Name

HPM Cell Type and Tissue Protein Expression Profiles Dataset

From Human Proteome Map

protein expression profiles for tissues and cell types

ProteomicsDB Cell Type and Tissue Protein Expression Profiles Dataset

From Proteomics Database

protein expression profiles for tissues and cell types reprocessed from many proteomics datasets

BioGPS Human Cell Type and Tissue Gene Expression Profiles Dataset

From BioGPS

mRNA expression profiles for human tissues and cell types

BioGPS Mouse Cell Type and Tissue Gene Expression Profiles Dataset

From BioGPS

mRNA expression profiles for mouse tissues and cell types

Hub Proteins Protein-Protein Interactions Dataset

From Hub Proteins

sets of proteins interacting with hub proteins

NURSA Protein-Protein Interactions Dataset

From Nuclear Receptor Signaling Atlas

protein-protein interactions inferred from membership in complexes

Pathway Commons Protein-Protein Interactions Dataset

From Pathway Commons

protein-protein interactions from low-throughput or high-throughput studies aggregated by Pathway Commons from the following databases: Reactome, NCI Pathways, PhosphoSite, HumanCyc, HPRD, PANTHER, DIP, BioGRID, IntAct, BIND, Transfac, MiRTarBase, Drugbank, Recon X, Comparative Toxicogenomics Database, and KEGG

Virus MINT Protein-Viral Protein Interactions Dataset

From Virus MINT

interactions between viral and human proteins manually curated from literature

COMPARTMENTS Curated Protein Localization Evidence Scores Dataset

From COMPARTMENTS

protein subcellular localization evidence scores by manual literature curation

COMPARTMENTS Experimental Protein Localization Evidence Scores Dataset

From COMPARTMENTS

protein subcellular localization evidence scores by integrating experimental data

COMPARTMENTS Text-mining Protein Localization Evidence Scores Dataset

From COMPARTMENTS

gene-cellular compartment co-occurrence scores from text-mining biomedical abstracts

CORUM Protein Complexes Dataset

From CORUM

proteins participating in complexes by manual literature curation

Guide to Pharmacology Protein Ligands of Receptors Dataset

From Guide to Pharmacology

ligand-receptor interactions curated by experts

HPA Tissue Protein Expression Profiles Dataset

From Human Protein Atlas

semiquantitative protein expression profiles for tissues

InterPro Predicted Protein Domain Annotations Dataset

From InterPro

protein domains predicted for gene products based on sequence similarity to known domain signatures

LOCATE Curated Protein Localization Annotations Dataset

From LOCATE

subcellular localization of proteins from low-throughput or high-throughput protein localization assays

NURSA Protein Complexes Dataset

From Nuclear Receptor Signaling Atlas

proteins identified in complexes isolated from cultured cells

SILAC Phosphoproteomics Signatures of Differentially Phosphorylated Proteins for Protein Ligands Dataset

From SILAC Phosphoproteomics

phosphorylation levels of proteins in cell lines following ligand treatment

TISSUES Curated Tissue Protein Expression Evidence Scores Dataset

From TISSUES

protein tissue expression evidence scores by manual literature curation

TISSUES Experimental Tissue Protein Expression Evidence Scores Dataset

From TISSUES

protein tissue expression evidence scores by integrating experimental data

TISSUES Text-mining Tissue Protein Expression Evidence Scores Dataset

From TISSUES

gene-tissue co-occurrence scores from text-mining biomedical abstracts

Virus MINT Protein-Virus Interactions Dataset

From Virus MINT

interactions between viruses and human proteins manually curated from literature

LOCATE Predicted Protein Localization Annotations Dataset

From LOCATE

subcellular localization of proteins by sequence similarity to localization sequences

HPA Cell Line Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for cell lines

HPA Tissue Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for tissues

HPA Tissue Sample Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for tissue samples

GREB1L Gene

growth regulation by estrogen in breast cancer-like

RPRD1A Gene

regulation of nuclear pre-mRNA domain containing 1A

This gene encodes a cell-cycle and transcription regulatory protein. The encoded protein interacts with the cell cycle inhibitor cyclin-dependent kinase 4 inhibitor B and may function as a negative regulator of G(1)/S phase progression. This protein also forms homo- and hetrodimers with the protein, regulation of nuclear pre-mRNA domain-containing protein 1B, to form a scaffold that interacts with the C-terminal domain of RNA polymerase II subunit B1 and regulates several aspects of transcription. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 16. [provided by RefSeq, Dec 2014]

RPRD1B Gene

regulation of nuclear pre-mRNA domain containing 1B

RPRD2 Gene

regulation of nuclear pre-mRNA domain containing 2

GREB1 Gene

growth regulation by estrogen in breast cancer 1

This gene is an estrogen-responsive gene that is an early response gene in the estrogen receptor-regulated pathway. It is thought to play an important role in hormone-responsive tissues and cancer. Three alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC100130602 Gene

regulation of nuclear pre-mRNA domain containing 1A pseudogene

ID2B Gene

inhibitor of DNA binding 2B, dominant negative helix-loop-helix protein (pseudogene)

NRIR Gene

negative regulator of interferon response (non-protein coding)

This gene is thought to produce a functional long non-coding RNA. This transcript may be a negative regulator of interferon response. [provided by RefSeq, Feb 2015]

DRAP1 Gene

DR1-associated protein 1 (negative cofactor 2 alpha)

Transcriptional repression is a general mechanism for regulating transcriptional initiation in organisms ranging from yeast to humans. Accurate initiation of transcription from eukaryotic protein-encoding genes requires the assembly of a large multiprotein complex consisting of RNA polymerase II and general transcription factors such as TFIIA, TFIIB, and TFIID. DR1 is a repressor that interacts with the TATA-binding protein (TBP) of TFIID and prevents the formation of an active transcription complex by precluding the entry of TFIIA and/or TFIIB into the preinitiation complex. The protein encoded by this gene is a corepressor of transcription that interacts with DR1 to enhance DR1-mediated repression. The interaction between this corepressor and DR1 is required for corepressor function and appears to stabilize the TBP-DR1-DNA complex. [provided by RefSeq, Jul 2008]

NRAV Gene

negative regulator of antiviral response (non-protein coding)

ID4 Gene

inhibitor of DNA binding 4, dominant negative helix-loop-helix protein

This gene encodes a member of the inhibitor of DNA binding (ID) protein family. These proteins are basic helix-loop-helix transcription factors which can act as tumor suppressors but lack DNA binding activity. Consequently, the activity of the encoded protein depends on the protein binding partner. [provided by RefSeq, Dec 2011]

ID2 Gene

inhibitor of DNA binding 2, dominant negative helix-loop-helix protein

The protein encoded by this gene belongs to the inhibitor of DNA binding family, members of which are transcriptional regulators that contain a helix-loop-helix (HLH) domain but not a basic domain. Members of the inhibitor of DNA binding family inhibit the functions of basic helix-loop-helix transcription factors in a dominant-negative manner by suppressing their heterodimerization partners through the HLH domains. This protein may play a role in negatively regulating cell differentiation. A pseudogene of this gene is located on chromosome 3. [provided by RefSeq, Aug 2011]

ID3 Gene

inhibitor of DNA binding 3, dominant negative helix-loop-helix protein

The protein encoded by this gene is a helix-loop-helix (HLH) protein that can form heterodimers with other HLH proteins. However, the encoded protein lacks a basic DNA-binding domain and therefore inhibits the DNA binding of any HLH protein with which it interacts. [provided by RefSeq, Aug 2011]

ID1 Gene

inhibitor of DNA binding 1, dominant negative helix-loop-helix protein

The protein encoded by this gene is a helix-loop-helix (HLH) protein that can form heterodimers with members of the basic HLH family of transcription factors. The encoded protein has no DNA binding activity and therefore can inhibit the DNA binding and transcriptional activation ability of basic HLH proteins with which it interacts. This protein may play a role in cell growth, senescence, and differentiation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PTPN13 Gene

protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP is a large intracellular protein. It has a catalytic PTP domain at its C-terminus and two major structural domains: a region with five PDZ domains and a FERM domain that binds to plasma membrane and cytoskeletal elements. This PTP was found to interact with, and dephosphorylate, Fas receptor and IkappaBalpha through the PDZ domains. This suggests it has a role in Fas mediated programmed cell death. This PTP was also shown to interact with GTPase-activating protein, and thus may function as a regulator of Rho signaling pathways. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported. [provided by RefSeq, Oct 2008]

NELFB Gene

negative elongation factor complex member B

NELFB is a subunit of negative elongation factor (NELF), which also includes NELFA (WHSC2; MIM 606026), either NELFC or NELFD (TH1L; MIM 605297), and NELFE (RDBP; MIM 154040). NELF acts with DRB sensitivity-inducing factor (DSIF), a heterodimer of SPT4 (SUPT4H1; MIM 603555) and SPT5 (SUPT5H; MIM 602102), to cause transcriptional pausing of RNA polymerase II (see MIM 180660) (Narita et al., 2003 [PubMed 12612062]).[supplied by OMIM, Mar 2008]

NELFA Gene

negative elongation factor complex member A

This gene is expressed ubiquitously with higher levels in fetal than in adult tissues. It encodes a protein sharing 93% sequence identity with the mouse protein. Wolf-Hirschhorn syndrome (WHS) is a malformation syndrome associated with a hemizygous deletion of the distal short arm of chromosome 4. This gene is mapped to the 165 kb WHS critical region, and may play a role in the phenotype of the WHS or Pitt-Rogers-Danks syndrome. The encoded protein is found to be capable of reacting with HLA-A2-restricted and tumor-specific cytotoxic T lymphocytes, suggesting a target for use in specific immunotherapy for a large number of cancer patients. This protein has also been shown to be a member of the NELF (negative elongation factor) protein complex that participates in the regulation of RNA polymerase II transcription elongation. [provided by RefSeq, Jul 2008]

