this gene is a DNA ligase that joins single-strand breaks in a double-stranded polydeoxynucleotide in an ATP-dependent reaction. This protein is essential for V(D)J recombination and DNA double-strand break (DSB) repair through nonhomologous end joining (NHEJ). This protein forms a complex with the X-ray repair cross complementing protein 4 (XRCC4), and further interacts with the DNA-dependent protein kinase (DNA-PK). Both XRCC4 and DNA-PK are known to be required for NHEJ. The crystal structure of the complex formed by this protein and XRCC4 has been resolved. Defects in this gene are the cause of LIG4 syndrome. Alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq, Jul 2008]

LIG1 Gene

ligase I, DNA, ATP-dependent

This gene encodes a member of the ATP-dependent DNA ligase protein family. The encoded protein functions in DNA replication, recombination, and the base excision repair process. Mutations in this gene that lead to DNA ligase I deficiency result in immunodeficiency and increased sensitivity to DNA-damaging agents. Disruption of this gene may also be associated with a variety of cancers. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

LIG3 Gene

ligase III, DNA, ATP-dependent

This gene is a member of the DNA ligase family. Each member of this family encodes a protein that catalyzes the joining of DNA ends but they each have a distinct role in DNA metabolism. The protein encoded by this gene is involved in excision repair and is located in both the mitochondria and nucleus, with translation initiation from the upstream start codon allowing for transport to the mitochondria and translation initiation from a downstream start codon allowing for transport to the nucleus. Additionally, alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

RPRM Gene

reprimo, TP53 dependent G2 arrest mediator candidate

PRKG1 Gene

protein kinase, cGMP-dependent, type I

Mammals have three different isoforms of cyclic GMP-dependent protein kinase (Ialpha, Ibeta, and II). These PRKG isoforms act as key mediators of the nitric oxide/cGMP signaling pathway and are important components of many signal transduction processes in diverse cell types. This PRKG1 gene on human chromosome 10 encodes the soluble Ialpha and Ibeta isoforms of PRKG by alternative transcript splicing. A separate gene on human chromosome 4, PRKG2, encodes the membrane-bound PRKG isoform II. The PRKG1 proteins play a central role in regulating cardiovascular and neuronal functions in addition to relaxing smooth muscle tone, preventing platelet aggregation, and modulating cell growth. This gene is most strongly expressed in all types of smooth muscle, platelets, cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. Isoforms Ialpha and Ibeta have identical cGMP-binding and catalytic domains but differ in their leucine/isoleucine zipper and autoinhibitory sequences and therefore differ in their dimerization substrates and kinase enzyme activity. [provided by RefSeq, Sep 2011]

PRKG2 Gene

protein kinase, cGMP-dependent, type II

This gene encodes a protein that belongs to the serine/threonine protein kinase family of proteins. The encoded protein plays a role in the regulation of fluid balance in the intestine. A similar protein in mouse is thought to regulate differentiation and proliferation of cells in the colon. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

NDOR1 Gene

NADPH dependent diflavin oxidoreductase 1

This gene encodes an NADPH-dependent diflavin reductase that contains both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) binding domains. The encoded protein catalyzes the transfer of electrons from NADPH through FAD and FMN cofactors to potential redox partners. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2012]

LOC100419916 Gene

cyclin-dependent kinase 8 pseudogene

PRKRA Gene

protein kinase, interferon-inducible double stranded RNA dependent activator

This gene encodes a protein kinase activated by double-stranded RNA which mediates the effects of interferon in response to viral infection. Mutations in this gene have been associated with dystonia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2008]

CACNA2D2 Gene

calcium channel, voltage-dependent, alpha 2/delta subunit 2

Calcium channels mediate the entry of calcium ions into the cell upon membrane polarization. This gene encodes the alpha-2/delta subunit of the voltage-dependent calcium channel complex. The complex consists of the main channel-forming subunit alpha-1, and auxiliary subunits alpha-2/delta, beta, and gamma. The auxiliary subunits function in the assembly and membrane localization of the complex, and modulate calcium currents and channel activation/inactivation kinetics. The subunit encoded by this gene undergoes post-translational cleavage to yield the extracellular alpha2 peptide and a membrane-anchored delta polypeptide. This subunit is a receptor for the antiepileptic drug, gabapentin. Mutations in this gene are associated with early infantile epileptic encephalopathy. Single nucleotide polymorphisms in this gene are correlated with increased sensitivity to opioid drugs. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Mar 2014]

CACNA2D3 Gene

calcium channel, voltage-dependent, alpha 2/delta subunit 3

This gene encodes a member of the alpha-2/delta subunit family, a protein in the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Various versions of each of these subunits exist, either expressed from similar genes or the result of alternative splicing. Research on a highly similar protein in rabbit suggests the protein described in this record is cleaved into alpha-2 and delta subunits. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

CACNA2D4 Gene

calcium channel, voltage-dependent, alpha 2/delta subunit 4

This gene encodes a member of the alpha-2/delta subunit family, a protein in the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Various versions of each of these subunits exist, either expressed from similar genes or the result of alternative splicing. Research on a highly similar protein in rabbit suggests the protein described in this record is cleaved into alpha-2 and delta subunits. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

NIDDM2 Gene

non-insulin-dependent diabetes mellitus (common, type 2) 2

NIDDM3 Gene

Noninsulin-dependent diabetes mellitus 3

NIDDM1 Gene

non-insulin-dependent diabetes mellitus (common, type 2) 1

PRKAR1A Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. This gene encodes one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids. Mutations in this gene cause Carney complex (CNC). This gene can fuse to the RET protooncogene by gene rearrangement and form the thyroid tumor-specific chimeric oncogene known as PTC2. A nonconventional nuclear localization sequence (NLS) has been found for this protein which suggests a role in DNA replication via the protein serving as a nuclear transport protein for the second subunit of the Replication Factor C (RFC40). Several alternatively spliced transcript variants encoding two different isoforms have been observed. [provided by RefSeq, Jan 2013]

PRKAR1B Gene

protein kinase, cAMP-dependent, regulatory, type I, beta

Cyclic AMP-dependent protein kinase A (PKA) is an essential enzyme in the signaling pathway of the second messenger cAMP. Through phosphorylation of target proteins, PKA controls many biochemical events in the cell including regulation of metabolism, ion transport, and gene transcription. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits and dissociates from the regulatory subunits upon binding of cAMP.[supplied by OMIM, Jun 2009]

CASK Gene

calcium/calmodulin-dependent serine protein kinase (MAGUK family)

This gene encodes a calcium/calmodulin-dependent serine protein kinase. The encoded protein is a MAGUK (membrane-associated guanylate kinase) protein family member. These proteins are scaffold proteins and the encoded protein is located at synapses in the brain. Mutations in this gene are associated with FG syndrome 4, mental retardation and microcephaly with pontine and cerebellar hypoplasia, and a form of X-linked mental retardation. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Mar 2010]

M6PR Gene

mannose-6-phosphate receptor (cation dependent)

This gene encodes a member of the P-type lectin family. P-type lectins play a critical role in lysosome function through the specific transport of mannose-6-phosphate-containing acid hydrolases from the Golgi complex to lysosomes. The encoded protein functions as a homodimer and requires divalent cations for ligand binding. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. A pseudogene of this gene is located on the long arm of chromosome X. [provided by RefSeq, May 2011]

CAMK2N2 Gene

calcium/calmodulin-dependent protein kinase II inhibitor 2

This gene encodes a protein that is highly similar to the rat CaM-KII inhibitory protein, an inhibitor of calcium/calmodulin-dependent protein kinase II (CAMKII). CAMKII regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate (AMPA) receptors. Studies of the similar protein in rat suggest that this protein may function as a negative regulator of CaM-KII and may act to inhibit the phosphorylation of AMPA receptors. [provided by RefSeq, Jul 2008]

CAMK2N1 Gene

calcium/calmodulin-dependent protein kinase II inhibitor 1

VDAC3P1 Gene

voltage-dependent anion channel 3 pseudogene 1

RNU4ATAC Gene

RNA, U4atac small nuclear (U12-dependent splicing)

The small nuclear RNA (snRNA) encoded by this gene is part of the U12-dependent minor spliceosome complex. In addition to the encoded RNA, this ribonucleoprotein complex consists of U11, U12, U5, and U6atac snRNAs. The U12-dependent spliceosome acts on approximately 700 specific introns in the human genome. Defects in this gene are a cause of microcephalic osteodysplastic primordial dwarfism type 1 (MOPD). [provided by RefSeq, Jul 2011]

IDDM18 Gene

insulin-dependent diabetes mellitus 18

IDDM15 Gene

insulin-dependent diabetes mellitus 15

IDDM13 Gene

insulin-dependent diabetes mellitus 13

IDDM11 Gene

insulin-dependent diabetes mellitus 11

CACNG8 Gene

calcium channel, voltage-dependent, gamma subunit 8

The protein encoded by this gene is a type I transmembrane AMPA receptor regulatory protein (TARP). TARPs regulate both trafficking and channel gating of the AMPA receptors. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family and is located in a cluster with two family members, a type II TARP and a calcium channel gamma subunit. The mRNA for this gene is believed to initiate translation from a non-AUG (CUG) start codon. [provided by RefSeq, Dec 2010]

CACNG3 Gene

calcium channel, voltage-dependent, gamma subunit 3

The protein encoded by this gene is a type I transmembrane AMPA receptor regulatory protein (TARP). TARPs regulate both trafficking and channel gating of the AMPA receptors. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family. This gene is a susceptibility locus for childhood absence epilepsy. [provided by RefSeq, Dec 2010]

CACNG6 Gene

calcium channel, voltage-dependent, gamma subunit 6

Voltage-dependent calcium channels are composed of five subunits. The protein encoded by this gene represents one of these subunits, gamma, and is one of two known gamma subunit proteins. This particular gamma subunit is an integral membrane protein that is thought to stabilize the calcium channel in an inactive (closed) state. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family and is located in a cluster with two family members that function as transmembrane AMPA receptor regulatory proteins (TARPs). Alternative splicing results in multiple transcript variants. Variants in this gene have been associated with aspirin-intolerant asthma. [provided by RefSeq, Dec 2010]

CACNG7 Gene

calcium channel, voltage-dependent, gamma subunit 7

The protein encoded by this gene is a type II transmembrane AMPA receptor regulatory protein (TARP). TARPs regulate both trafficking and channel gating of the AMPA receptors. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family and is located in a cluster with two family members, a type I TARP and a calcium channel gamma subunit. [provided by RefSeq, Dec 2010]

LOC102725121 Gene

putative ATP-dependent RNA helicase DDX12

LOC100422398 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

SMARCB1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1

The protein encoded by this gene is part of a complex that relieves repressive chromatin structures, allowing the transcriptional machinery to access its targets more effectively. The encoded nuclear protein may also bind to and enhance the DNA joining activity of HIV-1 integrase. This gene has been found to be a tumor suppressor, and mutations in it have been associated with malignant rhabdoid tumors. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

CTIF Gene

CBP80/20-dependent translation initiation factor

CTIF is a component of the CBP80 (NCBP1; MIM 600469)/CBP20 (NCBP2; MIM 605133) translation initiation complex that binds cotranscriptionally to the cap end of nascent mRNA. The CBP80/CBP20 complex is involved in a simultaneous editing and translation step that recognizes premature termination codons (PTCs) in mRNAs and directs PTC-containing mRNAs toward nonsense-mediated decay (NMD). On mRNAs without PTCs, the CBP80/CBP20 complex is replaced with cytoplasmic mRNA cap-binding proteins, including EIF4G (MIM 600495), and steady-state translation of the mRNAs resumes in the cytoplasm (Kim et al., 2009 [PubMed 19648179]).[supplied by OMIM, Dec 2009]

PPM1AP1 Gene

protein phosphatase, Mg2+/Mn2+ dependent 1A, pseudogene 1

OGFOD1 Gene

2-oxoglutarate and iron-dependent oxygenase domain containing 1

OGFOD3 Gene

2-oxoglutarate and iron-dependent oxygenase domain containing 3

OGFOD2 Gene

2-oxoglutarate and iron-dependent oxygenase domain containing 2

NOXRED1 Gene

NADP-dependent oxidoreductase domain containing 1

RNASEL Gene

ribonuclease L (2',5'-oligoisoadenylate synthetase-dependent)

This gene encodes a component of the interferon-regulated 2-5A system that functions in the antiviral and antiproliferative roles of interferons. Mutations in this gene have been associated with predisposition to prostate cancer and this gene is a candidate for the hereditary prostate cancer 1 (HPC1) allele. [provided by RefSeq, Jul 2008]

CAMK1G Gene

calcium/calmodulin-dependent protein kinase IG

This gene encodes a protein similar to calcium/calmodulin dependent protein kinase, however, its exact function is not known. [provided by RefSeq, Jul 2008]

CDK5R1 Gene

cyclin-dependent kinase 5, regulatory subunit 1 (p35)

The protein encoded by this gene (p35) is a neuron-specific activator of cyclin-dependent kinase 5 (CDK5); the activation of CDK5 is required for proper development of the central nervous system. The p35 form of this protein is proteolytically cleaved by calpain, generating a p25 form. The cleavage of p35 into p25 results in relocalization of the protein from the cell periphery to nuclear and perinuclear regions. P25 deregulates CDK5 activity by prolonging its activation and changing its cellular location. The p25 form accumulates in the brain neurons of patients with Alzheimer's disease. This accumulation correlates with an increase in CDK5 kinase activity, and may lead to aberrantly phosphorylated forms of the microtubule-associated protein tau, which contributes to Alzheimer's disease. [provided by RefSeq, Jul 2008]

RNU6ATAC Gene

RNA, U6atac small nuclear (U12-dependent splicing)

PDXDC2P Gene

pyridoxal-dependent decarboxylase domain containing 2, pseudogene

MTHFD2L Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like

LOC100131200 Gene

mannose-6-phosphate receptor (cation dependent) pseudogene

HFM1 Gene

HFM1, ATP-dependent DNA helicase homolog (S. cerevisiae)

The protein encoded by this gene is thought to be an ATP-dependent DNA helicase and is expressed mainly in germ-line cells. Defects in this gene are a cause of premature ovarian failure 9 (POF9). [provided by RefSeq, Apr 2014]

PRKRIRP8 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 8

PRKRIRP9 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 9

PRKRIRP1 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 1

PRKRIRP2 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 2

PRKRIRP3 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 3

PRKRIRP4 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 4

PRKRIRP5 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 5

PRKRIRP6 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 6

PRKRIRP7 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 7

LOC102724223 Gene

sodium- and chloride-dependent creatine transporter 1-like

SMARCE1P3 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 pseudogene 3

SMARCE1P2 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 pseudogene 2

CDK18 Gene

cyclin-dependent kinase 18

CDK19 Gene

cyclin-dependent kinase 19

This gene encodes a protein that is one of the components of the Mediator co-activator complex. The Mediator complex is a multi-protein complex required for transcriptional activation by DNA binding transcription factors of genes transcribed by RNA polymerase II. The protein encoded by this gene is similar to cyclin-dependent kinase 8 which can also be a component of the Mediator complex. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2014]

CDK12 Gene

cyclin-dependent kinase 12

CDK13 Gene

cyclin-dependent kinase 13

The protein encoded by this gene is a member of the cyclin-dependent serine/threonine protein kinase family. Members of this family are well known for their essential roles as master switches in cell cycle control. The exact function of this protein has not yet been determined, but it may play a role in mRNA processing and may be involved in regulation of hematopoiesis. Alternatively spliced transcript variants have been described.[provided by RefSeq, Dec 2009]

CDK10 Gene

cyclin-dependent kinase 10

The protein encoded by this gene belongs to the CDK subfamily of the Ser/Thr protein kinase family. The CDK subfamily members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and are known to be essential for cell cycle progression. This kinase has been shown to play a role in cellular proliferation and its function is limited to cell cycle G2-M phase. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2009]

CDK16 Gene

cyclin-dependent kinase 16

The protein encoded by this gene belongs to the cdc2/cdkx subfamily of the ser/thr family of protein kinases. It may play a role in signal transduction cascades in terminally differentiated cells; in exocytosis; and in transport of secretory cargo from the endoplasmic reticulum. This gene is thought to escape X inactivation. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Dec 2009]

CDK17 Gene

cyclin-dependent kinase 17

The protein encoded by this gene belongs to the cdc2/cdkx subfamily of the ser/thr family of protein kinases. It has similarity to a rat protein that is thought to play a role in terminally differentiated neurons. Alternatively spliced transcript variants encoding different isoforms have been found. [provided by RefSeq, Jul 2010]

CDK14 Gene

cyclin-dependent kinase 14

PFTK1 is a member of the CDC2 (MIM 116940)-related protein kinase family (Yang and Chen, 2001 [PubMed 11313143]).[supplied by OMIM, Mar 2008]

CDK15 Gene

cyclin-dependent kinase 15

SMARCE1P6 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 pseudogene 6

SMARCE1P4 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 pseudogene 4

CDKN1C Gene

cyclin-dependent kinase inhibitor 1C (p57, Kip2)

This gene is imprinted, with preferential expression of the maternal allele. The encoded protein is a tight-binding, strong inhibitor of several G1 cyclin/Cdk complexes and a negative regulator of cell proliferation. Mutations in this gene are implicated in sporadic cancers and Beckwith-Wiedemann syndorome, suggesting that this gene is a tumor suppressor candidate. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Oct 2010]

CDKN1B Gene

cyclin-dependent kinase inhibitor 1B (p27, Kip1)

This gene encodes a cyclin-dependent kinase inhibitor, which shares a limited similarity with CDK inhibitor CDKN1A/p21. The encoded protein binds to and prevents the activation of cyclin E-CDK2 or cyclin D-CDK4 complexes, and thus controls the cell cycle progression at G1. The degradation of this protein, which is triggered by its CDK dependent phosphorylation and subsequent ubiquitination by SCF complexes, is required for the cellular transition from quiescence to the proliferative state. Mutations in this gene are associated with multiple endocrine neoplasia type IV (MEN4). [provided by RefSeq, Apr 2014]

CDKN1A Gene

cyclin-dependent kinase inhibitor 1A (p21, Cip1)

This gene encodes a potent cyclin-dependent kinase inhibitor. The encoded protein binds to and inhibits the activity of cyclin-CDK2 or -CDK4 complexes, and thus functions as a regulator of cell cycle progression at G1. The expression of this gene is tightly controlled by the tumor suppressor protein p53, through which this protein mediates the p53-dependent cell cycle G1 phase arrest in response to a variety of stress stimuli. This protein can interact with proliferating cell nuclear antigen (PCNA), a DNA polymerase accessory factor, and plays a regulatory role in S phase DNA replication and DNA damage repair. This protein was reported to be specifically cleaved by CASP3-like caspases, which thus leads to a dramatic activation of CDK2, and may be instrumental in the execution of apoptosis following caspase activation. Multiple alternatively spliced variants have been found for this gene. [provided by RefSeq, Nov 2010]

VDAC2P2 Gene

voltage-dependent anion channel 2 pseudogene 2

VDAC2P1 Gene

voltage-dependent anion channel 2 pseudogene 1

IDDM24 Gene

Diabetes mellitus, insulin-dependent, 24

IDDM23 Gene

Diabetes mellitus, insulin-dependent, 23

LOC105379282 Gene

glucose-dependent insulinotropic receptor-like

VDAC1P12 Gene

voltage-dependent anion channel 1 pseudogene 12

VDAC1P13 Gene

voltage-dependent anion channel 1 pseudogene 13

VDAC1P10 Gene

voltage-dependent anion channel 1 pseudogene 10

VDAC1P11 Gene

voltage-dependent anion channel 1 pseudogene 11

CDK8PS Gene

cyclin-dependent kinase 8 pseudogene

OGFOD1P1 Gene

2-oxoglutarate and iron-dependent oxygenase domain containing 1 pseudogene 1

LOC645397 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like pseudogene

IDDM17 Gene

insulin-dependent diabetes mellitus 17

IDDM16 Gene

insulin-dependent diabetes mellitus 16

IDDM14 Gene

insulin-dependent diabetes mellitus 14

LOC100422399 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

CAMK1D Gene

calcium/calmodulin-dependent protein kinase ID

This gene is a member of the calcium/calmodulin-dependent protein kinase 1 family, a subfamily of the serine/threonine kinases. The encoded protein is a component of the calcium-regulated calmodulin-dependent protein kinase cascade. It has been associated with multiple processes including regulation of granulocyte function, activation of CREB-dependent gene transcription, aldosterone synthesis, differentiation and activation of neutrophil cells, and apoptosis of erythroleukemia cells. Alternatively spliced transcript variants encoding different isoforms of this gene have been described. [provided by RefSeq, Jan 2015]

CACNB3 Gene

calcium channel, voltage-dependent, beta 3 subunit

This gene encodes a regulatory beta subunit of the voltage-dependent calcium channel. Beta subunits are composed of five domains, which contribute to the regulation of surface expression and gating of calcium channels and may also play a role in the regulation of transcription factors and calcium transport. [provided by RefSeq, Oct 2011]

CACNB2 Gene

calcium channel, voltage-dependent, beta 2 subunit

This gene encodes a subunit of a voltage-dependent calcium channel protein that is a member of the voltage-gated calcium channel superfamily. The gene product was originally identified as an antigen target in Lambert-Eaton myasthenic syndrome, an autoimmune disorder. Mutations in this gene are associated with Brugada syndrome. Alternatively spliced variants encoding different isoforms have been described. [provided by RefSeq, Feb 2013]

CACNB1 Gene

calcium channel, voltage-dependent, beta 1 subunit

The protein encoded by this gene belongs to the calcium channel beta subunit family. It plays an important role in the calcium channel by modulating G protein inhibition, increasing peak calcium current, controlling the alpha-1 subunit membrane targeting and shifting the voltage dependence of activation and inactivation. Alternative splicing occurs at this locus and three transcript variants encoding three distinct isoforms have been identified. [provided by RefSeq, Jul 2008]

CACNB4 Gene

calcium channel, voltage-dependent, beta 4 subunit

This gene encodes a member of the beta subunit family of voltage-dependent calcium channel complex proteins. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Various versions of each of these subunits exist, either expressed from similar genes or the result of alternative splicing. The protein encoded by this locus plays an important role in calcium channel function by modulating G protein inhibition, increasing peak calcium current, controlling the alpha-1 subunit membrane targeting and shifting the voltage dependence of activation and inactivation. Certain mutations in this gene have been associated with idiopathic generalized epilepsy (IGE) and juvenile myoclonic epilepsy (JME). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

CACNG1 Gene

calcium channel, voltage-dependent, gamma subunit 1

Voltage-dependent calcium channels are composed of five subunits. The protein encoded by this gene represents one of these subunits, gamma, and is one of two known gamma subunit proteins. This particular gamma subunit is part of skeletal muscle 1,4-dihydropyridine-sensitive calcium channels and is an integral membrane protein that plays a role in excitation-contraction coupling. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family and is located in a cluster with two family members that function as transmembrane AMPA receptor regulatory proteins (TARPs). [provided by RefSeq, Dec 2010]

LCOR Gene

ligand dependent nuclear receptor corepressor

LCOR is a transcriptional corepressor widely expressed in fetal and adult tissues that is recruited to agonist-bound nuclear receptors through a single LxxLL motif, also referred to as a nuclear receptor (NR) box (Fernandes et al., 2003 [PubMed 12535528]).[supplied by OMIM, Mar 2008]

MTHFD1L Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like

The protein encoded by this gene is involved in the synthesis of tetrahydrofolate (THF) in the mitochondrion. THF is important in the de novo synthesis of purines and thymidylate and in the regeneration of methionine from homocysteine. Several transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jun 2011]

LOC100287419 Gene

cyclin-dependent kinase 8 pseudogene

LCORL Gene

ligand dependent nuclear receptor corepressor-like

This gene encodes a transcription factor that appears to function in spermatogenesis. Polymorphisms in this gene are associated with measures of skeletal frame size and adult height. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

CACNA1H Gene

calcium channel, voltage-dependent, T type, alpha 1H subunit

This gene encodes a T-type member of the alpha-1 subunit family, a protein in the voltage-dependent calcium channel complex. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. The alpha-1 subunit has 24 transmembrane segments and forms the pore through which ions pass into the cell. There are multiple isoforms of each of the proteins in the complex, either encoded by different genes or the result of alternative splicing of transcripts. Alternate transcriptional splice variants, encoding different isoforms, have been characterized for the gene described here. Studies suggest certain mutations in this gene lead to childhood absence epilepsy (CAE). [provided by RefSeq, Jul 2008]

CACNA1I Gene

calcium channel, voltage-dependent, T type, alpha 1I subunit

This gene encodes the pore-forming alpha subunit of a voltage gated calcium channel. The encoded protein is a member of a subfamily of calcium channels referred to as is a low voltage-activated, T-type, calcium channel. The channel encoded by this protein is characterized by a slower activation and inactivation compared to other T-type calcium channels. This protein may be involved in calcium signaling in neurons. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Oct 2011]

CACNA1A Gene

calcium channel, voltage-dependent, P/Q type, alpha 1A subunit

Voltage-dependent calcium channels mediate the entry of calcium ions into excitable cells, and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, and gene expression. Calcium channels are multisubunit complexes composed of alpha-1, beta, alpha-2/delta, and gamma subunits. The channel activity is directed by the pore-forming alpha-1 subunit, whereas, the others act as auxiliary subunits regulating this activity. The distinctive properties of the calcium channel types are related primarily to the expression of a variety of alpha-1 isoforms, alpha-1A, B, C, D, E, and S. This gene encodes the alpha-1A subunit, which is predominantly expressed in neuronal tissue. Mutations in this gene are associated with 2 neurologic disorders, familial hemiplegic migraine and episodic ataxia 2. This gene also exhibits polymorphic variation due to (CAG)n-repeats. Multiple transcript variants encoding different isoforms have been found for this gene. In one set of transcript variants, the (CAG)n-repeats occur in the 3' UTR, and are not associated with any disease. But in another set of variants, an insertion extends the coding region to include the (CAG)n-repeats which encode a polyglutamine tract. Expansion of the (CAG)n-repeats from the normal 4-16 to 21-28 in the coding region is associated with spinocerebellar ataxia 6. [provided by RefSeq, Mar 2010]

CACNA1B Gene

calcium channel, voltage-dependent, N type, alpha 1B subunit

The protein encoded by this gene is the pore-forming subunit of an N-type voltage-dependent calcium channel, which controls neurotransmitter release from neurons. The encoded protein forms a complex with alpha-2, beta, and delta subunits to form the high-voltage activated channel. This channel is sensitive to omega-conotoxin-GVIA and omega-agatoxin-IIIA but insensitive to dihydropyridines. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2011]

CACNA1C Gene

calcium channel, voltage-dependent, L type, alpha 1C subunit

This gene encodes an alpha-1 subunit of a voltage-dependent calcium channel. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization. The alpha-1 subunit consists of 24 transmembrane segments and forms the pore through which ions pass into the cell. The calcium channel consists of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. There are multiple isoforms of each of these proteins, either encoded by different genes or the result of alternative splicing of transcripts. The protein encoded by this gene binds to and is inhibited by dihydropyridine. Alternative splicing results in many transcript variants encoding different proteins. Some of the predicted proteins may not produce functional ion channel subunits. [provided by RefSeq, Oct 2012]

CACNA1D Gene

calcium channel, voltage-dependent, L type, alpha 1D subunit

Voltage-dependent calcium channels mediate the entry of calcium ions into excitable cells, and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, and gene expression. Calcium channels are multisubunit complexes composed of alpha-1, beta, alpha-2/delta, and gamma subunits. The channel activity is directed by the pore-forming alpha-1 subunit, whereas the others act as auxiliary subunits regulating this activity. The distinctive properties of the calcium channel types are related primarily to the expression of a variety of alpha-1 isoforms, namely alpha-1A, B, C, D, E, and S. This gene encodes the alpha-1D subunit. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2012]

CACNA1E Gene

calcium channel, voltage-dependent, R type, alpha 1E subunit

Voltage-dependent calcium channels are multisubunit complexes consisting of alpha-1, alpha-2, beta, and delta subunits in a 1:1:1:1 ratio. These channels mediate the entry of calcium ions into excitable cells, and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This gene encodes the alpha-1E subunit of the R-type calcium channels, which belong to the 'high-voltage activated' group that maybe involved in the modulation of firing patterns of neurons important for information processing. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Apr 2011]

CACNA1F Gene

calcium channel, voltage-dependent, L type, alpha 1F subunit

This gene encodes a multipass transmembrane protein that functions as an alpha-1 subunit of the voltage-dependent calcium channel, which mediates the influx of calcium ions into the cell. The encoded protein forms a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Mutations in this gene can cause X-linked eye disorders, including congenital stationary night blindness type 2A, cone-rod dystropy, and Aland Island eye disease. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Aug 2013]

CACNG5 Gene

calcium channel, voltage-dependent, gamma subunit 5

The protein encoded by this gene is a type II transmembrane AMPA receptor regulatory protein (TARP). TARPs regulate both trafficking and channel gating of the AMPA receptors. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family and is located in a cluster with two family members, a type I TARP and a calcium channel gamma subunit. This gene is a susceptibility locus for schizophrenia and bipolar disorder. [provided by RefSeq, Dec 2010]

CDKN2B Gene

cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)

This gene lies adjacent to the tumor suppressor gene CDKN2A in a region that is frequently mutated and deleted in a wide variety of tumors. This gene encodes a cyclin-dependent kinase inhibitor, which forms a complex with CDK4 or CDK6, and prevents the activation of the CDK kinases, thus the encoded protein functions as a cell growth regulator that controls cell cycle G1 progression. The expression of this gene was found to be dramatically induced by TGF beta, which suggested its role in the TGF beta induced growth inhibition. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

CDKN2D Gene

cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)

The protein encoded by this gene is a member of the INK4 family of cyclin-dependent kinase inhibitors. This protein has been shown to form a stable complex with CDK4 or CDK6, and prevent the activation of the CDK kinases, thus function as a cell growth regulator that controls cell cycle G1 progression. The abundance of the transcript of this gene was found to oscillate in a cell-cycle dependent manner with the lowest expression at mid G1 and a maximal expression during S phase. The negative regulation of the cell cycle involved in this protein was shown to participate in repressing neuronal proliferation, as well as spermatogenesis. Two alternatively spliced variants of this gene, which encode an identical protein, have been reported. [provided by RefSeq, Jul 2008]

ADTRP Gene

androgen-dependent TFPI-regulating protein

SMARCD3 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3

The protein encoded by this gene is a member of the SWI/SNF family of proteins, whose members display helicase and ATPase activities and which are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI and has sequence similarity to the yeast Swp73 protein. Multiple alternatively spliced transcript variants have been found for this gene, but the biological validity of some variants has not been determined. [provided by RefSeq, Jul 2008]

SMARCD2 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 2

The protein encoded by this gene is a member of the SWI/SNF family of proteins, whose members display helicase and ATPase activities and which are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI and has sequence similarity to the yeast Swp73 protein. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SMARCD1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1

The protein encoded by this gene is a member of the SWI/SNF family of proteins, whose members display helicase and ATPase activities and which are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI and has sequence similarity to the yeast Swp73 protein. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC644169 Gene

voltage-dependent anion channel 1 pseudogene

SMARCAL1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a-like 1

The protein encoded by this gene is a member of the SWI/SNF family of proteins. Members of this family have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein shows sequence similarity to the E. coli RNA polymerase-binding protein HepA. Mutations in this gene are a cause of Schimke immunoosseous dysplasia (SIOD), an autosomal recessive disorder with the diagnostic features of spondyloepiphyseal dysplasia, renal dysfunction, and T-cell immunodeficiency. [provided by RefSeq, Jul 2008]

LOC100422463 Gene

calcium channel, voltage-dependent, L type, alpha 1C subunit pseudogene

CDK5PS Gene

cyclin-dependent kinase 5 pseudogene

SMARCAD1 Gene

SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/H box 1

This gene encodes a member of the SNF subfamily of helicase proteins. The encoded protein plays a critical role in the restoration of heterochromatin organization and propagation of epigenetic patterns following DNA replication by mediating histone H3/H4 deacetylation. Mutations in this gene are associated with adermatoglyphia. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Dec 2011]

CAMK1 Gene

calcium/calmodulin-dependent protein kinase I

Calcium/calmodulin-dependent protein kinase I is expressed in many tissues and is a component of a calmodulin-dependent protein kinase cascade. Calcium/calmodulin directly activates calcium/calmodulin-dependent protein kinase I by binding to the enzyme and indirectly promotes the phosphorylation and synergistic activation of the enzyme by calcium/calmodulin-dependent protein kinase I kinase. [provided by RefSeq, Jul 2008]

CAMK4 Gene

calcium/calmodulin-dependent protein kinase IV

The product of this gene belongs to the serine/threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. This enzyme is a multifunctional serine/threonine protein kinase with limited tissue distribution, that has been implicated in transcriptional regulation in lymphocytes, neurons and male germ cells. [provided by RefSeq, Jul 2008]

LOC401959 Gene

voltage-dependent anion channel 2 pseudogene

CADPS Gene

Ca++-dependent secretion activator

This gene encodes a novel neural/endocrine-specific cytosolic and peripheral membrane protein required for the Ca2+-regulated exocytosis of secretory vesicles. The protein acts at a stage in exocytosis that follows ATP-dependent priming, which involves the essential synthesis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Alternative splicing has been observed at this locus and three variants, encoding distinct isoforms, are described. [provided by RefSeq, Aug 2008]

LOC100420647 Gene

voltage-dependent anion channel 3 pseudogene

ME1 Gene

malic enzyme 1, NADP(+)-dependent, cytosolic

This gene encodes a cytosolic, NADP-dependent enzyme that generates NADPH for fatty acid biosynthesis. The activity of this enzyme, the reversible oxidative decarboxylation of malate, links the glycolytic and citric acid cycles. The regulation of expression for this gene is complex. Increased expression can result from elevated levels of thyroid hormones or by higher proportions of carbohydrates in the diet. [provided by RefSeq, Jul 2008]

MDP1 Gene

magnesium-dependent phosphatase 1

MTHFD1 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase

This gene encodes a protein that possesses three distinct enzymatic activities, 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase and 10-formyltetrahydrofolate synthetase. Each of these activities catalyzes one of three sequential reactions in the interconversion of 1-carbon derivatives of tetrahydrofolate, which are substrates for methionine, thymidylate, and de novo purine syntheses. The trifunctional enzymatic activities are conferred by two major domains, an aminoterminal portion containing the dehydrogenase and cyclohydrolase activities and a larger synthetase domain. [provided by RefSeq, Jul 2008]

SMARCE1P1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 pseudogene 1

CACNA1G Gene

calcium channel, voltage-dependent, T type, alpha 1G subunit

Voltage-sensitive calcium channels mediate the entry of calcium ions into excitable cells, and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division, and cell death. This gene encodes a T-type, low-voltage activated calcium channel. The T-type channels generate currents that are both transient, owing to fast inactivation, and tiny, owing to small conductance. T-type channels are thought to be involved in pacemaker activity, low-threshold calcium spikes, neuronal oscillations and resonance, and rebound burst firing. Many alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Sep 2011]

MEDAG Gene

mesenteric estrogen-dependent adipogenesis

NSDHL Gene

NAD(P) dependent steroid dehydrogenase-like

The protein encoded by this gene is localized in the endoplasmic reticulum and is involved in cholesterol biosynthesis. Mutations in this gene are associated with CHILD syndrome, which is a X-linked dominant disorder of lipid metabolism with disturbed cholesterol biosynthesis, and typically lethal in males. Alternatively spliced transcript variants with differing 5' UTR have been found for this gene. [provided by RefSeq, Jul 2008]

SMARCA1 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1

This gene encodes a member of the SWI/SNF family of proteins. The encoded protein is an ATPase which is expressed in diverse tissues and contributes to the chromatin remodeling complex that is involved in transcription. The protein may also play a role in DNA damage, growth inhibition and apoptosis of cancer cells. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

SMARCA2 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2

The protein encoded by this gene is a member of the SWI/SNF family of proteins and is highly similar to the brahma protein of Drosophila. Members of this family have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI, which is required for transcriptional activation of genes normally repressed by chromatin. Alternatively spliced transcript variants encoding different isoforms have been found for this gene, which contains a trinucleotide repeat (CAG) length polymorphism. [provided by RefSeq, Jan 2014]

SMARCA4 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4

The protein encoded by this gene is a member of the SWI/SNF family of proteins and is similar to the brahma protein of Drosophila. Members of this family have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein is part of the large ATP-dependent chromatin remodeling complex SNF/SWI, which is required for transcriptional activation of genes normally repressed by chromatin. In addition, this protein can bind BRCA1, as well as regulate the expression of the tumorigenic protein CD44. Mutations in this gene cause rhabdoid tumor predisposition syndrome type 2. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2012]