NELFE Gene

negative elongation factor complex member E

The protein encoded by this gene is part of a complex termed negative elongation factor (NELF) which represses RNA polymerase II transcript elongation. This protein bears similarity to nuclear RNA-binding proteins; however, it has not been demonstrated that this protein binds RNA. The protein contains a tract of alternating basic and acidic residues, largely arginine (R) and aspartic acid (D). The gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6. [provided by RefSeq, Jul 2008]

DR1 Gene

down-regulator of transcription 1, TBP-binding (negative cofactor 2)

This gene encodes a TBP- (TATA box-binding protein) associated phosphoprotein that represses both basal and activated levels of transcription. The encoded protein is phosphorylated in vivo and this phosphorylation affects its interaction with TBP. This protein contains a histone fold motif at the amino terminus, a TBP-binding domain, and a glutamine- and alanine-rich region. The binding of DR1 repressor complexes to TBP-promoter complexes may establish a mechanism in which an altered DNA conformation, together with the formation of higher order complexes, inhibits the assembly of the preinitiation complex and controls the rate of RNA polymerase II transcription. [provided by RefSeq, Jul 2008]

NRROS Gene

negative regulator of reactive oxygen species

NELFCD Gene

negative elongation factor complex member C/D

The NELF complex of proteins interacts with the DSIF protein complex to repress transcriptional elongation by RNA polymerase II. The protein encoded by this gene is an essential part of the NELF complex. Alternative translation initiation site usage results in the formation of two isoforms with different N-termini. [provided by RefSeq, Jul 2008]

NUB1 Gene

negative regulator of ubiquitin-like proteins 1

This gene encodes a protein that functions as a negative regulator of NEDD8, a ubiquitin-like protein that conjugates with cullin family members in order to regulate vital biological events. The protein encoded by this gene regulates the NEDD8 conjugation system post-transcriptionally by recruiting NEDD8 and its conjugates to the proteasome for degradation. This protein interacts with the product of the AIPL1 gene, which is associated with Leber congenital amaurosis, an inherited retinopathy, and mutations in that gene can abolish interaction with this protein, which may contribute to the pathogenesis. This protein is also known to accumulate in Lewy bodies in Parkinson's disease and dementia with Lewy bodies, and in glial cytoplasmic inclusions in multiple system atrophy, with this abnormal accumulation being specific to alpha-synucleinopathy lesions. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Aug 2011]

PPFIA4 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 4

PPFIA4, or liprin-alpha-4, belongs to the liprin-alpha gene family. See liprin-alpha-1 (LIP1, or PPFIA1; MIM 611054) for background on liprins.[supplied by OMIM, Mar 2008]

LOC100422713 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1 pseudogene

LOC100422710 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1 pseudogene

PTPRCAP Gene

protein tyrosine phosphatase, receptor type, C-associated protein

The protein encoded by this gene was identified as a transmembrane phosphoprotein specifically associated with tyrosine phosphatase PTPRC/CD45, a key regulator of T- and B-lymphocyte activation. The interaction with PTPRC may be required for the stable expression of this protein. [provided by RefSeq, Jul 2008]

PPFIA2 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 2

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. It has been proposed that liprins are multivalent proteins that form complex structures and act as scaffolds for the recruitment and anchoring of LAR family of tyrosine phosphatases. This protein has been shown to bind the calcium/calmodulin-dependent serine protein kinase (MAGUK family) protein (also known as CASK) and proposed to regulate higher-order brain functions in mammals. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

PPFIA3 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 3

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. Liprin family protein has been shown to localize phosphatase LAR to cell focal adhesions and may be involved in the molecular organization of presynaptic active zones. [provided by RefSeq, Jul 2008]

PPFIA1 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. This protein binds to the intracellular membrane-distal phosphatase domain of tyrosine phosphatase LAR, and appears to localize LAR to cell focal adhesions. This interaction may regulate the disassembly of focal adhesion and thus help orchestrate cell-matrix interactions. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

PTPN18 Gene

protein tyrosine phosphatase, non-receptor type 18 (brain-derived)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, the mitotic cycle, and oncogenic transformation. This PTP contains a PEST motif, which often serves as a protein-protein interaction domain, and may be related to protein intracellular half-live. This protein can differentially dephosphorylate autophosphorylated tyrosine kinases that are overexpressed in tumor tissues, and it appears to regulate HER2, a member of the epidermal growth factor receptor family of receptor tyrosine kinases. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2008]

PTPN12 Gene

protein tyrosine phosphatase, non-receptor type 12

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains a C-terminal PEST motif, which serves as a protein-protein interaction domain, and may regulate protein intracellular half-life. This PTP was found to bind and dephosphorylate the product of the oncogene c-ABL and thus may play a role in oncogenesis. This PTP was also shown to interact with, and dephosphorylate, various products related to cytoskeletal structure and cell adhesion, such as p130 (Cas), CAKbeta/PTK2B, PSTPIP1, and paxillin. This suggests it has a regulatory role in controlling cell shape and mobility. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Oct 2008]

PTPN11 Gene

protein tyrosine phosphatase, non-receptor type 11

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2012]

PTPN14 Gene

protein tyrosine phosphatase, non-receptor type 14

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal noncatalytic domain similar to that of band 4.1 superfamily cytoskeleton-associated proteins, which suggested the membrane or cytoskeleton localization of this protein. It appears to regulate lymphatic development in mammals, and a loss of function mutation has been found in a kindred with a lymphedema-choanal atresia. [provided by RefSeq, Sep 2010]

LOC105369264 Gene

tyrosine-protein phosphatase non-receptor type 20

LOC105379539 Gene

tyrosine-protein phosphatase non-receptor type 23-like

PTPN22 Gene

protein tyrosine phosphatase, non-receptor type 22 (lymphoid)

This gene encodes of member of the non-receptor class 4 subfamily of the protein-tyrosine phosphatase family. The encoded protein is a lymphoid-specific intracellular phosphatase that associates with the molecular adapter protein CBL and may be involved in regulating CBL function in the T-cell receptor signaling pathway. Mutations in this gene may be associated with a range of autoimmune disorders including Type 1 Diabetes, rheumatoid arthritis, systemic lupus erythematosus and Graves' disease. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Mar 2009]

PTPN23 Gene

protein tyrosine phosphatase, non-receptor type 23

PTPN20 Gene

protein tyrosine phosphatase, non-receptor type 20

The product of this gene belongs to the family of classical tyrosine-specific protein tyrosine phosphatases. Many protein tyrosine phosphatases have been shown to regulate fundamental cellular processes. The encoded protein appears to be targeted to sites of actin polymerization. A pseudogene of this gene has been defined on chromosome 10. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

PTPN21 Gene

protein tyrosine phosphatase, non-receptor type 21

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal domain, similar to cytoskeletal- associated proteins including band 4.1, ezrin, merlin, and radixin. This PTP was shown to specially interact with BMX/ETK, a member of Tec tyrosine kinase family characterized by a multimodular structures including PH, SH3, and SH2 domains. The interaction of this PTP with BMX kinase was found to increase the activation of STAT3, but not STAT2 kinase. Studies of the similar gene in mice suggested the possible roles of this PTP in liver regeneration and spermatogenesis. [provided by RefSeq, Jul 2008]

LOC442113 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

PTPRZ2 Gene

protein tyrosine phosphatase, receptor-type, Z polypeptide 2

PTPRZ1 Gene

protein tyrosine phosphatase, receptor-type, Z polypeptide 1

This gene encodes a member of the receptor protein tyrosine phosphatase family. Expression of this gene is restricted to the central nervous system (CNS), and it may be involved in the regulation of specific developmental processes in the CNS. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, May 2011]

PTPN3 Gene

protein tyrosine phosphatase, non-receptor type 3

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. P97, a cell cycle regulator involved in a variety of membrane related functions, has been shown to be a substrate of this PTP. This PTP was also found to interact with, and be regulated by adaptor protein 14-3-3 beta. Several alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2009]

LOC100422495 Gene

protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) pseudogene

PTPN2P2 Gene

protein tyrosine phosphatase, non-receptor type 2 pseudogene 2

LOC442263 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

PTPN9 Gene

protein tyrosine phosphatase, non-receptor type 9

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal domain that shares a significant similarity with yeast SEC14, which is a protein that has phosphatidylinositol transfer activity and is required for protein secretion through the Golgi complex in yeast. This PTP was found to be activated by polyphosphoinositide, and is thought to be involved in signaling events regulating phagocytosis. [provided by RefSeq, Jul 2008]

PTPN2 Gene

protein tyrosine phosphatase, non-receptor type 2

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Epidermal growth factor receptor and the adaptor protein Shc were reported to be substrates of this PTP, which suggested the roles in growth factor mediated cell signaling. Multiple alternatively spliced transcript variants encoding different isoforms have been found. Two highly related but distinctly processed pseudogenes that localize to chromosomes 1 and 13, respectively, have been reported. [provided by RefSeq, May 2011]

PTPN1 Gene

protein tyrosine phosphatase, non-receptor type 1

The protein encoded by this gene is the founding member of the protein tyrosine phosphatase (PTP) family, which was isolated and identified based on its enzymatic activity and amino acid sequence. PTPs catalyze the hydrolysis of the phosphate monoesters specifically on tyrosine residues. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP has been shown to act as a negative regulator of insulin signaling by dephosphorylating the phosphotryosine residues of insulin receptor kinase. This PTP was also reported to dephosphorylate epidermal growth factor receptor kinase, as well as JAK2 and TYK2 kinases, which implicated the role of this PTP in cell growth control, and cell response to interferon stimulation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2013]

PTPN7 Gene

protein tyrosine phosphatase, non-receptor type 7

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This gene is preferentially expressed in a variety of hematopoietic cells, and is an early response gene in lymphokine stimulated cells. The non-catalytic N-terminus of this PTP can interact with MAP kinases and suppress the MAP kinase activities. This PTP was shown to be involved in the regulation of T cell antigen receptor (TCR) signaling, which was thought to function through dephosphorylating the molecules related to MAP kinase pathway. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Dec 2010]