SMARCA5 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5

The protein encoded by this gene is a member of the SWI/SNF family of proteins. Members of this family have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The protein encoded by this gene is a component of the chromatin remodeling and spacing factor RSF, a facilitator of the transcription of class II genes by RNA polymerase II. The encoded protein is similar in sequence to the Drosophila ISWI chromatin remodeling protein. [provided by RefSeq, Jul 2008]

CACNA1S Gene

calcium channel, voltage-dependent, L type, alpha 1S subunit

This gene encodes one of the five subunits of the slowly inactivating L-type voltage-dependent calcium channel in skeletal muscle cells. Mutations in this gene have been associated with hypokalemic periodic paralysis, thyrotoxic periodic paralysis and malignant hyperthermia susceptibility. [provided by RefSeq, Jul 2008]

CDK1 Gene

cyclin-dependent kinase 1

The protein encoded by this gene is a member of the Ser/Thr protein kinase family. This protein is a catalytic subunit of the highly conserved protein kinase complex known as M-phase promoting factor (MPF), which is essential for G1/S and G2/M phase transitions of eukaryotic cell cycle. Mitotic cyclins stably associate with this protein and function as regulatory subunits. The kinase activity of this protein is controlled by cyclin accumulation and destruction through the cell cycle. The phosphorylation and dephosphorylation of this protein also play important regulatory roles in cell cycle control. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

CDK2 Gene

cyclin-dependent kinase 2

This gene encodes a member of a family of serine/threonine protein kinases that participate in cell cycle regulation. The encoded protein is the catalytic subunit of the cyclin-dependent protein kinase complex, which regulates progression through the cell cycle. Activity of this protein is especially critical during the G1 to S phase transition. This protein associates with and regulated by other subunits of the complex including cyclin A or E, CDK inhibitor p21Cip1 (CDKN1A), and p27Kip1 (CDKN1B). Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2014]

CDK3 Gene

cyclin-dependent kinase 3

This gene encodes a member of the cyclin-dependent protein kinase family. The protein promotes entry into S phase, in part by activating members of the E2F family of transcription factors. The protein also associates with cyclin C and phosphorylates the retinoblastoma 1 protein to promote exit from G0. [provided by RefSeq, Jul 2008]

CDK4 Gene

cyclin-dependent kinase 4

The protein encoded by this gene is a member of the Ser/Thr protein kinase family. This protein is highly similar to the gene products of S. cerevisiae cdc28 and S. pombe cdc2. It is a catalytic subunit of the protein kinase complex that is important for cell cycle G1 phase progression. The activity of this kinase is restricted to the G1-S phase, which is controlled by the regulatory subunits D-type cyclins and CDK inhibitor p16(INK4a). This kinase was shown to be responsible for the phosphorylation of retinoblastoma gene product (Rb). Mutations in this gene as well as in its related proteins including D-type cyclins, p16(INK4a) and Rb were all found to be associated with tumorigenesis of a variety of cancers. Multiple polyadenylation sites of this gene have been reported. [provided by RefSeq, Jul 2008]

CDK5 Gene

cyclin-dependent kinase 5

This gene encodes a proline-directed serine/threonine kinase that is a member of the cyclin-dependent kinase family of proteins. Unlike other members of the family, the protein encoded by this gene does not directly control cell cycle regulation. Instead the protein, which is predominantly expressed at high levels in mammalian postmitotic central nervous system neurons, functions in diverse processes such as synaptic plasticity and neuronal migration through phosphorylation of proteins required for cytoskeletal organization, endocytosis and exocytosis, and apoptosis. In humans, an allelic variant of the gene that results in undetectable levels of the protein has been associated with lethal autosomal recessive lissencephaly-7. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2015]

CDK6 Gene

cyclin-dependent kinase 6

The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression. This kinase is a catalytic subunit of the protein kinase complex that is important for cell cycle G1 phase progression and G1/S transition. The activity of this kinase first appears in mid-G1 phase, which is controlled by the regulatory subunits including D-type cyclins and members of INK4 family of CDK inhibitors. This kinase, as well as CDK4, has been shown to phosphorylate, and thus regulate the activity of, tumor suppressor protein Rb. Expression of this gene is up-regulated in some types of cancer. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Nov 2009]

CDK7 Gene

cyclin-dependent kinase 7

The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression. This protein forms a trimeric complex with cyclin H and MAT1, which functions as a Cdk-activating kinase (CAK). It is an essential component of the transcription factor TFIIH, that is involved in transcription initiation and DNA repair. This protein is thought to serve as a direct link between the regulation of transcription and the cell cycle. [provided by RefSeq, Jul 2008]

CDK8 Gene

cyclin-dependent kinase 8

The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression. This kinase and its regulatory subunit cyclin C are components of the RNA polymerase II holoenzyme complex, which phosphorylates the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. This kinase has also been shown to regulate transcription by targeting the CDK7/cyclin H subunits of the general transcription initiation factor IIH (TFIIH), thus providing a link between the 'Mediator-like' protein complexes and the basal transcription machinery. [provided by RefSeq, Jul 2008]

CDK9 Gene

cyclin-dependent kinase 9

The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS. [provided by RefSeq, Jul 2008]

MTHFD1P1 Gene

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 pseudogene 1

PDE1C Gene

phosphodiesterase 1C, calmodulin-dependent 70kDa

Cyclic nucleotide phosphodiesterases (PDEs) catalyze hydrolysis of the cyclic nucleotides cAMP and cGMP to the corresponding nucleoside 5-prime-monophosphates. Mammalian PDEs have been classified into several families based on their biochemical properties. Members of the PDE1 family, such as PDE1C, are calmodulin (see MIM 114180)-dependent PDEs (CaM-PDEs) that are stimulated by a calcium-calmodulin complex (Repaske et al., 1992 [PubMed 1326532]).[supplied by OMIM, Oct 2009]

PDE1B Gene

phosphodiesterase 1B, calmodulin-dependent

The protein encoded by this gene belongs to the cyclic nucleotide phosphodiesterase (PDE) family, and PDE1 subfamily. Members of the PDE1 family are calmodulin-dependent PDEs that are stimulated by a calcium-calmodulin complex. This PDE has dual-specificity for the second messengers, cAMP and cGMP, with a preference for cGMP as a substrate. cAMP and cGMP function as key regulators of many important physiological processes. Alternatively spliced transcript variants encoding different isoforms have been described for this gene.[provided by RefSeq, Jul 2011]

PDE1A Gene

phosphodiesterase 1A, calmodulin-dependent

Cyclic nucleotide phosphodiesterases (PDEs) play a role in signal transduction by regulating intracellular cyclic nucleotide concentrations through hydrolysis of cAMP and/or cGMP to their respective nucleoside 5-prime monophosphates. Members of the PDE1 family, such as PDE1A, are Ca(2+)/calmodulin (see CALM1; MIM 114180)-dependent PDEs (CaM-PDEs) that are activated by calmodulin in the presence of Ca(2+) (Michibata et al., 2001 [PubMed 11342109]; Fidock et al., 2002 [PubMed 11747989]).[supplied by OMIM, Oct 2009]

LOC100422696 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 pseudogene

LOC100422695 Gene

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 pseudogene

LOC100533853 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene

LOC102724985 Gene

pyridoxal-dependent decarboxylase domain-containing protein 1

CDK4PS Gene

cyclin-dependent kinase 4 pseudogene

CDK5R2 Gene

cyclin-dependent kinase 5, regulatory subunit 2 (p39)

The protein encoded by this gene is a neuron-specific activator of CDK5 kinase. It associates with CDK5 to form an active kinase. This protein and neuron-specific CDK5 activator CDK5R1/p39NCK5A both share limited similarity to cyclins, and thus may define a distinct family of cyclin-dependent kinase activating proteins. [provided by RefSeq, Jul 2008]

CDKN2C Gene

cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)

The protein encoded by this gene is a member of the INK4 family of cyclin-dependent kinase inhibitors. This protein has been shown to interact with CDK4 or CDK6, and prevent the activation of the CDK kinases, thus function as a cell growth regulator that controls cell cycle G1 progression. Ectopic expression of this gene was shown to suppress the growth of human cells in a manner that appears to correlate with the presence of a wild-type RB1 function. Studies in the knockout mice suggested the roles of this gene in regulating spermatogenesis, as well as in suppressing tumorigenesis. Two alternatively spliced transcript variants of this gene, which encode an identical protein, have been reported. [provided by RefSeq, Jul 2008]

CDKN2A Gene

cyclin-dependent kinase inhibitor 2A

This gene generates several transcript variants which differ in their first exons. At least three alternatively spliced variants encoding distinct proteins have been reported, two of which encode structurally related isoforms known to function as inhibitors of CDK4 kinase. The remaining transcript includes an alternate first exon located 20 Kb upstream of the remainder of the gene; this transcript contains an alternate open reading frame (ARF) that specifies a protein which is structurally unrelated to the products of the other variants. This ARF product functions as a stabilizer of the tumor suppressor protein p53 as it can interact with, and sequester, the E3 ubiquitin-protein ligase MDM2, a protein responsible for the degradation of p53. In spite of the structural and functional differences, the CDK inhibitor isoforms and the ARF product encoded by this gene, through the regulatory roles of CDK4 and p53 in cell cycle G1 progression, share a common functionality in cell cycle G1 control. This gene is frequently mutated or deleted in a wide variety of tumors, and is known to be an important tumor suppressor gene. [provided by RefSeq, Sep 2012]

CACNG2 Gene

calcium channel, voltage-dependent, gamma subunit 2

The protein encoded by this gene is a type I transmembrane AMPA receptor regulatory protein (TARP). TARPs regulate both trafficking and channel gating of the AMPA receptors. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family. This gene is a susceptibility locus for schizophrenia. [provided by RefSeq, Dec 2010]

CACNG4 Gene

calcium channel, voltage-dependent, gamma subunit 4

The protein encoded by this gene is a type I transmembrane AMPA receptor regulatory protein (TARP). TARPs regulate both trafficking and channel gating of the AMPA receptors. This gene is part of a functionally diverse eight-member protein subfamily of the PMP-22/EMP/MP20 family and is located in a cluster with two family members, a type II TARP and a calcium channel gamma subunit. [provided by RefSeq, Dec 2010]

NFATC3 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3

The product of this gene is a member of the nuclear factors of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation and an inducible nuclear component. Other members of this family participate to form this complex also. The product of this gene plays a role in the regulation of gene expression in T cells and immature thymocytes. Several transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Nov 2010]

C2CD3 Gene

C2 calcium-dependent domain containing 3

This gene encodes a protein that functions as a regulator of centriole elongation. Studies of the orthologous mouse protein show that it promotes centriolar distal appendage assembly and is also required for the recruitment of other ciliogenic proteins, including intraflagellar transport proteins. Mutations in this gene cause orofaciodigital syndrome XIV (OFD14), a ciliopathy resulting in malformations of the oral cavity, face and digits. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Nov 2014]

C2CD2 Gene

C2 calcium-dependent domain containing 2

C2CD5 Gene

C2 calcium-dependent domain containing 5

PPM1G Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1G

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase is found to be responsible for the dephosphorylation of Pre-mRNA splicing factors, which is important for the formation of functional spliceosome. Studies of a similar gene in mice suggested a role of this phosphatase in regulating cell cycle progression. [provided by RefSeq, Apr 2010]

PPM1F Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1F

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase can interact with Rho guanine nucleotide exchange factors (PIX), and thus block the effects of p21-activated kinase 1 (PAK), a protein kinase mediating biological effects downstream of Rho GTPases. Calcium/calmodulin-dependent protein kinase II gamma (CAMK2G/CAMK-II) is found to be one of the substrates of this phosphatase. The overexpression of this phosphatase or CAMK2G has been shown to mediate caspase-dependent apoptosis. An alternatively spliced transcript variant has been identified, but its full-length nature has not been determined. [provided by RefSeq, Jul 2008]

PPM1E Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1E

This gene encodes a member of the PPM family of serine/threonine-protein phosphatases. The encoded protein is localized to the nucleus and dephosphorylates and inactivates multiple substrates including serine/threonine-protein kinase PAK 1, 5'-AMP-activated protein kinase (AMPK) and the multifunctional calcium/calmodulin-dependent protein kinases. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2012]

PPM1D Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1D

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. The expression of this gene is induced in a p53-dependent manner in response to various environmental stresses. While being induced by tumor suppressor protein TP53/p53, this phosphatase negatively regulates the activity of p38 MAP kinase, MAPK/p38, through which it reduces the phosphorylation of p53, and in turn suppresses p53-mediated transcription and apoptosis. This phosphatase thus mediates a feedback regulation of p38-p53 signaling that contributes to growth inhibition and the suppression of stress induced apoptosis. This gene is located in a chromosomal region known to be amplified in breast cancer. The amplification of this gene has been detected in both breast cancer cell line and primary breast tumors, which suggests a role of this gene in cancer development. [provided by RefSeq, Jul 2008]

PPM1B Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1B

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase has been shown to dephosphorylate cyclin-dependent kinases (CDKs), and thus may be involved in cell cycle control. Overexpression of this phosphatase is reported to cause cell-growth arrest or cell death. Alternative splicing results in multiple transcript variants encoding different isoforms. Additional transcript variants have been described, but currently do not represent full-length sequences. [provided by RefSeq, Jul 2008]

PPM1A Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1A

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase dephosphorylates, and negatively regulates the activities of, MAP kinases and MAP kinase kinases. It has been shown to inhibit the activation of p38 and JNK kinase cascades induced by environmental stresses. This phosphatase can also dephosphorylate cyclin-dependent kinases, and thus may be involved in cell cycle control. Overexpression of this phosphatase is reported to activate the expression of the tumor suppressor gene TP53/p53, which leads to G2/M cell cycle arrest and apoptosis. Three alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

PPM1N Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1N (putative)

PPM1M Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1M

PPM1L Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1L

PPM1L, or PP2CE, belongs to the PP2C group of serine/threonine phosphatases, which are distinguished from other phosphatases by their structure, absolute requirement for Mg(2+) or Mn(2+), and insensitivity to okadaic acid. PP2Cs regulate stress-activated protein kinase (SAPK; see MIM 601158) signaling cascades that respond to extracellular stimuli (Jin et al., 2004 [PubMed 15560375]).[supplied by OMIM, Apr 2008]

PPM1K Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1K

This gene encodes a member of the PPM family of Mn2+/Mg2+-dependent protein phosphatases. The encoded protein, essential for cell survival and development, is targeted to the mitochondria where it plays a key role in regulation of the mitochondrial permeability transition pore. [provided by RefSeq, Sep 2012]

PPM1J Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1J

This gene encodes the serine/threonine protein phosphatase. The mouse homolog of this gene apparently belongs to the protein phosphatase 2C family of genes. The exact function of this gene is not yet known. [provided by RefSeq, Jul 2008]

PPM1H Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1H

ADPRM Gene

ADP-ribose/CDP-alcohol diphosphatase, manganese-dependent

LOC100420574 Gene

voltage-dependent anion channel 2 pseudogene

LOC644303 Gene

ATP-dependent RNA helicase DDX24-like

PDPK1 Gene

3-phosphoinositide dependent protein kinase 1

CDKL5 Gene

cyclin-dependent kinase-like 5

This gene is a member of Ser/Thr protein kinase family and encodes a phosphorylated protein with protein kinase activity. Mutations in this gene have been associated with X-linked infantile spasm syndrome (ISSX), also known as X-linked West syndrome, and Rett syndrome (RTT). Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul 2008]

CDKL4 Gene

cyclin-dependent kinase-like 4

CDKL1 Gene

cyclin-dependent kinase-like 1 (CDC2-related kinase)

This gene product is a member of a large family of CDC2-related serine/threonine protein kinases. It accumulates primarily in the nucleus. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

CDKL3 Gene

cyclin-dependent kinase-like 3

The protein encoded by this gene is a member of cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression. This gene was identified as a gene absent in leukemic patients with chromosome 5q deletion. This loss may be an important determinant of dysmyelopoiesis. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

CDKL2 Gene

cyclin-dependent kinase-like 2 (CDC2-related kinase)

This gene product is a member of a large family of CDC2-related serine/threonine protein kinases. It accumulates primarily in the cytoplasm, with lower levels in the nucleus. [provided by RefSeq, Jul 2008]

CASKP1 Gene

calcium/calmodulin-dependent serine protein kinase (MAGUK family) pseudogene 1

CINP Gene

cyclin-dependent kinase 2 interacting protein

The protein encoded by this gene is reported to be a component of the DNA replication complex as well as a genome-maintenance protein. It may interact with proteins important for replication initiation and has been shown to bind chromatin at the G1 phase of the cell cycle and dissociate from chromatin with replication initiation. It may also serve to regulate checkpoint signaling as part of the DNA damage response. [provided by RefSeq, Jul 2013]

IDDMX Gene

Diabetes mellitus, insulin-dependent, X-linked, susceptibility to

IDDM7 Gene

insulin-dependent diabetes mellitus 7

IDDM6 Gene

insulin-dependent diabetes mellitus 6

IDDM4 Gene

insulin-dependent diabetes mellitus 4

IDDM3 Gene

insulin-dependent diabetes mellitus 3

IDDM9 Gene

insulin-dependent diabetes mellitus 9

IDDM8 Gene

insulin-dependent diabetes mellitus 8

LOC729317 Gene

voltage-dependent anion channel 2 pseudogene

PROZ Gene

protein Z, vitamin K-dependent plasma glycoprotein

This gene encodes a liver vitamin K-dependent glycoprotein that is synthesized in the liver and secreted into the plasma. The encoded protein plays a role in regulating blood coagulation by complexing with protein Z-dependent protease inhibitor to directly inhibit activated factor X at the phospholipid surface. Deficiencies in this protein are associated with an increased risk of ischemic arterial diseases and fetal loss. Mutations in this gene are the cause of protein Z deficiency. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jan 2012]

VDAC3 Gene

voltage-dependent anion channel 3

This gene encodes a voltage-dependent anion channel (VDAC), and belongs to the mitochondrial porin family. VDACs are small, integral membrane proteins that traverse the outer mitochondrial membrane and conduct ATP and other small metabolites. They are known to bind several kinases of intermediary metabolism, thought to be involved in translocation of adenine nucleotides, and are hypothesized to form part of the mitochondrial permeability transition pore, which results in the release of cytochrome c at the onset of apoptotic cell death. Alternatively transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Oct 2011]