PTPN6 Gene

protein tyrosine phosphatase, non-receptor type 6

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. N-terminal part of this PTP contains two tandem Src homolog (SH2) domains, which act as protein phospho-tyrosine binding domains, and mediate the interaction of this PTP with its substrates. This PTP is expressed primarily in hematopoietic cells, and functions as an important regulator of multiple signaling pathways in hematopoietic cells. This PTP has been shown to interact with, and dephosphorylate a wide spectrum of phospho-proteins involved in hematopoietic cell signaling. Multiple alternatively spliced variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jul 2008]

PTPN5 Gene

protein tyrosine phosphatase, non-receptor type 5 (striatum-enriched)

PTPN4 Gene

protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. This PTP has been shown to interact with glutamate receptor delta 2 and epsilon subunits, and is thought to play a role in signalling downstream of the glutamate receptors through tyrosine dephosphorylation. [provided by RefSeq, Jul 2008]

LOC344593 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

LOC100129526 Gene

protein tyrosine phosphatase, receptor type, D pseudogene

PTP4A1P2 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 2

PTP4A1P3 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 3

PTP4A1P1 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 1

PTP4A1P6 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 6

PTP4A1P7 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 7

PTP4A1P4 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 4

PTP4A1P5 Gene

protein tyrosine phosphatase type IVA, member 1 pseudogene 5

LPPR3 Gene

lipid phosphate phosphatase-related protein type 3

The proteins in the lipid phosphate phosphatase (LPP) family, including PRG2, are integral membrane proteins that modulate bioactive lipid phosphates including phosphatidate, lysophosphatidate, and sphingosine-1-phosphate in the context of cell migration, neurite retraction, and mitogenesis (Brauer et al., 2003 [PubMed 12730698]).[supplied by OMIM, Mar 2008]

LOC102725179 Gene

tyrosine-protein phosphatase non-receptor type 20-like

LOC391771 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

PTPN2P1 Gene

protein tyrosine phosphatase, non-receptor type 2 pseudogene 1

PTP4A2P1 Gene

protein tyrosine phosphatase type IVA, member 2 pseudogene 1

PTP4A2P2 Gene

protein tyrosine phosphatase type IVA, member 2 pseudogene 2

LPPR5 Gene

lipid phosphate phosphatase-related protein type 5

The protein encoded by this gene is a type 2 member of the phosphatidic acid phosphatase (PAP) family. All type 2 members of this protein family contain 6 transmembrane regions, and a consensus N-glycosylation site. PAPs convert phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as well as in receptor-activated signal transduction mediated by phospholipase D. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

LPPR4 Gene

lipid phosphate phosphatase-related protein type 4

The protein encoded by this gene belongs to the lipid phosphate phosphatase (LPP) family. LPPs catalyze the dephosphorylation of a number of bioactive lipid mediators that regulate a variety of cell functions. This protein is specifically expressed in neurons. It is located in the membranes of outgrowing axons and has been shown to be important for axonal outgrowth during development and regenerative sprouting. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

LPPR2 Gene

lipid phosphate phosphatase-related protein type 2

LPPR1 Gene

lipid phosphate phosphatase-related protein type 1

This gene encodes a member of the plasticity-related gene (PRG) family. Members of the PRG family mediate lipid phosphate phosphatase activity in neurons and are known to be involved in neuronal plasticity. The protein encoded by this gene does not perform its function through enzymatic phospholipid degradation. This gene is strongly expressed in brain. It shows dynamic expression regulation during brain development and neuronal excitation. Alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq, Jul 2008]

PTPRVP Gene

protein tyrosine phosphatase, receptor type, V, pseudogene

PTPRR Gene

protein tyrosine phosphatase, receptor type, R

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single intracellular catalytic domain, and thus represents a receptor-type PTP. Silencing of this gene has been associated with colorectal cancer. Multiple transcript variants encoding different isoforms have been found for this gene. This gene shares a symbol (PTPRQ) with another gene, protein tyrosine phosphatase, receptor type, Q (GeneID 374462), which is also located on chromosome 12. [provided by RefSeq, May 2011]

PTPRU Gene

protein tyrosine phosphatase, receptor type, U

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracellular catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP (MAM) domain, Ig-like and fibronectin type III-like repeats. This PTP was thought to play roles in cell-cell recognition and adhesion. Studies of the similar gene in mice suggested the role of this PTP in early neural development. The expression of this gene was reported to be regulated by phorbol myristate acetate (PMA) or calcium ionophore in Jurkat T lymphoma cells. Alternatively spliced transcript variants have been reported. [provided by RefSeq, Aug 2010]

PTPRT Gene

protein tyrosine phosphatase, receptor type, T

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracellular catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP (MAM) domain, Ig-like and fibronectin type III-like repeats. The protein domain structure and the expression pattern of the mouse counterpart of this PTP suggest its roles in both signal transduction and cellular adhesion in the central nervous system. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRS Gene

protein tyrosine phosphatase, receptor type, S

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular region, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this protein is composed of multiple Ig-like and fibronectin type III-like domains. Studies of the similar gene in mice suggested that this PTP may be involved in cell-cell interaction, primary axonogenesis, and axon guidance during embryogenesis. This PTP has been also implicated in the molecular control of adult nerve repair. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRQ Gene

protein tyrosine phosphatase, receptor type, Q

This locus encodes a member of the type III receptor-like protein-tyrosine phosphatase family. The encoded protein catalyzes the dephosphorylation of phosphotyrosine and phosphatidylinositol and plays roles in cellular proliferation and differentiation. Mutations at this locus have been linked to autosomal recessive deafness. [provided by RefSeq, Mar 2014]

PTPRG Gene

protein tyrosine phosphatase, receptor type, G

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this PTP contains a carbonic anhydrase-like (CAH) domain, which is also found in the extracellular region of PTPRBETA/ZETA. This gene is located in a chromosomal region that is frequently deleted in renal cell carcinoma and lung carcinoma, thus is thought to be a candidate tumor suppressor gene. [provided by RefSeq, Jul 2008]

PTPRF Gene

protein tyrosine phosphatase, receptor type, F

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains three Ig-like domains, and nine non-Ig like domains similar to that of neural-cell adhesion molecule. This PTP was shown to function in the regulation of epithelial cell-cell contacts at adherents junctions, as well as in the control of beta-catenin signaling. An increased expression level of this protein was found in the insulin-responsive tissue of obese, insulin-resistant individuals, and may contribute to the pathogenesis of insulin resistance. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRE Gene

protein tyrosine phosphatase, receptor type, E

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Two alternatively spliced transcript variants of this gene have been reported, one of which encodes a receptor-type PTP that possesses a short extracellular domain, a single transmembrane region, and two tandem intracytoplasmic catalytic domains; Another one encodes a PTP that contains a distinct hydrophilic N-terminus, and thus represents a nonreceptor-type isoform of this PTP. Studies of the similar gene in mice suggested the regulatory roles of this PTP in RAS related signal transduction pathways, cytokines induced SATA signaling, as well as the activation of voltage-gated K+ channels. [provided by RefSeq, Jul 2008]

PTPRD Gene

protein tyrosine phosphatase, receptor type, D

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular region, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this protein is composed of three Ig-like and eight fibronectin type III-like domains. Studies of the similar genes in chicken and fly suggest the role of this PTP is in promoting neurite growth, and regulating neurons axon guidance. Multiple alternatively spliced transcript variants of this gene have been reported. A related pseudogene has been identified on chromosome 5. [provided by RefSeq, Jan 2010]

PTPRC Gene

protein tyrosine phosphatase, receptor type, C

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitosis, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus is classified as a receptor type PTP. This PTP has been shown to be an essential regulator of T- and B-cell antigen receptor signaling. It functions through either direct interaction with components of the antigen receptor complexes, or by activating various Src family kinases required for the antigen receptor signaling. This PTP also suppresses JAK kinases, and thus functions as a regulator of cytokine receptor signaling. Alternatively spliced transcripts variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jun 2012]

PTPRB Gene

protein tyrosine phosphatase, receptor type, B

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and one intracytoplasmic catalytic domain, thus belongs to receptor type PTP. The extracellular region of this PTP is composed of multiple fibronectin type_III repeats, which was shown to interact with neuronal receptor and cell adhesion molecules, such as contactin and tenascin C. This protein was also found to interact with sodium channels, and thus may regulate sodium channels by altering tyrosine phosphorylation status. The functions of the interaction partners of this protein implicate the roles of this PTP in cell adhesion, neurite growth, and neuronal differentiation. Alternate transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2011]

PTPRA Gene

protein tyrosine phosphatase, receptor type, A

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. This PTP has been shown to dephosphorylate and activate Src family tyrosine kinases, and is implicated in the regulation of integrin signaling, cell adhesion and proliferation. Three alternatively spliced variants of this gene, which encode two distinct isoforms, have been reported. [provided by RefSeq, Jul 2008]

PTPRO Gene

protein tyrosine phosphatase, receptor type, O

This gene encodes a member of the R3 subtype family of receptor-type protein tyrosine phosphatases. These proteins are localized to the apical surface of polarized cells and may have tissue-specific functions through activation of Src family kinases. This gene contains two distinct promoters, and alternatively spliced transcript variants encoding multiple isoforms have been observed. The encoded proteins may have multiple isoform-specific and tissue-specific functions, including the regulation of osteoclast production and activity, inhibition of cell proliferation and facilitation of apoptosis. This gene is a candidate tumor suppressor, and decreased expression of this gene has been observed in several types of cancer. [provided by RefSeq, May 2011]

PTPRN Gene

protein tyrosine phosphatase, receptor type, N

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single catalytic domain, and thus represents a receptor-type PTP. This PTP was found to be an autoantigen that is reactive with insulin-dependent diabetes mellitus (IDDM) patient sera, and thus may be a potential target of autoimmunity in diabetes mellitus. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Dec 2010]