VDAC2 Gene

voltage-dependent anion channel 2

This gene encodes a member of the voltage-dependent anion channel pore-forming family of proteins that are considered the main pathway for metabolite diffusion across the mitochondrial outer membrane. The encoded protein is also thought to be involved in the mitochondrial apoptotic pathway via regulation of BCL2-antagonist/killer 1 protein activity. Pseudogenes have been identified on chromosomes 1, 2, 12 and 21, and alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

VDAC1 Gene

voltage-dependent anion channel 1

This gene encodes a voltage-dependent anion channel protein that is a major component of the outer mitochondrial membrane. The encoded protein facilitates the exchange of metabolites and ions across the outer mitochondrial membrane and may regulate mitochondrial functions. This protein also forms channels in the plasma membrane and may be involved in transmembrane electron transport. Alternate splicing results in multiple transcript variants. Multiple pseudogenes of this gene are found on chromosomes 1, 2 3, 6, 9, 12, X and Y.[provided by RefSeq, Sep 2010]

PRKRIRP10 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 10

CRTAM Gene

cytotoxic and regulatory T cell molecule

The CRTAM gene is upregulated in CD4 (see MIM 186940)-positive and CD8 (see CD8A; MIM 186910)-positive T cells and encodes a type I transmembrane protein with V and C1-like Ig domains (Yeh et al., 2008 [PubMed 18329370]).[supplied by OMIM, Feb 2009]

MZB1 Gene

marginal zone B and B1 cell-specific protein

SPDYE12P Gene

speedy/RINGO cell cycle regulator family member E12, pseudogene

LOC101060086 Gene

cell cycle exit and neuronal differentiation protein 1-like

CDC27P10 Gene

cell division cycle 27 pseudogene 10

CDC27P11 Gene

cell division cycle 27 pseudogene 11

LOC100420540 Gene

cell division cycle associated 8 pseudogene

BTG4 Gene

B-cell translocation gene 4

The protein encoded by this gene is a member of the BTG/Tob family. This family has structurally related proteins that appear to have antiproliferative properties. This encoded protein can induce G1 arrest in the cell cycle. [provided by RefSeq, Jul 2008]

BTG1 Gene

B-cell translocation gene 1, anti-proliferative

This gene is a member of an anti-proliferative gene family that regulates cell growth and differentiation. Expression of this gene is highest in the G0/G1 phases of the cell cycle and downregulated when cells progressed through G1. The encoded protein interacts with several nuclear receptors, and functions as a coactivator of cell differentiation. This locus has been shown to be involved in a t(8;12)(q24;q22) chromosomal translocation in a case of B-cell chronic lymphocytic leukemia. [provided by RefSeq, Oct 2008]

TRAV23DV6 Gene

T cell receptor alpha variable 23/delta variable 6

LOC101929185 Gene

putative glycine-rich cell wall structural protein 1

MEMO1P4 Gene

mediator of cell motility 1 pseudogene 4

MEMO1P2 Gene

mediator of cell motility 1 pseudogene 2

MEMO1P3 Gene

mediator of cell motility 1 pseudogene 3

LOC728613 Gene

programmed cell death 6 pseudogene

MCL1 Gene

myeloid cell leukemia 1

This gene encodes an anti-apoptotic protein, which is a member of the Bcl-2 family. Alternative splicing results in multiple transcript variants. The longest gene product (isoform 1) enhances cell survival by inhibiting apoptosis while the alternatively spliced shorter gene products (isoform 2 and isoform 3) promote apoptosis and are death-inducing. [provided by RefSeq, Oct 2010]

TRBJ2-4 Gene

T cell receptor beta joining 2-4

TRBJ2-5 Gene

T cell receptor beta joining 2-5

TRBJ2-6 Gene

T cell receptor beta joining 2-6

TRBJ2-7 Gene

T cell receptor beta joining 2-7

TRBJ2-1 Gene

T cell receptor beta joining 2-1

TRBJ2-2 Gene

T cell receptor beta joining 2-2

TRBJ2-3 Gene

T cell receptor beta joining 2-3

CEND1 Gene

cell cycle exit and neuronal differentiation 1

The protein encoded by this gene is a neuron-specific protein. The similar protein in pig enhances neuroblastoma cell differentiation in vitro and may be involved in neuronal differentiation in vivo. Multiple pseudogenes have been reported for this gene. [provided by RefSeq, Jul 2008]

PCNA Gene

proliferating cell nuclear antigen

The protein encoded by this gene is found in the nucleus and is a cofactor of DNA polymerase delta. The encoded protein acts as a homotrimer and helps increase the processivity of leading strand synthesis during DNA replication. In response to DNA damage, this protein is ubiquitinated and is involved in the RAD6-dependent DNA repair pathway. Two transcript variants encoding the same protein have been found for this gene. Pseudogenes of this gene have been described on chromosome 4 and on the X chromosome. [provided by RefSeq, Jul 2008]

BOC Gene

BOC cell adhesion associated, oncogene regulated

The protein encoded by this gene is a member of the immunoglobulin/fibronectin type III repeat family. It is a component of a cell-surface receptor complex that mediates cell-cell interactions between muscle precursor cells, and promotes myogenic differentiation. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Sep 2014]

TRBV20-1 Gene

T cell receptor beta variable 20-1

LOC100130203 Gene

cell adhesion associated, oncogene regulated pseudogene

CDC34 Gene

cell division cycle 34

The protein encoded by this gene is a member of the ubiquitin-conjugating enzyme family. Ubiquitin-conjugating enzyme catalyzes the covalent attachment of ubiquitin to other proteins. This protein is a part of the large multiprotein complex, which is required for ubiquitin-mediated degradation of cell cycle G1 regulators, and for the initiation of DNA replication. [provided by RefSeq, Jul 2008]

CDC37 Gene

cell division cycle 37

The protein encoded by this gene is highly similar to Cdc 37, a cell division cycle control protein of Sacchromyces cerevisiae. This protein is a molecular chaperone with specific function in cell signal transduction. It has been shown to form complex with Hsp90 and a variety of protein kinases including CDK4, CDK6, SRC, RAF-1, MOK, as well as eIF2 alpha kinases. It is thought to play a critical role in directing Hsp90 to its target kinases. [provided by RefSeq, Jul 2008]

BCL9 Gene

B-cell CLL/lymphoma 9

BCL9 is associated with B-cell acute lymphoblastic leukemia. It may be a target of translocation in B-cell malignancies with abnormalities of 1q21. Its function is unknown. The overexpression of BCL9 may be of pathogenic significance in B-cell malignancies. [provided by RefSeq, Jul 2008]

BCL5 Gene

B-cell CLL/lymphoma 5

BCL6 Gene

B-cell CLL/lymphoma 6

The protein encoded by this gene is a zinc finger transcription factor and contains an N-terminal POZ domain. This protein acts as a sequence-specific repressor of transcription, and has been shown to modulate the transcription of START-dependent IL-4 responses of B cells. This protein can interact with a variety of POZ-containing proteins that function as transcription corepressors. This gene is found to be frequently translocated and hypermutated in diffuse large-cell lymphoma (DLCL), and may be involved in the pathogenesis of DLCL. Alternatively spliced transcript variants encoding different protein isoforms have been found for this gene. [provided by RefSeq, Sep 2008]

BCL3 Gene

B-cell CLL/lymphoma 3

This gene is a proto-oncogene candidate. It is identified by its translocation into the immunoglobulin alpha-locus in some cases of B-cell leukemia. The protein encoded by this gene contains seven ankyrin repeats, which are most closely related to those found in I kappa B proteins. This protein functions as a transcriptional co-activator that activates through its association with NF-kappa B homodimers. The expression of this gene can be induced by NF-kappa B, which forms a part of the autoregulatory loop that controls the nuclear residence of p50 NF-kappa B. [provided by RefSeq, Jul 2008]

BCL2 Gene

B-cell CLL/lymphoma 2

This gene encodes an integral outer mitochondrial membrane protein that blocks the apoptotic death of some cells such as lymphocytes. Constitutive expression of BCL2, such as in the case of translocation of BCL2 to Ig heavy chain locus, is thought to be the cause of follicular lymphoma. Two transcript variants, produced by alternate splicing, differ in their C-terminal ends. [provided by RefSeq, Jul 2008]

HIRA Gene

histone cell cycle regulator

This gene encodes a histone chaperone that preferentially places the variant histone H3.3 in nucleosomes. Orthologs of this gene in yeast, flies, and plants are necessary for the formation of transcriptionally silent heterochomatin. This gene plays an important role in the formation of the senescence-associated heterochromatin foci. These foci likely mediate the irreversible cell cycle changes that occur in senescent cells. It is considered the primary candidate gene in some haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient production of the gene may disrupt normal embryonic development. [provided by RefSeq, Jul 2008]

TRAJ32 Gene

T cell receptor alpha joining 32

INSL3 Gene

insulin-like 3 (Leydig cell)

This gene encodes a member of the insulin-like hormone superfamily. The encoded protein is mainly produced in gonadal tissues. Studies of the mouse counterpart suggest that this gene may be involved in the development of urogenital tract and female fertility. This protein may also act as a hormone to regulate growth and differentiation of gubernaculum, and thus mediating intra-abdominal testicular descent. Mutations in this gene may lead to cryptorchidism. Alternate splicing results in multiple transcript variants. [provided by RefSeq, May 2012]

LOC101929818 Gene

killer cell immunoglobulin-like receptor 3DL1

KIR3DX1 Gene

killer cell immunoglobulin-like receptor, three domains, X1

MNDA Gene

myeloid cell nuclear differentiation antigen

The myeloid cell nuclear differentiation antigen (MNDA) is detected only in nuclei of cells of the granulocyte-monocyte lineage. A 200-amino acid region of human MNDA is strikingly similar to a region in the proteins encoded by a family of interferon-inducible mouse genes, designated Ifi-201, Ifi-202, and Ifi-203, that are not regulated in a cell- or tissue-specific fashion. The 1.8-kb MNDA mRNA, which contains an interferon-stimulated response element in the 5-prime untranslated region, was significantly upregulated in human monocytes exposed to interferon alpha. MNDA is located within 2,200 kb of FCER1A, APCS, CRP, and SPTA1. In its pattern of expression and/or regulation, MNDA resembles IFI16, suggesting that these genes participate in blood cell-specific responses to interferons. [provided by RefSeq, Jul 2008]

TRGJ2 Gene

T cell receptor gamma joining 2

TRGJ1 Gene

T cell receptor gamma joining 1

TRGJP Gene

T cell receptor gamma joining P

TRBV6-8 Gene

T cell receptor beta variable 6-8

TRBV6-9 Gene

T cell receptor beta variable 6-9

TRBV6-5 Gene

T cell receptor beta variable 6-5

TRBV6-6 Gene

T cell receptor beta variable 6-6

TRBV6-7 Gene

T cell receptor beta variable 6-7 (non-functional)

TRBV6-2 Gene

T cell receptor beta variable 6-2 (gene/pseudogene)

TRBV6-3 Gene

T cell receptor beta variable 6-3

PCNAP1 Gene

proliferating cell nuclear antigen pseudogene 1

PCNAP4 Gene

proliferating cell nuclear antigen pseudogene 4

TRBC1 Gene

T cell receptor beta constant 1

TRBC2 Gene

T cell receptor beta constant 2

TRBV21-1 Gene

T cell receptor beta variable 21-1 (pseudogene)

CDIP1 Gene

cell death-inducing p53 target 1

LOC100287157 Gene

cell division cycle associated 8 pseudogene

SCRIB Gene

scribbled planar cell polarity protein

This gene encodes a protein that was identified as being similar to the Drosophila scribble protein. The mammalian protein is involved in tumor suppression pathways. As a scaffold protein involved in cell polarization processes, this protein binds to many other proteins. The encoded protein binds to papillomavirus E6 protein via its PDZ domain and the C-terminus of E6. Two alternatively spliced transcript variants that encode different protein isoforms have been found for this gene. [provided by RefSeq, Nov 2011]

TAGAP Gene

T-cell activation RhoGTPase activating protein

This gene encodes a member of the Rho GTPase-activator protein superfamily. The encoded protein may function as a Rho GTPase-activating protein. Alterations in this gene may be associated with several diseases, including rheumatoid arthritis, celiac disease, and multiple sclerosis. Alternate splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2013]

NRCAM Gene

neuronal cell adhesion molecule

Cell adhesion molecules (CAMs) are members of the immunoglobulin superfamily. This gene encodes a neuronal cell adhesion molecule with multiple immunoglobulin-like C2-type domains and fibronectin type-III domains. This ankyrin-binding protein is involved in neuron-neuron adhesion and promotes directional signaling during axonal cone growth. This gene is also expressed in non-neural tissues and may play a general role in cell-cell communication via signaling from its intracellular domain to the actin cytoskeleton during directional cell migration. Allelic variants of this gene have been associated with autism and addiction vulnerability. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

MEMO1P1 Gene

mediator of cell motility 1 pseudogene 1

DEFA6 Gene

defensin, alpha 6, Paneth cell-specific

Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. Several alpha defensin genes appear to be clustered on chromosome 8. The protein encoded by this gene, defensin, alpha 6, is highly expressed in the secretory granules of Paneth cells of the small intestine, and likely plays a role in host defense of human bowel. [provided by RefSeq, Oct 2014]

DEFA5 Gene

defensin, alpha 5, Paneth cell-specific

Defensins are a family of antimicrobial and cytotoxic peptides thought to be involved in host defense. They are abundant in the granules of neutrophils and also found in the epithelia of mucosal surfaces such as those of the intestine, respiratory tract, urinary tract, and vagina. Members of the defensin family are highly similar in protein sequence and distinguished by a conserved cysteine motif. Several of the alpha defensin genes appear to be clustered on chromosome 8. The protein encoded by this gene, defensin, alpha 5, is highly expressed in the secretory granules of Paneth cells of the ileum. [provided by RefSeq, Oct 2014]

TRBV23OR9-2 Gene

T cell receptor beta variable 23/OR9-2 (non-functional)

PDCD1LG2 Gene

programmed cell death 1 ligand 2

TRBV30 Gene

T cell receptor beta variable 30 (gene/pseudogene)

TCTA Gene

T-cell leukemia translocation altered

DELYQ11 Gene

Sertoli cell-only syndrome, Y-linked

LOC100422623 Gene

carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein) pseudogene

ZYG11B Gene

zyg-11 family member B, cell cycle regulator

ZYG11A Gene

zyg-11 family member A, cell cycle regulator

TRBV3-1 Gene

T cell receptor beta variable 3-1

TRBV7-9 Gene

T cell receptor beta variable 7-9

TRBV7-8 Gene

T cell receptor beta variable 7-8

TRBV7-1 Gene

T cell receptor beta variable 7-1 (non-functional)

TRBV7-3 Gene

T cell receptor beta variable 7-3

TRBV7-2 Gene

T cell receptor beta variable 7-2

TRBV7-5 Gene

T cell receptor beta variable 7-5 (pseudogene)

TRBV7-4 Gene

T cell receptor beta variable 7-4 (gene/pseudogene)

TRBV7-7 Gene

T cell receptor beta variable 7-7

TRBV7-6 Gene

T cell receptor beta variable 7-6

HK3 Gene

hexokinase 3 (white cell)

Hexokinases phosphorylate glucose to produce glucose-6-phosphate, the first step in most glucose metabolism pathways. This gene encodes hexokinase 3. Similar to hexokinases 1 and 2, this allosteric enzyme is inhibited by its product glucose-6-phosphate. [provided by RefSeq, Apr 2009]

CWH43 Gene

cell wall biogenesis 43 C-terminal homolog (S. cerevisiae)

MTCP1 Gene

mature T-cell proliferation 1

This gene was identified by involvement in some t(X;14) translocations associated with mature T-cell proliferations. This region has a complex gene structure, with a common promoter and 5' exon spliced to two different sets of 3' exons that encode two different proteins. This gene represents the upstream 13 kDa protein that is a member of the TCL1 family. This protein may be involved in leukemogenesis. [provided by RefSeq, Mar 2009]

CDCA2 Gene

cell division cycle associated 2

CDCA3 Gene

cell division cycle associated 3

CDCA7 Gene

cell division cycle associated 7

This gene was identified as a c-Myc responsive gene, and behaves as a direct c-Myc target gene. Overexpression of this gene is found to enhance the transformation of lymphoblastoid cells, and it complements a transformation-defective Myc Box II mutant, suggesting its involvement in c-Myc-mediated cell transformation. Two alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

CDCA4 Gene

cell division cycle associated 4

This gene encodes a protein that belongs to the E2F family of transcription factors. This protein regulates E2F-dependent transcriptional activation and cell proliferation, mainly through the E2F/retinoblastoma protein pathway. It also functions in the regulation of JUN oncogene expression. This protein shows distinctive nuclear-mitotic apparatus distribution, it is involved in spindle organization from prometaphase, and may also play a role as a midzone factor involved in chromosome segregation or cytokinesis. Two alternatively spliced transcript variants encoding the same protein have been noted for this gene. Two pseudogenes have also been identified on chromosome 1. [provided by RefSeq, May 2014]

CDCA5 Gene

cell division cycle associated 5

CDCA8 Gene

cell division cycle associated 8

This gene encodes a component of the chromosomal passenger complex. This complex is an essential regulator of mitosis and cell division. This protein is cell-cycle regulated and is required for chromatin-induced microtubule stabilization and spindle formation. Alternate splicing results in multiple transcript variants. Pseudgenes of this gene are found on chromosomes 7, 8 and 16. [provided by RefSeq, Apr 2013]

MUC4 Gene

mucin 4, cell surface associated

The major constituents of mucus, the viscous secretion that covers epithelial surfaces such as those in the trachea, colon, and cervix, are highly glycosylated proteins called mucins. These glycoproteins play important roles in the protection of the epithelial cells and have been implicated in epithelial renewal and differentiation. This gene encodes an integral membrane glycoprotein found on the cell surface, although secreted isoforms may exist. At least two dozen transcript variants of this gene have been found, although for many of them the full-length transcript has not been determined or they are found only in tumor tissues. This gene contains a region in the coding sequence which has a variable number (>100) of 48 nt tandem repeats. [provided by RefSeq, Jul 2008]

NKS1 Gene

natural killer cell susceptibility 1

EPCAM Gene

epithelial cell adhesion molecule

This gene encodes a carcinoma-associated antigen and is a member of a family that includes at least two type I membrane proteins. This antigen is expressed on most normal epithelial cells and gastrointestinal carcinomas and functions as a homotypic calcium-independent cell adhesion molecule. The antigen is being used as a target for immunotherapy treatment of human carcinomas. Mutations in this gene result in congenital tufting enteropathy. [provided by RefSeq, Dec 2008]

TRAJ29 Gene

T cell receptor alpha joining 29

TRAJ28 Gene

T cell receptor alpha joining 28

TRAJ27 Gene

T cell receptor alpha joining 27

TRAJ26 Gene

T cell receptor alpha joining 26

TRAJ25 Gene

T cell receptor alpha joining 25 (non-functional)

TRAJ24 Gene

T cell receptor alpha joining 24

TRAJ23 Gene

T cell receptor alpha joining 23

TRAJ22 Gene

T cell receptor alpha joining 22

TRAJ21 Gene

T cell receptor alpha joining 21

TRAJ20 Gene

T cell receptor alpha joining 20

TRAV5 Gene

T cell receptor alpha variable 5

RGCC Gene

regulator of cell cycle

This gene is thought to regulate cell cycle progression. It is induced by p53 in response to DNA damage, or by sublytic levels of complement system proteins that result in activation of the cell cycle. The encoded protein localizes to the cytoplasm during interphase and to centrosomes during mitosis. The protein forms a complex with polo-like kinase 1. The protein also translocates to the nucleus in response to treatment with complement system proteins, and can associate with and increase the kinase activity of cell division cycle 2 protein. In different assays and cell types, overexpression of this protein has been shown to activate or suppress cell cycle progression. [provided by RefSeq, Jul 2008]

TCL6 Gene

T-cell leukemia/lymphoma 6 (non-protein coding)

TCL4 Gene

T-cell leukemia/lymphoma 4

HMCES Gene

5-hydroxymethylcytosine (hmC) binding, ES cell-specific

TRAV29DV5 Gene

T cell receptor alpha variable 29/delta variable 5 (gene/pseudogene)

MUC17 Gene

mucin 17, cell surface associated

Membrane mucins, such as MUC17, function in epithelial cells to provide cytoprotection, maintain luminal structure, provide signal transduction, and confer antiadhesive properties upon cancer cells that lose their apical/basal polarization.[supplied by OMIM, Apr 2004]

MUC16 Gene

mucin 16, cell surface associated

MUC15 Gene

mucin 15, cell surface associated

MUC13 Gene

mucin 13, cell surface associated

Epithelial mucins, such as MUC13, are a family of secreted and cell surface glycoproteins expressed by ductal and glandular epithelial tissues (Williams et al., 2001 [PubMed 11278439]).[supplied by OMIM, Jul 2008]

MUC12 Gene

mucin 12, cell surface associated

HCC Gene

thyroid carcinoma, Hurthle cell

NEDD8 Gene

neural precursor cell expressed, developmentally down-regulated 8

NEDD9 Gene

neural precursor cell expressed, developmentally down-regulated 9

The protein encoded by this gene is a member of the CRK-associated substrates family. Members of this family are adhesion docking molecules that mediate protein-protein interactions for signal transduction pathways. This protein is a focal adhesion protein that acts as a scaffold to regulate signaling complexes important in cell attachment, migration and invasion as well as apoptosis and the cell cycle. This protein has also been reported to have a role in cancer metastasis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

NEDD1 Gene

neural precursor cell expressed, developmentally down-regulated 1

ERICD Gene

E2F1-regulated inhibitor of cell death (non-protein coding)

TRGV5P Gene

T cell receptor gamma variable 5P (pseudogene)

PARD3 Gene

par-3 family cell polarity regulator

This gene encodes a member of the PARD protein family. PARD family members interact with other PARD family members and other proteins; they affect asymmetrical cell division and direct polarized cell growth. Multiple alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Oct 2011]

LOC100132330 Gene

mal, T-cell differentiation protein-like pseudogene

CD244 Gene

CD244 molecule, natural killer cell receptor 2B4

This gene encodes a cell surface receptor expressed on natural killer (NK) cells (and some T cells) that mediate non-major histocompatibility complex (MHC) restricted killing. The interaction between NK-cell and target cells via this receptor is thought to modulate NK-cell cytolytic activity. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

CPA3 Gene

carboxypeptidase A3 (mast cell)

Three different forms of human pancreatic procarboxypeptidase A have been isolated. This gene encodes a form which is obtained as a binary complex of a procarboxypeptidase A with proproteinase E and functions as a secretory granule metalloexopeptidase. [provided by RefSeq, Jan 2009]

LIMS3L Gene

LIM and senescent cell antigen-like domains 3-like

TRGV10 Gene

T cell receptor gamma variable 10 (non-functional)

TCIRG1 Gene

T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3

Through alternate splicing, this gene encodes two proteins with similarity to subunits of the vacuolar ATPase (V-ATPase) but the encoded proteins seem to have different functions. V-ATPase is a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, and receptor-mediated endocytosis. V-ATPase is comprised of a cytosolic V1 domain and a transmembrane V0 domain. Mutations in this gene are associated with infantile malignant osteopetrosis. [provided by RefSeq, Jul 2008]

FRAT1 Gene

frequently rearranged in advanced T-cell lymphomas 1

The protein encoded by this gene belongs to the GSK-3-binding protein family. The protein inhibits GSK-3-mediated phosphorylation of beta-catenin and positively regulates the Wnt signaling pathway. It may function in tumor progression and in lymphomagenesis. [provided by RefSeq, Oct 2008]

FRAT2 Gene

frequently rearranged in advanced T-cell lymphomas 2

The protein encoded by this intronless gene belongs to the GSK-3-binding protein family. Studies show that this protein plays a role as a positive regulator of the WNT signaling pathway. It may be upregulated in tumor progression. [provided by RefSeq, Jul 2008]

LOC105379645 Gene

killer cell immunoglobulin-like receptor 2DL2

SDF2L1 Gene

stromal cell-derived factor 2-like 1

LOC101060051 Gene

vegetative cell wall protein gp1-like

BCC5 Gene

Basal cell carcinoma, susceptibility to, 5

TRBV21OR9-2 Gene

T cell receptor beta variable 21/OR9-2 (pseudogene)

LOC105378167 Gene

vegetative cell wall protein gp1-like

MCAM Gene

melanoma cell adhesion molecule

KLRG1 Gene

killer cell lectin-like receptor subfamily G, member 1

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. The protein encoded by this gene belongs to the killer cell lectin-like receptor (KLR) family, which is a group of transmembrane proteins preferentially expressed in NK cells. Studies in mice suggested that the expression of this gene may be regulated by MHC class I molecules. Alternatively spliced transcript variants have been reported, but their full-length natures have not yet been determined. [provided by RefSeq, Jul 2008]

MCTS1 Gene

malignant T cell amplified sequence 1

CCAR1 Gene

cell division cycle and apoptosis regulator 1

CCAR2 Gene

cell cycle and apoptosis regulator 2

LOC100132609 Gene

programmed cell death 2 pseudogene

METRN Gene

meteorin, glial cell differentiation regulator

Meteorin regulates glial cell differentiation and promotes the formation of axonal networks during neurogenesis (Nishino et al., 2004 [PubMed 15085178]).[supplied by OMIM, Mar 2008]

PCP4 Gene

Purkinje cell protein 4

PCP2 Gene

Purkinje cell protein 2

CTAGE1 Gene

cutaneous T-cell lymphoma-associated antigen 1

GMCL1P1 Gene

germ cell-less, spermatogenesis associated 1 pseudogene 1

This locus shares a high degree of identity with the multi-exon germ cell-less gene on chromosome 2. Despite its single-exon nature, this chromosome 5 locus contains an open reading frame that could putatively encode a full-length germ cell-less related protein. [provided by RefSeq, Jul 2008]

GMCL1P2 Gene

germ cell-less, spermatogenesis associated 1 pseudogene 2

TRAV14DV4 Gene

T cell receptor alpha variable 14/delta variable 4

KLRG2 Gene

killer cell lectin-like receptor subfamily G, member 2

SCLC1 Gene

small cell cancer of the lung

KLRB1 Gene

killer cell lectin-like receptor subfamily B, member 1

Natural killer (NK) cells are lymphocytes that mediate cytotoxicity and secrete cytokines after immune stimulation. Several genes of the C-type lectin superfamily, including the rodent NKRP1 family of glycoproteins, are expressed by NK cells and may be involved in the regulation of NK cell function. The KLRB1 protein contains an extracellular domain with several motifs characteristic of C-type lectins, a transmembrane domain, and a cytoplasmic domain. The KLRB1 protein is classified as a type II membrane protein because it has an external C terminus. [provided by RefSeq, Jul 2008]

CLLS2 Gene

Disrupted in B-cell neoplasia

MGCT Gene

male germ cell tumor

TRBD1 Gene

T cell receptor beta diversity 1

LOC105379650 Gene

killer cell immunoglobulin-like receptor 2DS1

LOC101927245 Gene

vegetative cell wall protein gp1-like

CIDECP Gene

cell death-inducing DFFA-like effector c pseudogene

CDC20B Gene

cell division cycle 20B

BCC6 Gene

Basal cell carcinoma, susceptibility to, 6

VANGL1 Gene

VANGL planar cell polarity protein 1

This gene encodes a member of the tretraspanin family. The encoded protein may be involved in mediating intestinal trefoil factor induced wound healing in the intestinal mucosa. Mutations in this gene are associated with neural tube defects. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]

TRAJ16 Gene

T cell receptor alpha joining 16

TRAJ17 Gene

T cell receptor alpha joining 17

TRAJ14 Gene

T cell receptor alpha joining 14

TRAJ15 Gene

T cell receptor alpha joining 15

TRAJ12 Gene

T cell receptor alpha joining 12

TRAJ13 Gene

T cell receptor alpha joining 13

TRAJ10 Gene

T cell receptor alpha joining 10

TRAJ11 Gene

T cell receptor alpha joining 11

TRAJ18 Gene

T cell receptor alpha joining 18

TRAJ19 Gene

T cell receptor alpha joining 19 (non-functional)

BCL6B Gene

B-cell CLL/lymphoma 6, member B

SWAP70 Gene

SWAP switching B-cell complex 70kDa subunit

CDC5L Gene

cell division cycle 5-like

The protein encoded by this gene shares a significant similarity with Schizosaccharomyces pombe cdc5 gene product, which is a cell cycle regulator important for G2/M transition. This protein has been demonstrated to act as a positive regulator of cell cycle G2/M progression. It was also found to be an essential component of a non-snRNA spliceosome, which contains at least five additional protein factors and is required for the second catalytic step of pre-mRNA splicing. [provided by RefSeq, Jul 2008]

KIR2DS5 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

1060P11.3 Gene

killer cell immunoglobulin-like receptor, three domains, pseudogene

KIR2DS2 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene represents a haplotype-specific family member that encodes a protein with a short cytoplasmic tail. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

LOC105378775 Gene

cell death regulator Aven-like

SPDYE10P Gene

speedy/RINGO cell cycle regulator family member E10, pseudogene

TRBJ2-2P Gene

T cell receptor beta joining 2-2P (non-functional)

FDCSP Gene

follicular dendritic cell secreted protein

This gene encodes a small secreted protein that is expressed in follicular dendritic cells. This protein specifically binds to activated B cells, and functions as a regulator of antibody responses. It is also thought to contribute to tumor metastases by promoting cancer cell migration and invasion. [provided by RefSeq, Dec 2011]

TRBV11-3 Gene

T cell receptor beta variable 11-3

TRBV11-1 Gene

T cell receptor beta variable 11-1

EBF4 Gene

early B-cell factor 4

EBF4 belongs to the conserved Olf/EBF family of helix-loop-helix transcription factors, members of which play important roles in neural development and B-cell maturation (Wang et al., 2002 [PubMed 12139918]).[supplied by OMIM, Mar 2008]

EBF3 Gene

early B-cell factor 3

This gene encodes a member of the early B-cell factor (EBF) family of DNA binding transcription factors. EBF proteins are involved in B-cell differentiation, bone development and neurogenesis, and may also function as tumor suppressors. The encoded protein inhibits cell survival through the regulation of genes involved in cell cycle arrest and apoptosis, and aberrant methylation or deletion of this gene may play a role in multiple malignancies including glioblastoma multiforme and gastric carcinoma. [provided by RefSeq, Sep 2011]

EBF2 Gene

early B-cell factor 2

The protein encoded by this gene belongs to the COE (Collier/Olf/EBF) family of non-basic, helix-loop-helix transcription factors that have a well conserved DNA binding domain. The COE family proteins play an important role in variety of developmental processes. Studies in mouse suggest that this gene may be involved in the differentiation of osteoblasts. [provided by RefSeq, Oct 2011]

EBF1 Gene

early B-cell factor 1

CGRRF1 Gene

cell growth regulator with ring finger domain 1

PP13 Gene

vegetative cell wall protein gp1

TRAV20 Gene

T cell receptor alpha variable 20

CDCA7L Gene

cell division cycle associated 7-like

TIGIT Gene

T cell immunoreceptor with Ig and ITIM domains

This gene encodes a member of the PVR (poliovirus receptor) family of immunoglobin proteins. The product of this gene is expressed on several classes of T cells including follicular B helper T cells (TFH). The protein has been shown to bind PVR with high affinity; this binding is thought to assist interactions between TFH and dendritic cells to regulate T cell dependent B cell responses.[provided by RefSeq, Sep 2009]

MCIDAS Gene

multiciliate differentiation and DNA synthesis associated cell cycle protein

NCR3LG1 Gene

natural killer cell cytotoxicity receptor 3 ligand 1

B7H6 belongs to the B7 family (see MIM 605402) and is selectively expressed on tumor cells. Interaction of B7H6 with NKp30 (NCR3; MIM 611550) results in natural killer (NK) cell activation and cytotoxicity (Brandt et al., 2009 [PubMed 19528259]).[supplied by OMIM, Jan 2011]

KIR3DL1 Gene

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR3DL2 Gene

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jun 2011]

KIR3DL3 Gene

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 3

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. [provided by RefSeq, Jul 2008]

MEMO1 Gene

mediator of cell motility 1

BLID Gene

BH3-like motif containing, cell death inducer

This gene encodes a BH3-like motif containing protein involved in cell death. The encoded protein may induce apoptosis in a caspase-dependent manner. The protein is localized in both the cytoplasm and the mitochondrion. [provided by RefSeq, Aug 2011]

ESAM Gene

endothelial cell adhesion molecule

TRBV24-1 Gene

T cell receptor beta variable 24-1

BANK1 Gene

B-cell scaffold protein with ankyrin repeats 1

The protein encoded by this gene is a B-cell-specific scaffold protein that functions in B-cell receptor-induced calcium mobilization from intracellular stores. This protein can also promote Lyn-mediated tyrosine phosphorylation of inositol 1,4,5-trisphosphate receptors. Polymorphisms in this gene are associated with susceptibility to systemic lupus erythematosus. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

FUZ Gene

fuzzy planar cell polarity protein

This gene encodes a planar cell polarity protein that is involved in ciliogenesis and directional cell movement. Knockout studies in mice exhibit neural tube defects and defective cilia, and mutations in this gene are associated with neural tube defects in humans. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2012]

CEACAM19 Gene

carcinoembryonic antigen-related cell adhesion molecule 19

CEACAM18 Gene

carcinoembryonic antigen-related cell adhesion molecule 18

CEACAM16 Gene

carcinoembryonic antigen-related cell adhesion molecule 16

The protein encoded by this gene is a secreted glycoprotein that in mouse interacts with tectorial membrane proteins in the inner ear. The encoded adhesion protein is found in cochlear outer hair cells and appears to be important for proper hearing over an extended frequency range. Defects in this gene likely are a cause of non-syndromic autosomal dominant hearing loss. [provided by RefSeq, May 2012]

CIDEC Gene

cell death-inducing DFFA-like effector c

This gene encodes a member of the cell death-inducing DNA fragmentation factor-like effector family. Members of this family play important roles in apoptosis. The encoded protein promotes lipid droplet formation in adipocytes and may mediate adipocyte apoptosis. This gene is regulated by insulin and its expression is positively correlated with insulin sensitivity. Mutations in this gene may contribute to insulin resistant diabetes. A pseudogene of this gene is located on the short arm of chromosome 3. Alternatively spliced transcript variants that encode different isoforms have been observed for this gene. [provided by RefSeq, Dec 2010]

CIDEA Gene

cell death-inducing DFFA-like effector a

This gene encodes the homolog of the mouse protein Cidea that has been shown to activate apoptosis. This activation of apoptosis is inhibited by the DNA fragmentation factor DFF45 but not by caspase inhibitors. Mice that lack functional Cidea have higher metabolic rates, higher lipolysis in brown adipose tissue and higher core body temperatures when subjected to cold. These mice are also resistant to diet-induced obesity and diabetes. This suggests that in mice this gene product plays a role in thermogenesis and lipolysis. Alternatively spliced transcripts have been identified. [provided by RefSeq, Aug 2010]

CDC42P5 Gene

cell division cycle 42 pseudogene 5

LOC105372844 Gene

vegetative cell wall protein gp1-like

PBXIP1 Gene

pre-B-cell leukemia homeobox interacting protein 1

PDCD6 Gene

programmed cell death 6

This gene encodes a calcium-binding protein belonging to the penta-EF-hand protein family. Calcium binding is important for homodimerization and for conformational changes required for binding to other protein partners. This gene product participates in T cell receptor-, Fas-, and glucocorticoid-induced programmed cell death. In mice deficient for this gene product, however, apoptosis was not blocked suggesting this gene product is functionally redundant. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of this gene is also located on the short arm of chromosome 5. [provided by RefSeq, May 2012]

PDCD7 Gene

programmed cell death 7

This gene encodes a 59 kDa protein that is associated with the U11 small nuclear ribonucleoprotein (snRNP), which is a component of the minor U12-type spliceosome responsible for catalyzing pre-mRNA splicing of U12-type introns. [provided by RefSeq, Dec 2010]

PDCD4 Gene

programmed cell death 4 (neoplastic transformation inhibitor)

This gene is a tumor suppressor and encodes a protein that binds to the eukaryotic translation initiation factor 4A1 and inhibits its function by preventing RNA binding. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2010]

PDCD5 Gene

programmed cell death 5

This gene encodes a protein that is upregulated during apoptosis where it translocates rapidly from the cytoplasm to the nucleus. The encoded protein may be an important regulator of K(lysine) acetyltransferase 5 (a protein involved in transcription, DNA damage response and cell cycle control) by inhibiting its proteasome-dependent degradation. Pseudogenes have been identified on chromosomes 5 and 12 [provided by RefSeq, Dec 2010]