PTPRM Gene

protein tyrosine phosphatase, receptor type, M

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP mu (MAM) domain, an Ig-like domain and four fibronectin type III-like repeats. This PTP has been shown to mediate cell-cell aggregation through the interaction with another molecule of this PTP on an adjacent cell. This PTP can interact with scaffolding protein RACK1/GNB2L1, which may be necessary for the downstream signaling in response to cell-cell adhesion. Alternative splicing results in multiple transcripts encoding distinct isoforms. [provided by RefSeq, Jul 2008]

PTPRK Gene

protein tyrosine phosphatase, receptor type, K

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP mu (MAM) domain, an Ig-like domain and four fibronectin type III-like repeats. This PTP was shown to mediate homophilic intercellular interaction, possibly through the interaction with beta- and gamma-catenin at adherens junctions. Expression of this gene was found to be stimulated by TGF-beta 1, which may be important for the inhibition of keratinocyte proliferation. [provided by RefSeq, Jul 2008]

PTPRJ Gene

protein tyrosine phosphatase, receptor type, J

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region containing five fibronectin type III repeats, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. This protein is present in all hematopoietic lineages, and was shown to negatively regulate T cell receptor signaling possibly through interfering with the phosphorylation of Phospholipase C Gamma 1 and Linker for Activation of T Cells. This protein can also dephosphorylate the PDGF beta receptor, and may be involved in UV-induced signal transduction. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PTPRH Gene

protein tyrosine phosphatase, receptor type, H

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. The extracellular region contains eight fibronectin type III-like repeats and multiple N-glycosylation sites. The gene was shown to be expressed primarily in brain and liver, and at a lower level in heart and stomach. It was also found to be expressed in several cancer cell lines, but not in the corresponding normal tissues. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2009]

PTP4A1 Gene

protein tyrosine phosphatase type IVA, member 1

This gene encodes a member of a small class of prenylated protein tyrosine phosphatases (PTPs), which contain a PTP domain and a characteristic C-terminal prenylation motif. The encoded protein is a cell signaling molecule that plays regulatory roles in a variety of cellular processes, including cell proliferation and migration. The protein may also be involved in cancer development and metastasis. This tyrosine phosphatase is a nuclear protein, but may associate with plasma membrane by means of its prenylation motif. Pseudogenes related to this gene are located on chromosomes 1, 2, 5, 7, 11 and X. [provided by RefSeq, Jun 2013]

PTP4A3 Gene

protein tyrosine phosphatase type IVA, member 3

This gene encodes a member of the protein-tyrosine phosphatase family. Protein tyrosine phosphatases are cell signaling molecules that play regulatory roles in a variety of cellular processes. Studies of this class of protein tyrosine phosphatase in mice demonstrates that they are prenylated in vivo, suggesting their association with cell plasma membrane. The encoded protein may enhance cell proliferation, and overexpression of this gene has been implicated in tumor metastasis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

PTP4A2 Gene

protein tyrosine phosphatase type IVA, member 2

The protein encoded by this gene belongs to a small class of the protein tyrosine phosphatase (PTP) family. PTPs are cell signaling molecules that play regulatory roles in a variety of cellular processes. PTPs in this class contain a protein tyrosine phosphatase catalytic domain and a characteristic C-terminal prenylation motif. This PTP has been shown to primarily associate with plasmic and endosomal membrane through its C-terminal prenylation. This PTP was found to interact with the beta-subunit of Rab geranylgeranyltransferase II (beta GGT II), and thus may function as a regulator of GGT II activity. Overexpression of this gene in mammalian cells conferred a transformed phenotype, which suggested its role in tumorigenesis. Alternatively spliced transcript variants have been described. Related pseudogenes exist on chromosomes 11, 12 and 17. [provided by RefSeq, Aug 2010]

PTPRN2 Gene

protein tyrosine phosphatase, receptor type, N polypeptide 2

This gene encodes a protein with sequence similarity to receptor-like protein tyrosine phosphatases. However, tyrosine phosphatase activity has not been experimentally validated for this protein. Studies of the rat ortholog suggest that the encoded protein may instead function as a phosphatidylinositol phosphatase with the ability to dephosphorylate phosphatidylinositol 3-phosphate and phosphatidylinositol 4,5-diphosphate, and this function may be involved in the regulation of insulin secretion. This protein has been identified as an autoantigen in insulin-dependent diabetes mellitus. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

PTPN20CP Gene

protein tyrosine phosphatase, non-receptor type 20C, pseudogene

LOC100421822 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

INPP4A Gene

inositol polyphosphate-4-phosphatase, type I, 107kDa

This gene encodes an Mg++ independent enzyme that hydrolyzes the 4-position phosphate from the inositol ring of phosphatidylinositol 3,4-bisphosphate, inositol 1,3,4-trisphosphate, and inositol 3,4-bisphosphate. Multiple transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Aug 2008]

INPP4B Gene

inositol polyphosphate-4-phosphatase, type II, 105kDa

INPP4B encodes the inositol polyphosphate 4-phosphatase type II, one of the enzymes involved in phosphatidylinositol signaling pathways. This enzyme removes the phosphate group at position 4 of the inositol ring from inositol 3,4-bisphosphate. There is limited data to suggest that the human type II enzyme is subject to alternative splicing, as has been established for the type I enzyme. [provided by RefSeq, Jul 2008]

PPAP2C Gene

phosphatidic acid phosphatase type 2C

The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family. PAPs convert phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as well as in receptor-activated signal transduction mediated by phospholipase D. This protein is similar to phosphatidic acid phosphatase type 2A (PPAP2A) and type 2B (PPAP2B). All three proteins contain 6 transmembrane regions, and a consensus N-glycosylation site. This protein has been shown to possess membrane associated PAP activity. Three alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

PPAP2B Gene

phosphatidic acid phosphatase type 2B

The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family. PAPs convert phosphatidic acid to diacylglycerol, and function in de novo synthesis of glycerolipids as well as in receptor-activated signal transduction mediated by phospholipase D. This protein is a membrane glycoprotein localized at the cell plasma membrane. It has been shown to actively hydrolyze extracellular lysophosphatidic acid and short-chain phosphatidic acid. The expression of this gene is found to be enhanced by epidermal growth factor in Hela cells. [provided by RefSeq, Mar 2010]

PPAP2A Gene

phosphatidic acid phosphatase type 2A

The protein encoded by this gene is a member of the phosphatidic acid phosphatase (PAP) family. PAPs convert phosphatidic acid to diacylglycerol, and function in synthesis of glycerolipids and in phospholipase D-mediated signal transduction. This enzyme is an integral membrane glycoprotein that plays a role in the hydrolysis and uptake of lipids from extracellular space. Alternate splicing results in multiple transcript variants of this gene. [provided by RefSeq, May 2013]

PPAPDC1B Gene

phosphatidic acid phosphatase type 2 domain containing 1B

PPAPDC1A Gene

phosphatidic acid phosphatase type 2 domain containing 1A

PPAPDC3 Gene

phosphatidic acid phosphatase type 2 domain containing 3

PPAPDC2 Gene

phosphatidic acid phosphatase type 2 domain containing 2

RBCK1 Gene

RanBP-type and C3HC4-type zinc finger containing 1

The protein encoded by this gene is similar to mouse UIP28/UbcM4 interacting protein. Alternative splicing has been observed at this locus, resulting in distinct isoforms. [provided by RefSeq, Jul 2008]

SEMA5B Gene

sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B

This gene encodes a member of the semaphorin protein family which regulates axon growth during development of the nervous system. The encoded protein has a characteristic Sema domain near the N-terminus, through which semaphorins bind to plexin, and five thrombospondin type 1 repeats in the C-terminal region of the protein. The protein product may be cleaved and exist as a secreted molecule (PMID: 19463192). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

SEMA5A Gene

sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A

This gene belongs to the semaphorin gene family that encodes membrane proteins containing a semaphorin domain and several thrombospondin type-1 repeats. Members of this family are involved in axonal guidance during neural development. This gene has been implicated as an autism susceptibility gene.[provided by RefSeq, Jan 2010]

LOC100422730 Gene

sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A pseudogene

PPP1R1AP2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A pseudogene 2

PTPMT1 Gene

protein tyrosine phosphatase, mitochondrial 1

PPP3CA Gene

protein phosphatase 3, catalytic subunit, alpha isozyme

PPP3CB Gene

protein phosphatase 3, catalytic subunit, beta isozyme

PPP3CC Gene

protein phosphatase 3, catalytic subunit, gamma isozyme

Calcineurin is a calcium-dependent, calmodulin-stimulated protein phosphatase involved in the downstream regulation of dopaminergic signal transduction. Calcineurin is composed of a regulatory subunit and a catalytic subunit. The protein encoded by this gene represents one of the regulatory subunits that has been found for calcineurin. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

PPP1R26 Gene

protein phosphatase 1, regulatory subunit 26

PPP1R27 Gene

protein phosphatase 1, regulatory subunit 27

PPP1R21 Gene

protein phosphatase 1, regulatory subunit 21

PPP1R13B Gene

protein phosphatase 1, regulatory subunit 13B

This gene encodes a member of the ASPP (apoptosis-stimulating protein of p53) family of p53 interacting proteins. The protein contains four ankyrin repeats and an SH3 domain involved in protein-protein interactions. ASPP proteins are required for the induction of apoptosis by p53-family proteins. They promote DNA binding and transactivation of p53-family proteins on the promoters of proapoptotic genes. Expression of this gene is regulated by the E2F transcription factor. [provided by RefSeq, Jul 2008]

PPP1R13L Gene

protein phosphatase 1, regulatory subunit 13 like

IASPP is one of the most evolutionarily conserved inhibitors of p53 (TP53; MIM 191170), whereas ASPP1 (MIM 606455) and ASPP2 (MIM 602143) are activators of p53.[supplied by OMIM, Mar 2008]