PDCD2 Gene

programmed cell death 2

This gene encodes a nuclear protein expressed in a variety of tissues. Expression of this gene has been shown to be repressed by B-cell CLL/lymphoma 6 (BCL6), a transcriptional repressor required for lymph node germinal center development, suggesting that BCL6 regulates apoptosis by its effects on this protein. Alternative splicing results in multiple transcript variants and pseudogenes have been identified on chromosomes 9 and 12. [provided by RefSeq, Dec 2010]

PDCD1 Gene

programmed cell death 1

This gene encodes a cell surface membrane protein of the immunoglobulin superfamily. This protein is expressed in pro-B-cells and is thought to play a role in their differentiation. In mice, expression of this gene is induced in the thymus when anti-CD3 antibodies are injected and large numbers of thymocytes undergo apoptosis. Mice deficient for this gene bred on a BALB/c background developed dilated cardiomyopathy and died from congestive heart failure. These studies suggest that this gene product may also be important in T cell function and contribute to the prevention of autoimmune diseases. [provided by RefSeq, Jul 2008]

PDCD10 Gene

programmed cell death 10

This gene encodes an evolutionarily conserved protein associated with cell apoptosis. The protein interacts with the serine/threonine protein kinase MST4 to modulate the extracellular signal-regulated kinase (ERK) pathway. It also interacts with and is phosphoryated by serine/threonine kinase 25, and is thought to function in a signaling pathway essential for vascular developent. Mutations in this gene are one cause of cerebral cavernous malformations, which are vascular malformations that cause seizures and cerebral hemorrhages. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

PDCD11 Gene

programmed cell death 11

PDCD11 is a NF-kappa-B (NFKB1; 164011)-binding protein that colocalizes with U3 RNA (MIM 180710) in the nucleolus and is required for rRNA maturation and generation of 18S rRNA (Sweet et al., 2003 [PubMed 14624448]; Sweet et al., 2008 [PubMed 17654514]).[supplied by OMIM, Oct 2008]

LOC345471 Gene

cell division cycle 37 homolog (S. cerevisiae) pseudogene

MCF2 Gene

MCF.2 cell line derived transforming sequence

The oncogenic protein encoded by this gene is a guanine nucleotide exchange factor (GEF) that exerts control over some members of the Rho family of small GTPases. Several transcript variants encoding different isoforms have been found for this gene. These isoforms exhibit different expression patterns and varying levels of GEF activity.[provided by RefSeq, Jan 2010]

CDON Gene

cell adhesion associated, oncogene regulated

This gene encodes a cell surface receptor that is a member of the immunoglobulin superfamily. The encoded protein contains three fibronectin type III domains and five immunoglobulin-like C2-type domains. This protein is a member of a cell-surface receptor complex that mediates cell-cell interactions between muscle precursor cells and positively regulates myogenesis. [provided by RefSeq, Aug 2011]

PPDPF Gene

pancreatic progenitor cell differentiation and proliferation factor

TRBV10-2 Gene

T cell receptor beta variable 10-2

TRBV10-3 Gene

T cell receptor beta variable 10-3

TRBV10-1 Gene

T cell receptor beta variable 10-1(gene/pseudogene)

LOC102725023 Gene

killer cell immunoglobulin-like receptor 2DS3 allele 0020101

CDC20P1 Gene

cell division cycle 20 pseudogene 1

PDCD5P1 Gene

programmed cell death 5 pseudogene 1

PDCD5P2 Gene

programmed cell death 5 pseudogene 2

LIMS2 Gene

LIM and senescent cell antigen-like domains 2

This gene encodes a member of a small family of focal adhesion proteins which interacts with ILK (integrin-linked kinase), a protein which effects protein-protein interactions with the extraceullar matrix. The encoded protein has five LIM domains, each domain forming two zinc fingers, which permit interactions which regulate cell shape and migration. A pseudogene of this gene is located on chromosome 4. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2011]

LIMS3 Gene

LIM and senescent cell antigen-like domains 3

LIMS1 Gene

LIM and senescent cell antigen-like domains 1

The protein encoded by this gene is an adaptor protein which contains five LIM domains, or double zinc fingers. The protein is likely involved in integrin signaling through its LIM domain-mediated interaction with integrin-linked kinase, found in focal adhesion plaques. It is also thought to act as a bridge linking integrin-linked kinase to NCK adaptor protein 2, which is involved in growth factor receptor kinase signaling pathways. Its localization to the periphery of spreading cells also suggests that this protein may play a role in integrin-mediated cell adhesion or spreading. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

TRGJP2 Gene

T cell receptor gamma joining P2

TRGJP1 Gene

T cell receptor gamma joining P1

LOC102725210 Gene

vegetative cell wall protein gp1-like

BOD1 Gene

biorientation of chromosomes in cell division 1

TRBV25-1 Gene

T cell receptor beta variable 25-1

VTCN1 Gene

V-set domain containing T cell activation inhibitor 1

This gene encodes a protein belonging to the B7 costimulatory protein family. Proteins in this family are present on the surface of antigen-presenting cells and interact with ligand bound to receptors on the surface of T cells. Studies have shown that high levels of the encoded protein has been correlated with tumor progression. A pseudogene of this gene is located on chromosome 20. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2011]

CERCAM Gene

cerebral endothelial cell adhesion molecule

VCAM1 Gene

vascular cell adhesion molecule 1

This gene is a member of the Ig superfamily and encodes a cell surface sialoglycoprotein expressed by cytokine-activated endothelium. This type I membrane protein mediates leukocyte-endothelial cell adhesion and signal transduction, and may play a role in the development of artherosclerosis and rheumatoid arthritis. Three alternatively spliced transcripts encoding different isoforms have been described for this gene. [provided by RefSeq, Dec 2010]

LAKLG Gene

lymphokine-activated killer cell ligand

TRBV17 Gene

T cell receptor beta variable 17 (non-functional)

TRBV16 Gene

T cell receptor beta variable 16 (gene/pseudogene)

TRBV15 Gene

T cell receptor beta variable 15

TRBV14 Gene

T cell receptor beta variable 14

TRBV13 Gene

T cell receptor beta variable 13

TRBV19 Gene

T cell receptor beta variable 19

TRBV18 Gene

T cell receptor beta variable 18

NOS3 Gene

nitric oxide synthase 3 (endothelial cell)

Nitric oxide is a reactive free radical which acts as a biologic mediator in several processes, including neurotransmission and antimicrobial and antitumoral activities. Nitric oxide is synthesized from L-arginine by nitric oxide synthases. Variations in this gene are associated with susceptibility to coronary spasm. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2009]

TRDV1 Gene

T cell receptor delta variable 1

TRDV3 Gene

T cell receptor delta variable 3

TRDV2 Gene

T cell receptor delta variable 2

URGCP Gene

upregulator of cell proliferation

URG4 is upregulated in the presence of hepatitis B virus (HBV)-encoded X antigen (HBxAg) and may contribute to the development of hepatocellular carcinoma by promoting hepatocellular growth and survival (Tufan et al., 2002 [PubMed 12082552]).[supplied by OMIM, Mar 2008]

SMAGP Gene

small cell adhesion glycoprotein

SPDYE15P Gene

speedy/RINGO cell cycle regulator family member E15, pseudogene

PTCRA Gene

pre T-cell antigen receptor alpha

The protein encoded by this gene is a single-pass type I membrane protein that is found in immmature but not mature T-cells. Along with TCRB and CD3 complex, the encoded protein forms the pre-T-cell receptor complex, which regulates early T-cell development. Four transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jul 2011]

NCAM1 Gene

neural cell adhesion molecule 1

This gene encodes a cell adhesion protein which is a member of the immunoglobulin superfamily. The encoded protein is involved in cell-to-cell interactions as well as cell-matrix interactions during development and differentiation. The encoded protein has been shown to be involved in development of the nervous system, and for cells involved in the expansion of T cells and dendritic cells which play an important role in immune surveillance. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2011]

NCAM2 Gene

neural cell adhesion molecule 2

The protein encoded by this gene belongs to the immunoglobulin superfamily. It is a type I membrane protein and may function in selective fasciculation and zone-to-zone projection of the primary olfactory axons. [provided by RefSeq, Jul 2008]

TRBVAOR9-2 Gene

T cell receptor beta variable A/OR9-2 (pseudogene)

TRAV36DV7 Gene

T cell receptor alpha variable 36/delta variable 7

KIR2DS4 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 4

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DS3 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DS1 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

CDC27P7 Gene

cell division cycle 27 pseudogene 7

LOC101930589 Gene

cell division cycle protein 27 homolog pseudogene

CDC25C Gene

cell division cycle 25C

This gene is highly conserved during evolution and it plays a key role in the regulation of cell division. The encoded protein is a tyrosine phosphatase and belongs to the Cdc25 phosphatase family. It directs dephosphorylation of cyclin B-bound CDC2 and triggers entry into mitosis. It is also thought to suppress p53-induced growth arrest. Multiple alternatively spliced transcript variants of this gene have been described, however, the full-length nature of many of them is not known. [provided by RefSeq, Jul 2008]

CDC25B Gene

cell division cycle 25B

CDC25B is a member of the CDC25 family of phosphatases. CDC25B activates the cyclin dependent kinase CDC2 by removing two phosphate groups and it is required for entry into mitosis. CDC25B shuttles between the nucleus and the cytoplasm due to nuclear localization and nuclear export signals. The protein is nuclear in the M and G1 phases of the cell cycle and moves to the cytoplasm during S and G2. CDC25B has oncogenic properties, although its role in tumor formation has not been determined. Multiple transcript variants for this gene exist. [provided by RefSeq, Jul 2008]

CDC25A Gene

cell division cycle 25A

CDC25A is a member of the CDC25 family of phosphatases. CDC25A is required for progression from G1 to the S phase of the cell cycle. It activates the cyclin-dependent kinase CDC2 by removing two phosphate groups. CDC25A is specifically degraded in response to DNA damage, which prevents cells with chromosomal abnormalities from progressing through cell division. CDC25A is an oncogene, although its exact role in oncogenesis has not been demonstrated. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PBG1 Gene

pancreatic beta cell glycoprotein 1

TRAJ49 Gene

T cell receptor alpha joining 49

TRAJ48 Gene

T cell receptor alpha joining 48

TRAJ41 Gene

T cell receptor alpha joining 41

TRAJ40 Gene

T cell receptor alpha joining 40

TRAJ43 Gene

T cell receptor alpha joining 43

TRAJ42 Gene

T cell receptor alpha joining 42

TRAJ45 Gene

T cell receptor alpha joining 45

TRAJ44 Gene

T cell receptor alpha joining 44

TRAJ47 Gene

T cell receptor alpha joining 47

TRAJ46 Gene

T cell receptor alpha joining 46

CDC27P2 Gene

cell division cycle 27 pseudogene 2

CDC27P3 Gene

cell division cycle 27 pseudogene 3

CDC27P1 Gene

cell division cycle 27 pseudogene 1

CDC27P6 Gene

cell division cycle 27 pseudogene 6

CDC27P4 Gene

cell division cycle 27 pseudogene 4

CDC27P5 Gene

cell division cycle 27 pseudogene 5

CDC27P8 Gene

cell division cycle 27 pseudogene 8

CDC27P9 Gene

cell division cycle 27 pseudogene 9

SPDYE2B Gene

speedy/RINGO cell cycle regulator family member E2B

HEPACAM Gene

hepatic and glial cell adhesion molecule

The protein encoded by this gene is a single-pass type I membrane protein that localizes to the cytoplasmic side of the cell membrane. The encoded protein acts as a homodimer and is involved in cell motility and cell-matrix interactions. The expression of this gene is downregulated or undetectable in many cancer cell lines, so this may be a tumor suppressor gene. [provided by RefSeq, Jul 2011]

TRGC1 Gene

T cell receptor gamma constant 1

TRGC2 Gene

T cell receptor gamma constant 2

CDC27 Gene

cell division cycle 27

The protein encoded by this gene shares strong similarity with Saccharomyces cerevisiae protein Cdc27, and the gene product of Schizosaccharomyces pombe nuc 2. This protein is a component of the anaphase-promoting complex (APC), which is composed of eight protein subunits and is highly conserved in eukaryotic cells. This complex catalyzes the formation of cyclin B-ubiquitin conjugate, which is responsible for the ubiquitin-mediated proteolysis of B-type cyclins. The protein encoded by this gene and three other members of the APC complex contain tetratricopeptide (TPR) repeats, which are important for protein-protein interactions. This protein was shown to interact with mitotic checkpoint proteins including Mad2, p55CDC and BUBR1, and it may thus be involved in controlling the timing of mitosis. Alternative splicing of this gene results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 2, 22 and Y. [provided by RefSeq, May 2014]

CDC26 Gene

cell division cycle 26

The protein encoded by this gene is highly similar to Saccharomyces cerevisiae Cdc26, a component of cell cycle anaphase-promoting complex (APC). APC is composed of a group of highly conserved proteins and functions as a cell cycle-regulated ubiquitin-protein ligase. APC thus is responsible for the cell cycle regulated proteolysis of various proteins. [provided by RefSeq, Jul 2008]

CDC20 Gene

cell division cycle 20

CDC20 appears to act as a regulatory protein interacting with several other proteins at multiple points in the cell cycle. It is required for two microtubule-dependent processes, nuclear movement prior to anaphase and chromosome separation. [provided by RefSeq, Jul 2008]

SPDYE8P Gene

speedy/RINGO cell cycle regulator family member E8, pseudogene

BCAP31 Gene

B-cell receptor-associated protein 31

This gene encodes a member of the B-cell receptor associated protein 31 superfamily. The encoded protein is a multi-pass transmembrane protein of the endoplasmic reticulum that is involved in the anterograde transport of membrane proteins from the endoplasmic reticulum to the Golgi and in caspase 8-mediated apoptosis. Microdeletions in this gene are associated with contiguous ABCD1/DXS1375E deletion syndrome (CADDS), a neonatal disorder. Alternative splicing of this gene results in multiple transcript variants. Two related pseudogenes have been identified on chromosome 16. [provided by RefSeq, Jan 2012]

NEDD4L Gene

neural precursor cell expressed, developmentally down-regulated 4-like, E3 ubiquitin protein ligase

This gene encodes a member of the Nedd4 family of HECT domain E3 ubiquitin ligases. HECT domain E3 ubiquitin ligases transfer ubiquitin from E2 ubiquitin-conjugating enzymes to protein substrates, thus targeting specific proteins for lysosomal degradation. The encoded protein mediates the ubiquitination of multiple target substrates and plays a critical role in epithelial sodium transport by regulating the cell surface expression of the epithelial sodium channel, ENaC. Single nucleotide polymorphisms in this gene may be associated with essential hypertension. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Mar 2012]

THY1 Gene

Thy-1 cell surface antigen

DAD1P1 Gene

defender against cell death 1 pseudogene 1

PARD3B Gene

par-3 family cell polarity regulator beta

PSHK2 Gene

Pseudohyperkalemia, familial, 2, due to red cell leak

TCO Gene

Thyroid carcinoma, nonmedullary, with cell oxyphilia

CDC14C Gene

cell division cycle 14C

CDC14B Gene

cell division cycle 14B

The protein encoded by this gene is a member of the dual specificity protein tyrosine phosphatase family. This protein is highly similar to Saccharomyces cerevisiae Cdc14, a protein tyrosine phosphatase involved in the exit of cell mitosis and initiation of DNA replication, which suggests the role in cell cycle control. This protein has been shown to interact with and dephosphorylates tumor suppressor protein p53, and is thought to regulate the function of p53. Alternative splice of this gene results in 3 transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

CDC14A Gene

cell division cycle 14A

The protein encoded by this gene is a member of the dual specificity protein tyrosine phosphatase family. It is highly similar to Saccharomyces cerevisiae Cdc14, a protein tyrosine phosphatase involved in the exit of cell mitosis and initiation of DNA replication, suggesting a role in cell cycle control. This protein has been shown to interact with, and dephosphorylate tumor suppressor protein p53, and is thought to regulate the function of p53. Alternative splicing of this gene results in several transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

CEACAM20 Gene

carcinoembryonic antigen-related cell adhesion molecule 20

CEACAM21 Gene

carcinoembryonic antigen-related cell adhesion molecule 21

LOC100420530 Gene

mucin 4, cell surface associated pseudogene

LOC100420536 Gene

islet cell autoantigen 1, 69kDa pseudogene

LOC266683 Gene

dendritic cell protein pseudogene

TRAV38-2DV8 Gene

T cell receptor alpha variable 38-2/delta variable 8

ICA1L Gene

islet cell autoantigen 1,69kDa-like

LOC101928242 Gene

cell cycle control protein 50B-like

SPDYE7P Gene

speedy/RINGO cell cycle regulator family member E7, pseudogene

TRBV6-4 Gene

T cell receptor beta variable 6-4

TRBV6-1 Gene

T cell receptor beta variable 6-1

CDC23 Gene

cell division cycle 23

The protein encoded by this gene shares strong similarity with Saccharomyces cerevisiae Cdc23, a protein essential for cell cycle progression through the G2/M transition. This protein is a component of anaphase-promoting complex (APC), which is composed of eight protein subunits and highly conserved in eukaryotic cells. APC catalyzes the formation of cyclin B-ubiquitin conjugate that is responsible for the ubiquitin-mediated proteolysis of B-type cyclins. This protein and 3 other members of the APC complex contain the TPR (tetratricopeptide repeat), a protein domain important for protein-protein interaction. [provided by RefSeq, Jul 2008]

PRCC Gene

papillary renal cell carcinoma (translocation-associated)

This gene encodes a protein that may play a role in pre-mRNA splicing. Chromosomal translocations (X;1)(p11;q21) that result in fusion of this gene to TFE3 (GeneID 7030) have been associated with papillary renal cell carcinoma. A PRCC-TFE3 fusion protein is expressed in affected carcinomas and is likely associated with altered gene transactivation. This fusion protein has also been associated with disruption of the cell cycle.[provided by RefSeq, Aug 2010]

LOC391239 Gene

V-set domain containing T cell activation inhibitor 1 pseudogene

RQCD1 Gene

RCD1 required for cell differentiation1 homolog (S. pombe)

This gene encodes a member of the highly conserved RCD1 protein family. The encoded protein is a transcriptional cofactor and a core protein of the CCR4-NOT complex. It may be involved in signal transduction as well as retinoic acid-regulated cell differentiation and development. Alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Oct 2012]

LOC100128775 Gene

neural precursor cell expressed, developmentally down-regulated 8 pseudogene

BOD1L2 Gene

biorientation of chromosomes in cell division 1-like 2

BOD1L1 Gene

biorientation of chromosomes in cell division 1-like 1

KLRAP1 Gene

killer cell lectin-like receptor subfamily A pseudogene 1

PCNAP2 Gene

proliferating cell nuclear antigen pseudogene 2

TCF7 Gene

transcription factor 7 (T-cell specific, HMG-box)

The protein encoded by this gene is a transcriptional activator that plays an important role in lymphocyte differentiation. This gene is expressed predominantly in T-cells. The encoded protein can bind an enhancer element and activate the CD3E gene, and it also may repress the CTNNB1 and TCF7L2 genes through a feedback mechanism. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

LOC101409255 Gene

cell division cycle 42 pseudogene

LOC101409256 Gene

cell division cycle 42 pseudogene

PRG2 Gene

proteoglycan 2, bone marrow (natural killer cell activator, eosinophil granule major basic protein)

The protein encoded by this gene is the predominant constituent of the crystalline core of the eosinophil granule. High levels of the proform of this protein are also present in placenta and pregnancy serum, where it exists as a complex with several other proteins including pregnancy-associated plasma protein A (PAPPA), angiotensinogen (AGT), and C3dg. This protein may be involved in antiparasitic defense mechanisms as a cytotoxin and helminthotoxin, and in immune hypersensitivity reactions. The encoded protein contains a peptide that displays potent antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and fungi. It is directly implicated in epithelial cell damage, exfoliation, and bronchospasm in allergic diseases. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2014]

MADCAM1 Gene

mucosal vascular addressin cell adhesion molecule 1

The protein encoded by this gene is an endothelial cell adhesion molecule that interacts preferentially with the leukocyte beta7 integrin LPAM-1 (alpha4beta7), L-selectin, and VLA-4 (alpha4beta1) on myeloid cells to direct leukocytes into mucosal and inflamed tissues. It is a member of the immunoglobulin family and is similar to ICAM1 and VCAM1. At least seven alternatively spliced transcripts encoding different protein isoforms have been found for this gene, but the full-length nature of some variants has not been determined. [provided by RefSeq, Jul 2008]

LOC100128686 Gene

programmed cell death 10 pseudogene

ICK Gene

intestinal cell (MAK-like) kinase

Eukaryotic protein kinases are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. This gene encodes an intestinal serine/threonine kinase harboring a dual phosphorylation site found in mitogen-activating protein (MAP) kinases. The protein localizes to the intestinal crypt region and is thought to be important in intestinal epithelial cell proliferation and differentiation. Alternative splicing has been observed at this locus and two variants, encoding the same isoform, have been identified. [provided by RefSeq, Jul 2008]

ZYG11AP1 Gene

zyg-11 family member A, cell cycle regulator pseudogene 1

NET1 Gene

neuroepithelial cell transforming 1

This gene is part of the family of Rho guanine nucleotide exchange factors. Members of this family activate Rho proteins by catalyzing the exchange of GDP for GTP. The protein encoded by this gene interacts with RhoA within the cell nucleus and may play a role in repairing DNA damage after ionizing radiation. Pseudogenes of this gene are located on the long arms of chromosomes 1, 7 and 18. Alternative splicing results in multiple transcript variants that encode different protein isoforms. [provided by RefSeq, Jul 2012]

TRBV28 Gene

T cell receptor beta variable 28

TRBV26 Gene

T cell receptor beta variable 26 (pseudogene)

MCTS2P Gene

malignant T cell amplified sequence 2, pseudogene

DSCAM Gene

Down syndrome cell adhesion molecule

This gene is a member of the immunoglobulin superfamily of cell adhesion molecules (Ig-CAMs), and is involved in human central and peripheral nervous system development. This gene is a candidate for Down syndrome and congenital heart disease (DSCHD). A gene encoding a similar Ig-CAM protein is located on chromosome 11. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Oct 2012]

BCAP31P1 Gene

B-cell receptor-associated protein 31 pseudogene 1

LOC100418583 Gene

mucin 4, cell surface associated pseudogene

LOC100418585 Gene

mucin 4, cell surface associated pseudogene

LOC100418584 Gene

mucin 4, cell surface associated pseudogene

SCAI Gene

suppressor of cancer cell invasion

This gene encodes a regulator of cell migration. The encoded protein appears to function in the RhoA (ras homolog gene family, member A)-Dia1 (diaphanous homolog 1) signal transduction pathway. Alternatively spliced transcript variants have been described. [provided by RefSeq, Feb 2010]

SDK1 Gene

sidekick cell adhesion molecule 1

SDK2 Gene

sidekick cell adhesion molecule 2

The protein encoded by this gene is a member of the immunoglobulin superfamily. The protein contains two immunoglobulin domains and thirteen fibronectin type III domains. Fibronectin type III domains are present in both extracellular and intracellular proteins and tandem repeats are known to contain binding sites for DNA, heparin and the cell surface. This protein, and a homologous mouse sequence, are very similar to the Drosophila sidekick gene product but the specific function of this superfamily member is not yet known. Evidence for alternative splicing at this gene locus has been observed but the full-length nature of additional variants has not yet been determined. [provided by RefSeq, Jul 2008]

TRAV31 Gene

T cell receptor alpha variable 31 (pseudogene)

PBX4 Gene

pre-B-cell leukemia homeobox 4

This gene encodes a member of the pre-B cell leukemia transcription factor family. These proteins are homeobox proteins that play critical roles in embryonic development and cellular differentiation both as Hox cofactors and through Hox-independent pathways. The encoded protein contains a homeobox DNA-binding domain, but specific functions of the protein have not been determined. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2011]

PBX2 Gene

pre-B-cell leukemia homeobox 2

This gene encodes a ubiquitously expressed member of the TALE/PBX homeobox family. It was identified by its similarity to a homeobox gene which is involved in t(1;19) translocation in acute pre-B-cell leukemias. This protein is a transcriptional activator which binds to the TLX1 promoter. The gene is located within the major histocompatibility complex (MHC) on chromosome 6. [provided by RefSeq, Jul 2008]

PBX3 Gene

pre-B-cell leukemia homeobox 3

PBX1 Gene

pre-B-cell leukemia homeobox 1

This gene encodes a nuclear protein that belongs to the PBX homeobox family of transcriptional factors. Studies in mice suggest that this gene may be involved in the regulation of osteogenesis, and required for skeletal patterning and programming. A chromosomal translocation, t(1;19) involving this gene and TCF3/E2A gene, is associated with pre-B-cell acute lymphoblastic leukemia. The resulting fusion protein, in which the DNA binding domain of E2A is replaced by the DNA binding domain of this protein, transforms cells by constitutively activating transcription of genes regulated by the PBX protein family. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2011]

TRAJ30 Gene

T cell receptor alpha joining 30

TRAJ31 Gene

T cell receptor alpha joining 31

TRAJ33 Gene

T cell receptor alpha joining 33

TRAJ34 Gene

T cell receptor alpha joining 34

TRAJ35 Gene

T cell receptor alpha joining 35 (non-functional)

TRAJ36 Gene

T cell receptor alpha joining 36

TRAJ37 Gene

T cell receptor alpha joining 37

TRAJ38 Gene

T cell receptor alpha joining 38

TRAJ39 Gene

T cell receptor alpha joining 39

KIR3DS1 Gene

killer cell immunoglobulin-like receptor, three domains, short cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

TAX1BP1 Gene

Tax1 (human T-cell leukemia virus type I) binding protein 1

This gene encodes a HTLV-1 tax1 binding protein. The encoded protein interacts with TNFAIP3, and inhibits TNF-induced apoptosis by mediating the TNFAIP3 anti-apoptotic activity. Degradation of this protein by caspase-3-like family proteins is associated with apoptosis induced by TNF. This protein may also have a role in the inhibition of inflammatory signaling pathways. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, May 2011]

TAX1BP3 Gene

Tax1 (human T-cell leukemia virus type I) binding protein 3

CDC73 Gene

cell division cycle 73

This gene encodes a tumor suppressor that is involved in transcriptional and post-transcriptional control pathways. The protein is a component of the the PAF protein complex, which associates with the RNA polymerase II subunit POLR2A and with a histone methyltransferase complex. This protein appears to facilitate the association of 3' mRNA processing factors with actively-transcribed chromatin. Mutations in this gene have been linked to hyperparathyroidism-jaw tumor syndrome, familial isolated hyperparathyroidism, and parathyroid carcinoma. [provided by RefSeq, Jul 2009]

TCAIM Gene

T cell activation inhibitor, mitochondrial

TRBV20OR9-2 Gene

T cell receptor beta variable 20/OR9-2 (non-functional)

AAMP Gene

angio-associated, migratory cell protein

The gene is a member of the immunoglobulin superfamily. The encoded protein is associated with angiogenesis, with potential roles in endothelial tube formation and the migration of endothelial cells. It may also regulate smooth muscle cell migration via the RhoA pathway. The encoded protein can bind to heparin and may mediate heparin-sensitive cell adhesion. [provided by RefSeq, Oct 2014]

CDC26P1 Gene

cell division cycle 26 pseudogene 1

TRAV2 Gene

T cell receptor alpha variable 2

TRAV3 Gene

T cell receptor alpha variable 3 (gene/pseudogene)

TRAV4 Gene

T cell receptor alpha variable 4

TRAV6 Gene

T cell receptor alpha variable 6

TRAV7 Gene

T cell receptor alpha variable 7

PARD6G Gene

par-6 family cell polarity regulator gamma

PARD6B Gene

par-6 family cell polarity regulator beta

This gene is a member of the PAR6 family and encodes a protein with a PSD95/Discs-large/ZO1 (PDZ) domain, an OPR domain and a semi-Cdc42/Rac interactive binding (CRIB) domain. This cytoplasmic protein is involved in asymmetrical cell division and cell polarization processes as a member of a multi-protein complex. [provided by RefSeq, Jul 2008]

PARD6A Gene

par-6 family cell polarity regulator alpha

This gene is a member of the PAR6 family and encodes a protein with a PSD95/Discs-large/ZO1 (PDZ) domain and a semi-Cdc42/Rac interactive binding (CRIB) domain. This cell membrane protein is involved in asymmetrical cell division and cell polarization processes as a member of a multi-protein complex. The protein also has a role in the epithelial-to-mesenchymal transition (EMT) that characterizes the invasive phenotype associated with metastatic carcinomas. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

NCCRP1 Gene

non-specific cytotoxic cell receptor protein 1 homolog (zebrafish)

MUC20 Gene

mucin 20, cell surface associated

This gene encodes a member of the mucin protein family. Mucins are high molecular weight glycoproteins secreted by many epithelial tissues to form an insoluble mucous barrier. The C-terminus of this family member associates with the multifunctional docking site of the MET proto-oncogene and suppresses activation of some downstream MET signaling cascades. The protein features a mucin tandem repeat domain that varies between two and six copies in most individuals. Multiple variants encoding different isoforms have been found for this gene. A related pseudogene, which is also located on chromosome 3, has been identified. [provided by RefSeq, Apr 2014]

MUC21 Gene

mucin 21, cell surface associated

LOC644070 Gene

putative germ cell-specific gene 1-like protein 2

ICOS Gene

inducible T-cell co-stimulator

The protein encoded by this gene belongs to the CD28 and CTLA-4 cell-surface receptor family. It forms homodimers and plays an important role in cell-cell signaling, immune responses, and regulation of cell proliferation. [provided by RefSeq, Jul 2008]

LOC132386 Gene

epithelial cell adhesion molecule pseudogene

LOC100129601 Gene

cell division cycle associated 7 pseudogene

SPDYE11 Gene

speedy/RINGO cell cycle regulator family member E11

TTIM1 Gene

T-cell tumor invasion and metastasis 1

NKTR Gene

natural killer cell triggering receptor

This gene encodes a membrane-anchored protein with a hydrophobic amino terminal domain and a cyclophilin-like PPIase domain. It is present on the surface of natural killer cells and facilitates their binding to targets. Its expression is regulated by IL2 activation of the cells. [provided by RefSeq, Jul 2008]

LOC100128721 Gene

stromal cell-derived factor 2 pseudogene

TRAV22 Gene

T cell receptor alpha variable 22

TRAV21 Gene

T cell receptor alpha variable 21

TRAV27 Gene

T cell receptor alpha variable 27

TRAV25 Gene

T cell receptor alpha variable 25

TRAV24 Gene

T cell receptor alpha variable 24

TRAV28 Gene

T cell receptor alpha variable 28 (pseudogene)

TRBV25OR9-2 Gene

T cell receptor beta variable 25/OR9-2 (pseudogene)

CHL1 Gene

cell adhesion molecule L1-like

The protein encoded by this gene is a member of the L1 gene family of neural cell adhesion molecules. It is a neural recognition molecule that may be involved in signal transduction pathways. The deletion of one copy of this gene may be responsible for mental defects in patients with 3p- syndrome. This protein may also play a role in the growth of certain cancers. Alternate splicing results in both coding and non-coding variants. [provided by RefSeq, Nov 2011]

BCC4 Gene

Basal cell carcinoma, susceptibility to, 4

TRDD3 Gene

T cell receptor delta diversity 3

TRDD2 Gene

T cell receptor delta diversity 2

TRDD1 Gene

T cell receptor delta diversity 1

LOC102724621 Gene

cell division cycle protein 27 homolog pseudogene

TRDC Gene

T cell receptor delta constant

PSCA Gene

prostate stem cell antigen

This gene encodes a glycosylphosphatidylinositol-anchored cell membrane glycoprotein. In addition to being highly expressed in the prostate it is also expressed in the bladder, placenta, colon, kidney, and stomach. This gene is up-regulated in a large proportion of prostate cancers and is also detected in cancers of the bladder and pancreas. This gene includes a polymorphism that results in an upstream start codon in some individuals; this polymorphism is thought to be associated with a risk for certain gastric and bladder cancers. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]

TRG-AS1 Gene

T cell receptor gamma locus antisense RNA 1

ALCAM Gene

activated leukocyte cell adhesion molecule

This gene encodes activated leukocyte cell adhesion molecule (ALCAM), also known as CD166 (cluster of differentiation 166), which is a member of a subfamily of immunoglobulin receptors with five immunoglobulin-like domains (VVC2C2C2) in the extracellular domain. This protein binds to T-cell differentiation antigene CD6, and is implicated in the processes of cell adhesion and migration. Multiple alternatively spliced transcript variants encoding different isoforms have been found. [provided by RefSeq, Aug 2011]

HCST Gene

hematopoietic cell signal transducer

This gene encodes a transmembrane signaling adaptor that contains a YxxM motif in its cytoplasmic domain. The encoded protein may form part of the immune recognition receptor complex with the C-type lectin-like receptor NKG2D. As part of this receptor complex, this protein may activate phosphatidylinositol 3-kinase dependent signaling pathways through its intracytoplasmic YxxM motif. This receptor complex may have a role in cell survival and proliferation by activation of NK and T cell responses. Alternative splicing results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

SDF4 Gene

stromal cell derived factor 4

This gene encodes a stromal cell derived factor that is a member of the CREC protein family. The encoded protein contains six EF-hand motifs and calcium-binding motifs. This protein localizes to the Golgi lumen and may be involved in regulating calcium dependent cellular activities. [provided by RefSeq, Sep 2011]

SDF2 Gene

stromal cell-derived factor 2

The protein encoded by this gene is believed to be a secretory protein. It has regions of similarity to hydrophilic segments of yeast mannosyltransferases. Its expression is ubiquitous and the gene appears to be relatively conserved among mammals. Alternate splicing results in both coding and non-coding variants. A pseudogene of this gene is located on chromosome 15. [provided by RefSeq, Dec 2011]

NKG7 Gene

natural killer cell granule protein 7

TRBV22OR9-2 Gene

T cell receptor beta variable 22/OR9-2 (pseudogene)

GSG2 Gene

germ cell associated 2 (haspin)

GSG1 Gene

germ cell associated 1

TRGV6 Gene

T cell receptor gamma variable 6 (pseudogene)

TRGV7 Gene

T cell receptor gamma variable 7 (pseudogene)

TRGV4 Gene

T cell receptor gamma variable 4

TRGV5 Gene

T cell receptor gamma variable 5

TRGV2 Gene

T cell receptor gamma variable 2

TRGV3 Gene

T cell receptor gamma variable 3

TRGV1 Gene

T cell receptor gamma variable 1 (non-functional)

TRGV8 Gene

T cell receptor gamma variable 8

TRGV9 Gene

T cell receptor gamma variable 9

TRGVB Gene

T cell receptor gamma variable B (pseudogene)

TRGVA Gene

T cell receptor gamma variable A (pseudogene)

TRAT1 Gene

T cell receptor associated transmembrane adaptor 1

KIR2DL5B Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 5B

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DL5A Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 5A

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

TRAJ58 Gene

T cell receptor alpha joining 58 (non-functional)

TRAJ56 Gene

T cell receptor alpha joining 56

TRAJ57 Gene

T cell receptor alpha joining 57

TRAJ54 Gene

T cell receptor alpha joining 54

PECAM1 Gene

platelet/endothelial cell adhesion molecule 1

The protein encoded by this gene is found on the surface of platelets, monocytes, neutrophils, and some types of T-cells, and makes up a large portion of endothelial cell intercellular junctions. The encoded protein is a member of the immunoglobulin superfamily and is likely involved in leukocyte migration, angiogenesis, and integrin activation. [provided by RefSeq, May 2010]

TAL1 Gene

T-cell acute lymphocytic leukemia 1

TAL2 Gene

T-cell acute lymphocytic leukemia 2

This intronless gene encodes a helix-loop-helix protein. Translocations between this gene on chromosome 9 and the T-cell receptor beta-chain locus on chromosome 7 have been associated with activation of the T-cell acute lymphocytic leukemia 2 gene and T-cell acute lymphoblastic leukemia. [provided by RefSeq, Mar 2009]

TRAV26-1 Gene

T cell receptor alpha variable 26-1

TRAV26-2 Gene

T cell receptor alpha variable 26-2

TRBV22-1 Gene

T cell receptor beta variable 22-1 (pseudogene)