LOC100631380 Gene

protein phosphatase 6, regulatory subunit 2 pseudogene 1

PPP6C Gene

protein phosphatase 6, catalytic subunit

This gene encodes the catalytic subunit of protein phosphatase, a component of a signaling pathway regulating cell cycle progression. Splice variants encoding different protein isoforms exist. The pseudogene of this gene is located on chromosome X. [provided by RefSeq, Jul 2008]

LOC100421419 Gene

protein phosphatase 4, regulatory subunit 2 pseudogene

PPP1R10P1 Gene

protein phosphatase 1, regulatory subunit 10 pseudogene 1

LOC102725016 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

PPP6CP Gene

protein phosphatase 6, catalytic subunit pseudogene

LOC390705 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

PHLPP1 Gene

PH domain and leucine rich repeat protein phosphatase 1

This gene encodes a member of the serine/threonine phosphatase family. The encoded protein promotes apoptosis by dephosphorylating and inactivating the serine/threonine kinase Akt, and functions as a tumor suppressor in multiple types of cancer. Increased expression of this gene may also play a role in obesity and type 2 diabetes by interfering with Akt-mediated insulin signaling. [provided by RefSeq, Dec 2011]

PPP1R14D Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14D

Protein phosphatase-1 (PP1; see MIM 176875) is a major cellular phosphatase that reverses serine/threonine protein phosphorylation. PPP1R14D is a PP1 inhibitor that itself is regulated by phosphorylation (Liu et al., 2004 [PubMed 12974676]).[supplied by OMIM, Feb 2010]

PPP1R14B Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B

PPP1R14C Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14C

The degree of protein phosphorylation is regulated by a balance of protein kinase and phosphatase activities. Protein phosphatase-1 (PP1; see MIM 176875) is a signal-transducing phosphatase that influences neuronal activity, protein synthesis, metabolism, muscle contraction, and cell division. PPP1R14C is an inhibitor of PP1 (Liu et al., 2002 [PubMed 11812771]).[supplied by OMIM, Feb 2010]

PPP1R14A Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14A

The protein encoded by this gene belongs to the protein phosphatase 1 (PP1) inhibitor family. This protein is an inhibitor of smooth muscle myosin phosphatase, and has higher inhibitory activity when phosphorylated. Inhibition of myosin phosphatase leads to increased myosin phosphorylation and enhanced smooth muscle contraction. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Sep 2011]

LOC100133326 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

PPP1R12BP1 Gene

protein phosphatase 1, regulatory subunit 12B pseudogene, Y-linked 1

PPP1R12BP2 Gene

protein phosphatase 1, regulatory subunit 12B Y-linked pseudogene 2

LOC100421808 Gene

protein phosphatase 2, regulatory subunit B, gamma pseudogene

LOC100421802 Gene

protein phosphatase 2, regulatory subunit B, alpha pseudogene

LOC647208 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

PPP2R2DP1 Gene

protein phosphatase 2, regulatory subunit B, delta pseudogene 1

PPP1R26P5 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 5

PPP1R26P2 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 2

PPP1R8P1 Gene

protein phosphatase 1, regulatory subunit 8 pseudogene 1

PPP2R1B Gene

protein phosphatase 2, regulatory subunit A, beta

This gene encodes a constant regulatory subunit of protein phosphatase 2. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The constant regulatory subunit A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. This gene encodes a beta isoform of the constant regulatory subunit A. Mutations in this gene have been associated with some lung and colon cancers. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

PPP1R26P4 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 4

PPP2R4 Gene

protein phosphatase 2A activator, regulatory subunit 4

Protein phosphatase 2A is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2A holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B' family. This gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

LOC100132773 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

PPEF2 Gene

protein phosphatase, EF-hand calcium binding domain 2

This gene encodes a member of the serine/threonine protein phosphatase with EF-hand motif family. The protein contains a protein phosphatase catalytic domain, and at least two EF-hand calcium-binding motifs in its C terminus. Although its substrate(s) is unknown, the encoded protein, which is expressed specifically in photoreceptors and the pineal, has been suggested to play a role in the visual system. This gene shares high sequence similarity with the Drosophila retinal degeneration C (rdgC) gene. [provided by RefSeq, Jul 2008]

PPEF1 Gene

protein phosphatase, EF-hand calcium binding domain 1

This gene encodes a member of the serine/threonine protein phosphatase with EF-hand motif family. The protein contains a protein phosphatase catalytic domain, and at least two EF-hand calcium-binding motifs in its C terminus. Although its substrate(s) is unknown, the encoded protein has been suggested to play a role in specific sensory neuron function and/or development. This gene shares high sequence similarity with the Drosophila retinal degeneration C (rdgC) gene. Several alternatively spliced transcript variants, each encoding a distinct isoform, have been described. [provided by RefSeq, Jul 2008]

PPP2CBP1 Gene

protein phosphatase 2, catalytic subunit, beta isozyme pseudogene 1

PPP1R14BP5 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 5

LOC390760 Gene

protein phosphatase inhibitor 2-like

PPP1R14BP4 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 4

PPP1R14BP2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 2

PPP1R14BP3 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 3

PPP1R14BP1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 1

PPP1R3G Gene

protein phosphatase 1, regulatory subunit 3G

PPP1R3F Gene

protein phosphatase 1, regulatory subunit 3F

This gene encodes a protein that has been identified as one of several type-1 protein phosphatase (PP1) regulatory subunits. One or two of these subunits, together with the well-conserved catalytic subunit, can form the PP1 holoenzyme, where the regulatory subunit functions to regulate substrate specificity and/or targeting to a particular cellular compartment. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

PPP1R3E Gene

protein phosphatase 1, regulatory subunit 3E

PPP1R3D Gene

protein phosphatase 1, regulatory subunit 3D

Phosphorylation of serine and threonine residues in proteins is a crucial step in the regulation of many cellular functions ranging from hormonal regulation to cell division and even short-term memory. The level of phosphorylation is controlled by the opposing actions of protein kinases and protein phosphatases. Protein phosphatase 1 (PP1) is 1 of 4 major serine/threonine-specific protein phosphatases which have been identified in eukaryotic cells. PP1 associates with various regulatory subunits that dictate its subcellular localization and modulate its substrate specificity. Several subunits that target PP1 to glycogen have been identified. This gene encodes a glycogen-targeting subunit of PP1. [provided by RefSeq, Jul 2008]

PPP1R3C Gene

protein phosphatase 1, regulatory subunit 3C

This gene encodes a regulatory subunit of protein phosphatase-1 (PP1). PP1 catalyzes reversible protein phosphorylation, which is important in a wide range of cellular activities: neuronal, muscular, RNA splicing, protein synthesis, cell death, and glycogen metabolism, to name just a few. By interacting with different regulatory subunits, PP1 is directed to different parts of the cell, to different substrates, or to respond to extracellular signals. [provided by RefSeq, Oct 2011]

PPP1R3B Gene

protein phosphatase 1, regulatory subunit 3B

This gene encodes the catalytic subunit of the serine/theonine phosphatase, protein phosphatase-1. The encoded protein is expressed in liver and skeletal muscle tissue and may be involved in regulating glycogen synthesis in these tissues. This gene may be a involved in type 2 diabetes and maturity-onset diabetes of the young. Alternate splicing results in multiple transcript variants that encode the same protein.[provided by RefSeq, Jan 2011]

PPP1R3A Gene

protein phosphatase 1, regulatory subunit 3A

The glycogen-associated form of protein phosphatase-1 (PP1) derived from skeletal muscle is a heterodimer composed of a 37-kD catalytic subunit and a 124-kD targeting and regulatory subunit. This gene encodes the regulatory subunit which binds to muscle glycogen with high affinity, thereby enhancing dephosphorylation of glycogen-bound substrates for PP1 such as glycogen synthase and glycogen phosphorylase kinase. [provided by RefSeq, Jul 2008]

PPP1R37 Gene

protein phosphatase 1, regulatory subunit 37

PPP1R36 Gene

protein phosphatase 1, regulatory subunit 36

PPP1R35 Gene

protein phosphatase 1, regulatory subunit 35

PPP1R32 Gene

protein phosphatase 1, regulatory subunit 32

PPP1R12A Gene

protein phosphatase 1, regulatory subunit 12A

Myosin phosphatase target subunit 1, which is also called the myosin-binding subunit of myosin phosphatase, is one of the subunits of myosin phosphatase. Myosin phosphatase regulates the interaction of actin and myosin downstream of the guanosine triphosphatase Rho. The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP. RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2009]

PPP1R12B Gene

protein phosphatase 1, regulatory subunit 12B

Myosin phosphatase is a protein complex comprised of three subunits: a catalytic subunit (PP1c-delta, protein phosphatase 1, catalytic subunit delta), a large regulatory subunit (MYPT, myosin phosphatase target) and small regulatory subunit (sm-M20). Two isoforms of MYPT have been isolated--MYPT1 and MYPT2, the first of which is widely expressed, and the second of which may be specific to heart, skeletal muscle, and brain. Each of the MYPT isoforms functions to bind PP1c-delta and increase phosphatase activity. This locus encodes both MYTP2 and M20. Alternatively spliced transcript variants encoding different isoforms have been identified. Related pseudogenes have been defined on the Y chromosome. [provided by RefSeq, Oct 2011]

PPP1R12C Gene

protein phosphatase 1, regulatory subunit 12C

The gene encodes a subunit of myosin phosphatase. The encoded protein regulates the catalytic activity of protein phosphatase 1 delta and assembly of the actin cytoskeleton. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Oct 2012]

PPP6R2 Gene

protein phosphatase 6, regulatory subunit 2

Protein phosphatase regulatory subunits, such as SAPS2, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS2 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP6R3 Gene

protein phosphatase 6, regulatory subunit 3

Protein phosphatase regulatory subunits, such as SAPS3, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS3 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP6R1 Gene

protein phosphatase 6, regulatory subunit 1

Protein phosphatase regulatory subunits, such as SAPS1, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS1 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP1R26P1 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 1

PSTPIP2 Gene

proline-serine-threonine phosphatase interacting protein 2

PSTPIP1 Gene

proline-serine-threonine phosphatase interacting protein 1

The protein encoded by this gene binds to the cytoplasmic tail of CD2, an effector of T cell activation and adhesion, negatively affecting CD2-triggered T cell activation. The encoded protein appears to be a scaffold protein and a regulator of the actin cytoskeleton. It has also been shown to bind ABL1, PTPN18, WAS, CD2AP, and PTPN12. Mutations in this gene are a cause of PAPA syndrome. [provided by RefSeq, Jul 2008]

LOC100131868 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

PPP5C Gene

protein phosphatase 5, catalytic subunit

This gene encodes a serine/threonine phosphatase which is a member of the protein phosphatase catalytic subunit family. Proteins in this family participate in pathways regulated by reversible phosphorylation at serine and threonine residues; many of these pathways are involved in the regulation of cell growth and differentiation. The product of this gene has been shown to participate in signaling pathways in response to hormones or cellular stress, and elevated levels of this protein may be associated with breast cancer development. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2011]

PPM1AP1 Gene

protein phosphatase, Mg2+/Mn2+ dependent 1A, pseudogene 1

PPP4R4 Gene

protein phosphatase 4, regulatory subunit 4

The protein encoded by this gene is a HEAT-like repeat-containing protein. The HEAT repeat is a tandemly repeated, 37-47 amino acid long module occurring in a number of cytoplasmic proteins. Arrays of HEAT repeats form a rod-like helical structure and appear to function as protein-protein interaction surfaces. The repeat-containing region of this protein has some similarity to the constant regulatory domain of the protein phosphatase 2A PR65/A subunit. The function of this particular gene product has not been determined. Alternative splicing has been observed for this gene and two transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP4R1 Gene

protein phosphatase 4, regulatory subunit 1

This gene encodes one of several alternate regulatory subunits of serine/threonine protein phosphatase 4 (PP4). The protein features multiple HEAT repeats. This protein forms a complex with PP4RC. This complex may have a distinct role from other PP4 complexes, including regulation of HDAC3 (Zhang et al., PMID: 15805470). There is also a transcribed pseudogene on chromosome 20. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2012]

PPP4R2 Gene

protein phosphatase 4, regulatory subunit 2

SSH2 Gene

slingshot protein phosphatase 2

This gene encodes a protein tyrosine phosphatase that plays a key role in the regulation of actin filaments. The encoded protein dephosphorylates and activates cofilin, which promotes actin filament depolymerization. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

SSH3 Gene

slingshot protein phosphatase 3

The ADF (actin-depolymerizing factor)/cofilin family (see MIM 601442) is composed of stimulus-responsive mediators of actin dynamics. ADF/cofilin proteins are inactivated by kinases such as LIM domain kinase-1 (LIMK1; MIM 601329). The SSH family appears to play a role in actin dynamics by reactivating ADF/cofilin proteins in vivo (Niwa et al., 2002 [PubMed 11832213]).[supplied by OMIM, Mar 2008]

SSH1 Gene

slingshot protein phosphatase 1

The protein encoded by this gene belongs to the slingshot homolog (SSH) family of phosphatases, which regulate actin filament dynamics. The SSH proteins dephosphorylate and activate the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Cofilin is inactivated by kinases such as LIM domain kinase-1 (LIMK1), which may also be dephosphorylated and inactivated by SSH proteins. The SSH family thus appears to play a role in actin dynamics by reactivating cofilin proteins. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Aug 2011]

PPP1R1AP1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A pseudogene 1

PPP1R7 Gene

protein phosphatase 1, regulatory subunit 7

This gene encodes a protein subunit that regulates the activity of the serine/threonine phosphatase, protein phosphatase-1. The encoded protein is required for completion of the mitotic cycle and for targeting protein phosphatase-1 to mitotic kinetochores. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

PPP1R2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2

LOC100131360 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

PPP2R3B Gene

protein phosphatase 2, regulatory subunit B'', beta

Protein phosphatase 2 (formerly named type 2A) is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the beta subfamily of regulatory subunit B''. [provided by RefSeq, Apr 2010]

PPP2R3C Gene

protein phosphatase 2, regulatory subunit B'', gamma

This gene encodes a regulatory subunit of the serine/threonine phosphatase, protein phosphatase 2. This protein is localized to both nuclear and cytoplasmic regions depending on cell cycle phase. Homozygous conditional knockout mice for this gene exhibit reduced numbers and impaired proliferation of immune system B cells. This protein may regulate the expression of the P-glycoprotein ATP-binding cassette transporter through its phosphatase activity. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

PPP2R3A Gene

protein phosphatase 2, regulatory subunit B'', alpha

This gene encodes one of the regulatory subunits of the protein phosphatase 2. Protein phosphatase 2 (formerly named type 2A) is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the alpha subfamily of regulatory subunit B''. Alternative splicing results in multiple transcript variants encoding different isoforms.[provided by RefSeq, Jun 2010]

PPP1R8 Gene

protein phosphatase 1, regulatory subunit 8

This gene, through alternative splicing, encodes three different isoforms. Two of the protein isoforms encoded by this gene are specific inhibitors of type 1 serine/threonine protein phosphatases and can bind but not cleave RNA. The third protein isoform lacks the phosphatase inhibitory function but is a single-strand endoribonuclease comparable to RNase E of E. coli. This isoform requires magnesium for its function and cleaves specific sites in A+U-rich regions of RNA. [provided by RefSeq, Jul 2008]

PAPL Gene

iron/zinc purple acid phosphatase-like protein

Purple acid phosphatases (PAPs), including PAPL, are a family of binuclear metallohydrolases that have been identified in plants, animals, and fungi (Flanagan et al., 2006 [PubMed 16793224]).[supplied by OMIM, Mar 2008]

MPRIPP1 Gene

myosin phosphatase Rho interacting protein pseudogene 1

PPTC7 Gene

PTC7 protein phosphatase homolog (S. cerevisiae)

LOC100418682 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene

LOC100418683 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene

LOC100418684 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene

LOC100288016 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

LOC100128076 Gene

protein tyrosine phosphatase pseudogene

PPP1R1A Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A

PPP1R1C Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1C

Protein phosphatase-1 (PP1) is a major serine/threonine phosphatase that regulates a variety of cellular functions. PP1 consists of a catalytic subunit (see PPP1CA; MIM 176875) and regulatory subunits that determine the subcellular localization of PP1 or regulate its function. PPP1R1C belongs to a group of PP1 inhibitory subunits that are themselves regulated by phosphorylation (Wang et al., 2008 [PubMed 18310074]).[supplied by OMIM, Feb 2010]

PPP1R1B Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1B

This gene encodes a bifunctional signal transduction molecule. Dopaminergic and glutamatergic receptor stimulation regulates its phosphorylation and function as a kinase or phosphatase inhibitor. As a target for dopamine, this gene may serve as a therapeutic target for neurologic and psychiatric disorders. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

PPP1R11 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 11

This gene encodes a specific inhibitor of protein phosphatase-1 (PP1) with a differential sensitivity toward the metal-independent and metal-dependent forms of PP1. The gene is located within the major histocompatibility complex class I region on chromosome 6. [provided by RefSeq, Jul 2008]

PPP1R10 Gene

protein phosphatase 1, regulatory subunit 10

This gene encodes a protein phosphatase 1 binding protein. The encoded protein plays a role in many cellular processes including cell cycle progression, DNA repair and apoptosis by regulating the activity of protein phosphatase 1. This gene lies within the major histocompatibility complex class I region on chromosome 6, and alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Jul 2012]

PPP1R18 Gene

protein phosphatase 1, regulatory subunit 18

Protein phosphatase-1 (PP1; see MIM 176875) interacts with regulatory subunits that target the enzyme to different cellular locations and change its activity toward specific substrates. Phostensin is a regulatory subunit that targets PP1 to F-actin (see MIM 102610) cytoskeleton (Kao et al., 2007 [PubMed 17374523]).[supplied by OMIM, Mar 2008]

LOC100128362 Gene

protein phosphatase 2, catalytic subunit, alpha isozyme pseudogene

PPP1R2P3 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 3

PPP1R9A Gene

protein phosphatase 1, regulatory subunit 9A

This gene is imprinted, and located in a cluster of imprinted genes on chromosome 7q12. This gene is transcribed in both neuronal and multiple embryonic tissues, and it is maternally expressed mainly in embryonic skeletal muscle tissues and biallelically expressed in other embryonic tissues. The protein encoded by this gene includes a PDZ domain and a sterile alpha motif (SAM). It is a regulatory subunit of protein phosphatase I, and controls actin cytoskeleton reorganization. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]

PPP1R9B Gene

protein phosphatase 1, regulatory subunit 9B

This gene encodes a scaffold protein that functions as a regulatory subunit of protein phosphatase 1a. Expression of this gene is particularly high in dendritic spines, suggesting that the encoded protein may play a role in receiving signals from the central nervous system. The encoded protein has putative tumor suppressor function and decreased expression has been observed in tumors. [provided by RefSeq, Feb 2014]

PPP3R2 Gene

protein phosphatase 3, regulatory subunit B, beta

PPP3R1 Gene

protein phosphatase 3, regulatory subunit B, alpha

PPP6R2P1 Gene

protein phosphatase 6, regulatory subunit 2 pseudogene 1

PPP1R15A Gene

protein phosphatase 1, regulatory subunit 15A

This gene is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The induction of this gene by ionizing radiation occurs in certain cell lines regardless of p53 status, and its protein response is correlated with apoptosis following ionizing radiation. [provided by RefSeq, Jul 2008]

PPP1R15B Gene

protein phosphatase 1, regulatory subunit 15B

PPP1R15B promotes dephosphorylation of the transcription initiation factor EIF2-alpha (EIF2S1; MIM 603907) through recruitment of protein phosphatase-1 (PP1) catalytic subunits (see MIM 176875) (Harding et al., 2009 [PubMed 19181853]).[supplied by OMIM, Feb 2010]