TRAV9-1 Gene

T cell receptor alpha variable 9-1

TRAV9-2 Gene

T cell receptor alpha variable 9-2

CDCA4P2 Gene

cell division cycle associated 4 pseudogene 2

PBX2P1 Gene

pre-B-cell leukemia homeobox 2 pseudogene 1

TLX1 Gene

T-cell leukemia homeobox 1

This gene encodes a nuclear transcription factor that belongs to the NK-linked or NK-like (NKL) subfamily of homeobox genes. The encoded protein is required for normal development of the spleen during embryogenesis. This protein is also involved in specification of neuronal cell fates. Ectopic expression of this gene due to chromosomal translocations is associated with certain T-cell acute lymphoblastic leukemias. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2010]

TLX2 Gene

T-cell leukemia homeobox 2

This gene is a member of an orphan homeobox-containing transcription factor family. Studies of the mouse ortholog have shown that the encoded protein is crucial for the development of the enteric nervous system; in humans, loss-of-function may play a role in tumorigenesis of gastrointestinal stromal tumors. [provided by RefSeq, May 2010]

TLX3 Gene

T-cell leukemia homeobox 3

RNX (HOX11L2, TLX3) belongs to a family of orphan homeobox genes that encode DNA-binding nuclear transcription factors. Members of the HOX11 gene family are characterized by a threonine-47 replacing cytosine in the highly conserved homeodomain (Dear et al., 1993 [PubMed 8099440]).[supplied by OMIM, Mar 2008]

CDC37P1 Gene

cell division cycle 37 pseudogene 1

CDC37P2 Gene

cell division cycle 37 pseudogene 2

BCL7C Gene

B-cell CLL/lymphoma 7C

This gene is identified by the similarity of its product to the N-terminal region of BCL7A protein. The BCL7A protein is encoded by the gene known to be directly involved in a three-way gene translocation in a Burkitt lymphoma cell line. The function of this gene has not yet been determined. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]

BCL7B Gene

B-cell CLL/lymphoma 7B

This gene encodes a member of the BCL7 family including BCL7A, BCL7B and BCL7C proteins. This member is BCL7B, which contains a region that is highly similar to the N-terminal segment of BCL7A or BCL7C proteins. The BCL7A protein is encoded by the gene known to be directly involved in a three-way gene translocation in a Burkitt lymphoma cell line. This gene is located at a chromosomal region commonly deleted in Williams syndrome. This gene is highly conserved from C. elegans to human. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Oct 2010]

BCL7A Gene

B-cell CLL/lymphoma 7A

This gene is directly involved, with Myc and IgH, in a three-way gene translocation in a Burkitt lymphoma cell line. As a result of the gene translocation, the N-terminal region of the gene product is disrupted, which is thought to be related to the pathogenesis of a subset of high-grade B cell non-Hodgkin lymphoma. The N-terminal segment involved in the translocation includes the region that shares a strong sequence similarity with those of BCL7B and BCL7C. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

BTG1P1 Gene

B-cell translocation gene 1 pseudogene 1

MSE Gene

myelinating Schwann cell element

GDNF Gene

glial cell derived neurotrophic factor

This gene encodes a highly conserved neurotrophic factor. The recombinant form of this protein was shown to promote the survival and differentiation of dopaminergic neurons in culture, and was able to prevent apoptosis of motor neurons induced by axotomy. The encoded protein is processed to a mature secreted form that exists as a homodimer. The mature form of the protein is a ligand for the product of the RET (rearranged during transfection) protooncogene. Multiple transcript variants encoding different isoforms have been found for this gene. Mutations in this gene may be associated with Hirschsprung disease. [provided by RefSeq, Jun 2010]

CDC45 Gene

cell division cycle 45

The protein encoded by this gene was identified by its strong similarity with Saccharomyces cerevisiae Cdc45, an essential protein required to the initiation of DNA replication. Cdc45 is a member of the highly conserved multiprotein complex including Cdc6/Cdc18, the minichromosome maintenance proteins (MCMs) and DNA polymerase, which is important for early steps of DNA replication in eukaryotes. This protein has been shown to interact with MCM7 and DNA polymerase alpha. Studies of the similar gene in Xenopus suggested that this protein play a pivotal role in the loading of DNA polymerase alpha onto chromatin. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

CDC40 Gene

cell division cycle 40

Pre-mRNA splicing occurs in two sequential transesterification steps. The protein encoded by this gene is found to be essential for the catalytic step II in pre-mRNA splicing process. It is found in the spliceosome, and contains seven WD repeats, which function in protein-protein interactions. This protein has a sequence similarity to yeast Prp17 protein, which functions in two different cellular processes: pre-mRNA splicing and cell cycle progression. It suggests that this protein may play a role in cell cycle progression. [provided by RefSeq, Jul 2008]

CDC42 Gene

cell division cycle 42

The protein encoded by this gene is a small GTPase of the Rho-subfamily, which regulates signaling pathways that control diverse cellular functions including cell morphology, migration, endocytosis and cell cycle progression. This protein is highly similar to Saccharomyces cerevisiae Cdc 42, and is able to complement the yeast cdc42-1 mutant. The product of oncogene Dbl was reported to specifically catalyze the dissociation of GDP from this protein. This protein could regulate actin polymerization through its direct binding to Neural Wiskott-Aldrich syndrome protein (N-WASP), which subsequently activates Arp2/3 complex. Alternative splicing of this gene results in multiple transcript variants. Pseudogenes of this gene have been identified on chromosomes 3, 4, 5, 7, 8 and 20. [provided by RefSeq, Apr 2013]

TCL1B Gene

T-cell leukemia/lymphoma 1B

TCL1A Gene

T-cell leukemia/lymphoma 1A

Overexpression of the TCL1 gene in humans has been implicated in the development of mature T cell leukemia, in which chromosomal rearrangements bring the TCL1 gene in close proximity to the T-cell antigen receptor (TCR)-alpha (MIM 186880) or TCR-beta (MIM 186930) regulatory elements (summarized by Virgilio et al., 1998 [PubMed 9520462]). In normal T cells TCL1 is expressed in CD4-/CD8- cells, but not in cells at later stages of differentiation. TCL1 functions as a coactivator of the cell survival kinase AKT (MIM 164730) (Laine et al., 2000 [PubMed 10983986]).[supplied by OMIM, Jul 2010]

SPDYE13P Gene

speedy/RINGO cell cycle regulator family member E13, pseudogene

TRBV11-2 Gene

T cell receptor beta variable 11-2

LOC105379662 Gene

killer cell immunoglobulin-like receptor 2DS1

LOC442172 Gene

cell division cycle associated 7 pseudogene

SPDYE21P Gene

speedy/RINGO cell cycle regulator family member E21, pseudogene

ELMO2P1 Gene

engulfment and cell motility 2 pseudogene 1

LOC100421663 Gene

cutaneous T-cell lymphoma-associated antigen 1 pseudogene

LOC651644 Gene

LIM and senescent cell antigen-like domains 2 pseudogene

INTU Gene

inturned planar cell polarity protein

LOC100129672 Gene

cell adhesion associated, oncogene regulated pseudogene

TIAM1 Gene

T-cell lymphoma invasion and metastasis 1

TIAM2 Gene

T-cell lymphoma invasion and metastasis 2

This gene encodes a guanine nucleotide exchange factor. A highly similar mouse protein specifically activates ras-related C3 botulinum substrate 1, converting this Rho-like guanosine triphosphatase (GTPase) from a guanosine diphosphate-bound inactive state to a guanosine triphosphate-bound active state. The encoded protein may play a role in neural cell development. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

TRBV4-2 Gene

T cell receptor beta variable 4-2

TRBV4-3 Gene

T cell receptor beta variable 4-3

TRBV4-1 Gene

T cell receptor beta variable 4-1

SART1 Gene

squamous cell carcinoma antigen recognized by T cells

This gene encodes two proteins, the SART1(800) protein expressed in the nucleus of the majority of proliferating cells, and the SART1(259) protein expressed in the cytosol of epithelial cancers. The SART1(259) protein is translated by the mechanism of -1 frameshifting during posttranscriptional regulation; its full-length sequence is not published yet. The two encoded proteins are thought to be involved in the regulation of proliferation. Both proteins have tumor-rejection antigens. The SART1(259) protein possesses tumor epitopes capable of inducing HLA-A2402-restricted cytotoxic T lymphocytes in cancer patients. This SART1(259) antigen may be useful in specific immunotherapy for cancer patients and may serve as a paradigmatic tool for the diagnosis and treatment of patients with atopy. The SART1(259) protein is found to be essential for the recruitment of the tri-snRNP to the pre-spliceosome in the spliceosome assembly pathway. [provided by RefSeq, Jul 2008]

TRAJ61 Gene

T cell receptor alpha joining 61 (non-functional)

TRAJ60 Gene

T cell receptor alpha joining 60 (pseudogene)

CDC14BL Gene

CDC14 cell division cycle 14 C-like

TRAV18 Gene

T cell receptor alpha variable 18

TRAV19 Gene

T cell receptor alpha variable 19

TRAV10 Gene

T cell receptor alpha variable 10

TRAV11 Gene

T cell receptor alpha variable 11 (pseudogene)

TRAV16 Gene

T cell receptor alpha variable 16

TRAV17 Gene

T cell receptor alpha variable 17

TRAV15 Gene

T cell receptor alpha variable 15 (pseudogene)

SPDYE4 Gene

speedy/RINGO cell cycle regulator family member E4

TRAV8-1 Gene

T cell receptor alpha variable 8-1

TRAV8-3 Gene

T cell receptor alpha variable 8-3

TRAV8-2 Gene

T cell receptor alpha variable 8-2

TRAV8-5 Gene

T cell receptor alpha variable 8-5 (pseudogene)

TRAV8-4 Gene

T cell receptor alpha variable 8-4

TRAV8-7 Gene

T cell receptor alpha variable 8-7 (non-functional)

TRAV8-6 Gene

T cell receptor alpha variable 8-6

TRBV5-7 Gene

T cell receptor beta variable 5-7 (non-functional)

TRBV5-6 Gene

T cell receptor beta variable 5-6

TRBV5-5 Gene

T cell receptor beta variable 5-5

TRBV5-4 Gene

T cell receptor beta variable 5-4

TRBV5-3 Gene

T cell receptor beta variable 5-3 (non-functional)

TRBV5-2 Gene

T cell receptor beta variable 5-2 (pseudogene)

TRBV5-1 Gene

T cell receptor beta variable 5-1

TRBV5-8 Gene

T cell receptor beta variable 5-8

BCL9P1 Gene

B-cell CLL/lymphoma 9 pseudogene 1

TCF7L1 Gene

transcription factor 7-like 1 (T-cell specific, HMG-box)

This gene encodes a member of the T cell factor/lymphoid enhancer factor family of transcription factors. These transcription factors are activated by beta catenin, mediate the Wnt signaling pathway and are antagonized by the transforming growth factor beta signaling pathway. The encoded protein contains a high mobility group-box DNA binding domain and participates in the regulation of cell cycle genes and cellular senescence. [provided by RefSeq, Nov 2010]

TCF7L2 Gene

transcription factor 7-like 2 (T-cell specific, HMG-box)

This gene encodes a high mobility group (HMG) box-containing transcription factor that plays a key role in the Wnt signaling pathway. The protein has been implicated in blood glucose homeostasis. Genetic variants of this gene are associated with increased risk of type 2 diabetes. Several transcript variants encoding multiple different isoforms have been found for this gene.[provided by RefSeq, Oct 2010]

TRAC Gene

T cell receptor alpha constant

CDC123 Gene

cell division cycle 123

KLRD1 Gene

killer cell lectin-like receptor subfamily D, member 1

Natural killer (NK) cells are a distinct lineage of lymphocytes that mediate cytotoxic activity and secrete cytokines upon immune stimulation. Several genes of the C-type lectin superfamily, including members of the NKG2 family, are expressed by NK cells and may be involved in the regulation of NK cell function. KLRD1 (CD94) is an antigen preferentially expressed on NK cells and is classified as a type II membrane protein because it has an external C terminus. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

ELMO1 Gene

engulfment and cell motility 1

This gene encodes a member of the engulfment and cell motility protein family. These proteins interact with dedicator of cytokinesis proteins to promote phagocytosis and cell migration. Increased expression of this gene and dedicator of cytokinesis 1 may promote glioma cell invasion, and single nucleotide polymorphisms in this gene may be associated with diabetic nephropathy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

ELMO2 Gene

engulfment and cell motility 2

The protein encoded by this gene interacts with the dedicator of cyto-kinesis 1 protein. Similarity to a C. elegans protein suggests that this protein may function in phagocytosis of apoptotic cells and in cell migration. Alternative splicing results in multiple transcript variants encoding the same protein. [provided by RefSeq, Jul 2008]

ELMO3 Gene

engulfment and cell motility 3

The protein encoded by this gene is similar to a C. elegans protein that functions in phagocytosis of apoptotic cells and in cell migration. Other members of this small family of engulfment and cell motility (ELMO) proteins have been shown to interact with the dedicator of cyto-kinesis 1 protein to promote phagocytosis and effect cell shape changes. [provided by RefSeq, Jul 2008]

CCPG1 Gene

cell cycle progression 1

MILR1 Gene

mast cell immunoglobulin-like receptor 1

ECSCR Gene

endothelial cell surface expressed chemotaxis and apoptosis regulator

The protein encoded by this gene is primarily found in endothelial cells and blood vessels, where it is involved in cell shape changes and EGF-induced cell migration. It can enhance the activation of vascular endothelial growth factor receptor-2/kinase insert domain receptor and also promote the proteolysis of internalized kinase insert domain receptor. This gene may play a role in angiogenesis-related diseases. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2014]

PDCD2L Gene

programmed cell death 2-like

DCANP1 Gene

dendritic cell-associated nuclear protein

This intronless gene is specifically expressed in dendritic cells (DCs), which are potent antigen-presenting cells involved in activating naive T cells to initiate antigen-specific immune response. The encoded protein is localized mainly in the perinucleus. One of the alleles (A/T) of this gene, that causes premature translation termination at aa 117, has been associated with an increased prevalence of major depression in humans. [provided by RefSeq, Jul 2008]

MUC1 Gene

mucin 1, cell surface associated

This gene encodes a membrane-bound protein that is a member of the mucin family. Mucins are O-glycosylated proteins that play an essential role in forming protective mucous barriers on epithelial surfaces. These proteins also play a role in intracellular signaling. This protein is expressed on the apical surface of epithelial cells that line the mucosal surfaces of many different tissues including lung, breast stomach and pancreas. This protein is proteolytically cleaved into alpha and beta subunits that form a heterodimeric complex. The N-terminal alpha subunit functions in cell-adhesion and the C-terminal beta subunit is involved in cell signaling. Overexpression, aberrant intracellular localization, and changes in glycosylation of this protein have been associated with carcinomas. This gene is known to contain a highly polymorphic variable number tandem repeats (VNTR) domain. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Feb 2011]

CDCA4P4 Gene

cell division cycle associated 4 pseudogene 4

CDCA4P1 Gene

cell division cycle associated 4 pseudogene 1

CDCA4P3 Gene

cell division cycle associated 4 pseudogene 3

SPDYE22P Gene

speedy/RINGO cell cycle regulator family member E22, pseudogene

LOC100286895 Gene

cell division cycle 27 homolog pseudogene

TRBD2 Gene

T cell receptor beta diversity 2

KLRK1 Gene

killer cell lectin-like receptor subfamily K, member 1

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. NK cells preferentially express several calcium-dependent (C-type) lectins, which have been implicated in the regulation of NK cell function. The NKG2 gene family is located within the NK complex, a region that contains several C-type lectin genes preferentially expressed in NK cells. This gene encodes a member of the NKG2 family. The encoded transmembrane protein is characterized by a type II membrane orientation (has an extracellular C terminus) and the presence of a C-type lectin domain. It binds to a diverse family of ligands that include MHC class I chain-related A and B proteins and UL-16 binding proteins, where ligand-receptor interactions can result in the activation of NK and T cells. The surface expression of these ligands is important for the recognition of stressed cells by the immune system, and thus this protein and its ligands are therapeutic targets for the treatment of immune diseases and cancers. Read-through transcription exists between this gene and the upstream KLRC4 (killer cell lectin-like receptor subfamily C, member 4) family member in the same cluster. [provided by RefSeq, Dec 2010]

BCC1 Gene

Basal cell carcinoma, susceptibility to, 1

BCC2 Gene

Basal cell carcinoma, susceptibility to, 2

BCC3 Gene

Basal cell carcinoma, susceptibility to, 3

METRNL Gene

meteorin, glial cell differentiation regulator-like

VANGL2 Gene

VANGL planar cell polarity protein 2

The protein encoded by this gene is a membrane protein involved in the regulation of planar cell polarity, especially in the stereociliary bundles of the cochlea. The encoded protein transmits directional signals to individual cells or groups of cells in epithelial sheets. This protein is also involved in the development of the neural plate. [provided by RefSeq, Sep 2011]

TRBV8-2 Gene

T cell receptor beta variable 8-2 (pseudogene)

TRBV8-1 Gene

T cell receptor beta variable 8-1 (pseudogene)

TRBV26OR9-2 Gene

T cell receptor beta variable 26/OR9-2 (pseudogene)

LOC728739 Gene

programmed cell death 2 pseudogene

TRA Gene

T cell receptor alpha locus

TRB Gene

T cell receptor beta locus

T cell receptors recognize foreign antigens which have been processed as small peptides and bound to major histocompatibility complex (MHC) molecules at the surface of antigen presenting cells (APC). Each T cell receptor is a dimer consisting of one alpha and one beta chain or one delta and one gamma chain. In a single cell, the T cell receptor loci are rearranged and expressed in the order delta, gamma, beta, and alpha. If both delta and gamma rearrangements produce functional chains, the cell expresses delta and gamma. If not, the cell proceeds to rearrange the beta and alpha loci. This region represents the germline organization of the T cell receptor beta locus. The beta locus includes V (variable), J (joining), diversity (D), and C (constant) segments. During T cell development, the beta chain is synthesized by a recombination event at the DNA level joining a D segment with a J segment; a V segment is then joined to the D-J gene. The C segment is later joined by splicing at the RNA level. Recombination of many different V segments with several J segments provides a wide range of antigen recognition. Additional diversity is attained by junctional diversity, resulting from the random additional of nucleotides by terminal deoxynucleotidyltransferase. Several V segments and one J segment of the beta locus are known to be incapable of encoding a protein and are considered pseudogenes. The beta locus also includes eight trypsinogen genes, three of which encode functional proteins and five of which are pseudogenes. Chromosomal abnormalities involving the T-cell receptor beta locus have been associated with T-cell lymphomas. [provided by RefSeq, Jul 2008]

TRD Gene