PPP1R2P1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 1

PPP1R2P2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 2

PPP1R2P5 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 5

PPP1R2P4 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 4

PPP1R2P6 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 6

PPP1R2P9 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 9

PPP1R2P8 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 8

PPP2R5D Gene

protein phosphatase 2, regulatory subunit B', delta

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a delta isoform of the regulatory subunit B56 subfamily. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP2R5E Gene

protein phosphatase 2, regulatory subunit B', epsilon isoform

The protein encoded by this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes an epsilon isoform of the regulatory subunit B56 subfamily. Multiple transcript variants encoding several different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

PPP2R5A Gene

protein phosphatase 2, regulatory subunit B', alpha

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes an alpha isoform of the regulatory subunit B56 subfamily. Alternative transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Dec 2010]

PPP2R5B Gene

protein phosphatase 2, regulatory subunit B', beta

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a beta isoform of the regulatory subunit B56 subfamily. [provided by RefSeq, Jul 2008]

PPP2R5C Gene

protein phosphatase 2, regulatory subunit B', gamma

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a gamma isoform of the regulatory subunit B56 subfamily. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

MPRIP Gene

myosin phosphatase Rho interacting protein

PPP1R42 Gene

protein phosphatase 1, regulatory subunit 42

PPP4R1L Gene

protein phosphatase 4, regulatory subunit 1-like (pseudogene)

PPP4C Gene

protein phosphatase 4, catalytic subunit

LOC101060304 Gene

protein phosphatase 1 regulatory subunit 26-like

PHLPP2 Gene

PH domain and leucine rich repeat protein phosphatase 2

PPP1R26P3 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 3

PPP2R1A Gene

protein phosphatase 2, regulatory subunit A, alpha

This gene encodes a constant regulatory subunit of protein phosphatase 2. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The constant regulatory subunit A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. This gene encodes an alpha isoform of the constant regulatory subunit A. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

PPP1R11P2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 11 pseudogene 2

PPP1R11P1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 11 pseudogene 1

LOC154937 Gene

protein phosphatase 2, regulatory subunit B', epsilon isoform pseudogene

PPME1 Gene

protein phosphatase methylesterase 1

This gene encodes a protein phosphatase methylesterase localized to the nucleus. The encoded protein acts on the protein phosphatase-2A catalytic subunit and supports the ERK pathway through dephosphorylation of regulatory proteins. It plays a role in malignant glioma progression. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2012]

LOC101060852 Gene

protein phosphatase 1 regulatory subunit 26-like

PPM1G Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1G

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase is found to be responsible for the dephosphorylation of Pre-mRNA splicing factors, which is important for the formation of functional spliceosome. Studies of a similar gene in mice suggested a role of this phosphatase in regulating cell cycle progression. [provided by RefSeq, Apr 2010]

PPM1F Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1F

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase can interact with Rho guanine nucleotide exchange factors (PIX), and thus block the effects of p21-activated kinase 1 (PAK), a protein kinase mediating biological effects downstream of Rho GTPases. Calcium/calmodulin-dependent protein kinase II gamma (CAMK2G/CAMK-II) is found to be one of the substrates of this phosphatase. The overexpression of this phosphatase or CAMK2G has been shown to mediate caspase-dependent apoptosis. An alternatively spliced transcript variant has been identified, but its full-length nature has not been determined. [provided by RefSeq, Jul 2008]

PPM1E Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1E

This gene encodes a member of the PPM family of serine/threonine-protein phosphatases. The encoded protein is localized to the nucleus and dephosphorylates and inactivates multiple substrates including serine/threonine-protein kinase PAK 1, 5'-AMP-activated protein kinase (AMPK) and the multifunctional calcium/calmodulin-dependent protein kinases. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2012]

PPM1D Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1D

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. The expression of this gene is induced in a p53-dependent manner in response to various environmental stresses. While being induced by tumor suppressor protein TP53/p53, this phosphatase negatively regulates the activity of p38 MAP kinase, MAPK/p38, through which it reduces the phosphorylation of p53, and in turn suppresses p53-mediated transcription and apoptosis. This phosphatase thus mediates a feedback regulation of p38-p53 signaling that contributes to growth inhibition and the suppression of stress induced apoptosis. This gene is located in a chromosomal region known to be amplified in breast cancer. The amplification of this gene has been detected in both breast cancer cell line and primary breast tumors, which suggests a role of this gene in cancer development. [provided by RefSeq, Jul 2008]

PPM1B Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1B

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase has been shown to dephosphorylate cyclin-dependent kinases (CDKs), and thus may be involved in cell cycle control. Overexpression of this phosphatase is reported to cause cell-growth arrest or cell death. Alternative splicing results in multiple transcript variants encoding different isoforms. Additional transcript variants have been described, but currently do not represent full-length sequences. [provided by RefSeq, Jul 2008]

PPM1A Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1A

The protein encoded by this gene is a member of the PP2C family of Ser/Thr protein phosphatases. PP2C family members are known to be negative regulators of cell stress response pathways. This phosphatase dephosphorylates, and negatively regulates the activities of, MAP kinases and MAP kinase kinases. It has been shown to inhibit the activation of p38 and JNK kinase cascades induced by environmental stresses. This phosphatase can also dephosphorylate cyclin-dependent kinases, and thus may be involved in cell cycle control. Overexpression of this phosphatase is reported to activate the expression of the tumor suppressor gene TP53/p53, which leads to G2/M cell cycle arrest and apoptosis. Three alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

PPM1N Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1N (putative)

PPM1M Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1M

PPM1L Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1L

PPM1L, or PP2CE, belongs to the PP2C group of serine/threonine phosphatases, which are distinguished from other phosphatases by their structure, absolute requirement for Mg(2+) or Mn(2+), and insensitivity to okadaic acid. PP2Cs regulate stress-activated protein kinase (SAPK; see MIM 601158) signaling cascades that respond to extracellular stimuli (Jin et al., 2004 [PubMed 15560375]).[supplied by OMIM, Apr 2008]

PPM1K Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1K

This gene encodes a member of the PPM family of Mn2+/Mg2+-dependent protein phosphatases. The encoded protein, essential for cell survival and development, is targeted to the mitochondria where it plays a key role in regulation of the mitochondrial permeability transition pore. [provided by RefSeq, Sep 2012]

PPM1J Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1J

This gene encodes the serine/threonine protein phosphatase. The mouse homolog of this gene apparently belongs to the protein phosphatase 2C family of genes. The exact function of this gene is not yet known. [provided by RefSeq, Jul 2008]

PPM1H Gene

protein phosphatase, Mg2+/Mn2+ dependent, 1H

PP2D1 Gene

protein phosphatase 2C-like domain containing 1

PPP1CB Gene

protein phosphatase 1, catalytic subunit, beta isozyme

The protein encoded by this gene is one of the three catalytic subunits of protein phosphatase 1 (PP1). PP1 is a serine/threonine specific protein phosphatase known to be involved in the regulation of a variety of cellular processes, such as cell division, glycogen metabolism, muscle contractility, protein synthesis, and HIV-1 viral transcription. Mouse studies suggest that PP1 functions as a suppressor of learning and memory. Two alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]

PPP1CC Gene

protein phosphatase 1, catalytic subunit, gamma isozyme

The protein encoded by this gene belongs to the protein phosphatase family, PP1 subfamily. PP1 is an ubiquitous serine/threonine phosphatase that regulates many cellular processes, including cell division. It is expressed in mammalian cells as three closely related isoforms, alpha, beta/delta and gamma, which have distinct localization patterns. This gene encodes the gamma isozyme. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

PPP1CA Gene

protein phosphatase 1, catalytic subunit, alpha isozyme

The protein encoded by this gene is one of the three catalytic subunits of protein phosphatase 1 (PP1). PP1 is a serine/threonine specific protein phosphatase known to be involved in the regulation of a variety of cellular processes, such as cell division, glycogen metabolism, muscle contractility, protein synthesis, and HIV-1 viral transcription. Increased PP1 activity has been observed in the end stage of heart failure. Studies in both human and mice suggest that PP1 is an important regulator of cardiac function. Mouse studies also suggest that PP1 functions as a suppressor of learning and memory. Three alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PPP1R16A Gene

protein phosphatase 1, regulatory subunit 16A

PPP1R16B Gene

protein phosphatase 1, regulatory subunit 16B

The protein encoded by this gene is membrane-associated and contains five ankyrin repeats, a protein phosphatase-1-interacting domain, and a carboxy-terminal CAAX box domain. Synthesis of the encoded protein is inhibited by transforming growth factor beta-1. The protein may bind to the membrane through its CAAX box domain and may act as a signaling molecule through interaction with protein phosphatase-1. Alternatively spliced transcript variants encoding different isoforms have been identified in this gene.[provided by RefSeq, Feb 2010]

PPP2CA Gene

protein phosphatase 2, catalytic subunit, alpha isozyme

This gene encodes the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. This gene encodes an alpha isoform of the catalytic subunit. [provided by RefSeq, Jul 2008]

PPP2CB Gene

protein phosphatase 2, catalytic subunit, beta isozyme

This gene encodes the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. This gene encodes a beta isoform of the catalytic subunit. [provided by RefSeq, Mar 2010]

LOC102724991 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

LOC100286973 Gene

protein phosphatase 1, catalytic subunit, alpha isozyme pseudogene

LOC100128052 Gene

protein phosphatase 2, regulatory subunit B', gamma pseudogene

LOC102724526 Gene

protein phosphatase 1 regulatory subunit 26-like

LOC101059962 Gene

serine/threonine-protein phosphatase 1 regulatory subunit 10-like

PPP2R2D Gene

protein phosphatase 2, regulatory subunit B, delta

PPP2R2A Gene

protein phosphatase 2, regulatory subunit B, alpha

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes an alpha isoform of the regulatory subunit B55 subfamily. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

PPP2R2C Gene

protein phosphatase 2, regulatory subunit B, gamma

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a gamma isoform of the regulatory subunit B55 subfamily. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP2R2B Gene

protein phosphatase 2, regulatory subunit B, beta

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a beta isoform of the regulatory subunit B55 subfamily. Defects in this gene cause autosomal dominant spinocerebellar ataxia 12 (SCA12), a disease caused by degeneration of the cerebellum, sometimes involving the brainstem and spinal cord, and in resulting in poor coordination of speech and body movements. Multiple alternatively spliced variants, which encode different isoforms, have been identified for this gene. The 5' UTR of some of these variants includes a CAG trinucleotide repeat sequence (7-28 copies) that can be expanded to 66-78 copies in cases of SCA12. [provided by RefSeq, Jul 2008]

PPP1R17 Gene

protein phosphatase 1, regulatory subunit 17

The protein encoded by this gene is found primarily in cerebellar Purkinje cells, where it functions as a protein phosphatase inhibitor. The encoded protein is a substrate for cGMP-dependent protein kinase. An allele of this gene was discovered that increases susceptibility to hypercholesterolemia. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

PPP1R2P10 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 10

PPP2R5CP Gene

protein phosphatase 2, regulatory subunit B', gamma pseudogene

PTPDC1 Gene

protein tyrosine phosphatase domain containing 1

The protein encoded by this gene contains a characteristic motif of protein tyrosine phosphatases (PTPs). PTPs regulate activities of phosphoproteins through dephosphorylation. They are signaling molecules involved in the regulation of a wide variety of biological processes. The specific function of this protein has not yet been determined. Alternatively spliced transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Jul 2008]

PHACTR4 Gene

phosphatase and actin regulator 4

This gene encodes a member of the phosphatase and actin regulator (PHACTR) family. Other PHACTR family members have been shown to inhibit protein phosphatase 1 (PP1) activity, and the homolog of this gene in the mouse has been shown to interact with actin and PP1. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PHACTR1 Gene

phosphatase and actin regulator 1

PHACTR3 Gene

phosphatase and actin regulator 3

This gene encodes a member of the phosphatase and actin regulator protein family. The encoded protein is associated with the nuclear scaffold in proliferating cells, and binds to actin and the catalytic subunit of protein phosphatase-1, suggesting that it functions as a regulatory subunit of protein phosphatase-1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

PHACTR2 Gene

phosphatase and actin regulator 2

ALPP Gene

alkaline phosphatase, placental

The protein encoded by this gene is an alkaline phosphatase, a metalloenzyme that catalyzes the hydrolysis of phosphoric acid monoesters. It belongs to a multigene family composed of four alkaline phosphatase isoenzymes. The enzyme functions as a homodimer and has a catalytic site containing one magnesium and two zinc ions, which are required for its enzymatic function. The protein is primarily expressed in placental and endometrial tissue; however, strong ectopic expression has been detected in ovarian adenocarcinoma, serous cystadenocarcinoma, and other ovarian cancer cells. [provided by RefSeq, Jan 2015]

ALPI Gene

alkaline phosphatase, intestinal

There are at least four distinct but related alkaline phosphatases: intestinal, placental, placental-like, and liver/bone/kidney (tissue non-specific). The intestinal alkaline phosphatase gene encodes a digestive brush-border enzyme. This enzyme is a component of the gut mucosal defense system and is thought to function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in the gut. [provided by RefSeq, Dec 2014]

ALPL Gene

alkaline phosphatase, liver/bone/kidney

There are at least four distinct but related alkaline phosphatases: intestinal, placental, placental-like, and liver/bone/kidney (tissue non-specific). The first three are located together on chromosome 2, while the tissue non-specific form is located on chromosome 1. The product of this gene is a membrane bound glycosylated enzyme that is not expressed in any particular tissue and is, therefore, referred to as the tissue-nonspecific form of the enzyme. The exact physiological function of the alkaline phosphatases is not known. A proposed function of this form of the enzyme is matrix mineralization; however, mice that lack a functional form of this enzyme show normal skeletal development. This enzyme has been linked directly to hypophosphatasia, a disorder that is characterized by hypercalcemia and includes skeletal defects. The character of this disorder can vary, however, depending on the specific mutation since this determines age of onset and severity of symptoms. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

LHPP Gene

phospholysine phosphohistidine inorganic pyrophosphate phosphatase

LOC100271656 Gene

N-acetylneuraminic acid phosphatase pseudogene

ALPPP Gene

alkaline phosphatase, pseudogene

LOC101929101 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

PDXP Gene

pyridoxal (pyridoxine, vitamin B6) phosphatase

Pyridoxal 5-prime-phosphate (PLP) is the active form of vitamin B6 that acts as a coenzyme in maintaining biochemical homeostasis. The preferred degradation route from PLP to 4-pyridoxic acid involves the dephosphorylation of PLP by PDXP (Jang et al., 2003 [PubMed 14522954]).[supplied by OMIM, Mar 2008]

RNGTT Gene

RNA guanylyltransferase and 5'-phosphatase

LOC100420466 Gene

dual specificity phosphatase 3 pseudogene

PXYLP1 Gene

2-phosphoxylose phosphatase 1

EEPD1 Gene

endonuclease/exonuclease/phosphatase family domain containing 1

PDPR Gene

pyruvate dehydrogenase phosphatase regulatory subunit

PDP1 Gene

pyruvate dehyrogenase phosphatase catalytic subunit 1

Pyruvate dehydrogenase (E1) is one of the three components (E1, E2, and E3) of the large pyruvate dehydrogenase complex. Pyruvate dehydrogenase kinases catalyze phosphorylation of serine residues of E1 to inactivate the E1 component and inhibit the complex. Pyruvate dehydrogenase phosphatases catalyze the dephosphorylation and activation of the E1 component to reverse the effects of pyruvate dehydrogenase kinases. Pyruvate dehydrogenase phosphatase is a heterodimer consisting of catalytic and regulatory subunits. Two catalytic subunits have been reported; one is predominantly expressed in skeletal muscle and another one is is much more abundant in the liver. The catalytic subunit, encoded by this gene, is the former, and belongs to the protein phosphatase 2C (PP2C) superfamily. Along with the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinases, this enzyme is located in the mitochondrial matrix. Mutation in this gene causes pyruvate dehydrogenase phosphatase deficiency. Multiple alternatively spliced transcript variants encoding different isoforms have been identified.[provided by RefSeq, Jun 2009]

PDP2 Gene

pyruvate dehyrogenase phosphatase catalytic subunit 2

TPTE2 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2

TPIP is a member of a large class of membrane-associated phosphatases with substrate specificity for the 3-position phosphate of inositol phospholipids.[supplied by OMIM, Jul 2002]

INPP1 Gene

inositol polyphosphate-1-phosphatase

This gene encodes the enzyme inositol polyphosphate-1-phosphatase, one of the enzymes involved in phosphatidylinositol signaling pathways. This enzyme removes the phosphate group at position 1 of the inositol ring from the polyphosphates inositol 1,4-bisphosphate and inositol 1,3,4-trisphophosphate. [provided by RefSeq, Jul 2008]

LOC100128407 Gene

N-acetylneuraminic acid phosphatase pseudogene

ALPPL2 Gene

alkaline phosphatase, placental-like 2

There are at least four distinct but related alkaline phosphatases: intestinal, placental, placental-like, and liver/bone/kidney (tissue non-specific). The product of this gene is a membrane bound glycosylated enzyme, localized to testis, thymus and certain germ cell tumors, that is closely related to both the placental and intestinal forms of alkaline phosphatase. [provided by RefSeq, Jul 2008]

LOC100130747 Gene

N-acetylneuraminic acid phosphatase pseudogene

LOC100420515 Gene

CTD nuclear envelope phosphatase 1 pseudogene

DUSP12P1 Gene

dual specificity phosphatase 12 pseudogene 1

LOC102724525 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

LOC100419991 Gene

phosphoserine phosphatase pseudogene

LOC101929749 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

PTENP1 Gene

phosphatase and tensin homolog pseudogene 1 (functional)

The phosphatase and tensin homolog (PTEN) gene encodes a tumor suppressor that functions by negatively regulating the AKT/PKB signaling pathway. A highly homologous processed pseudogene of PTEN is found on chromosome 9 and regulates PTEN by both sense and antisense RNAs (Gene ID: 101243555). This long-noncoding RNA (lncRNA) acts as a decoy for PTEN targeting microRNAs and also exerts a tumor suppressive activity. [provided by RefSeq, Apr 2013]

ALPQTL3 Gene

Alkaline phosphatase, plasma level of, QTL3

ALPQTL2 Gene

Alkaline phosphatase, plasma level of, QTL 2

NANP Gene

N-acetylneuraminic acid phosphatase

DUSP28 Gene

dual specificity phosphatase 28

DUSP21 Gene

dual specificity phosphatase 21

This gene encodes a member of the dual specificity phosphatase family, specifically the low molecular weight dual specificity phosphatase family. The encoded protein localizes to both the cytoplasm and the nucleus and functions to remove phosphate groups from phosphotyrosine and phosphothreonine residues.[provided by RefSeq, Mar 2009]

DUSP22 Gene

dual specificity phosphatase 22

DUSP23 Gene

dual specificity phosphatase 23

DUSP26 Gene

dual specificity phosphatase 26 (putative)

This gene encodes a member of the tyrosine phosphatase family of proteins and exhibits dual specificity by dephosphorylating tyrosine as well as serine and threonine residues. This gene has been described as both a tumor suppressor and an oncogene depending on the cellular context. This protein may regulate neuronal proliferation and has been implicated in the progression of glioblastoma through its ability to dephosphorylate the p53 tumor suppressor. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

DUSP27 Gene

dual specificity phosphatase 27 (putative)

PHOSPHO2 Gene

phosphatase, orphan 2

PHOSPHO1 Gene

phosphatase, orphan 1

LOC100131448 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2 pseudogene

TIGAR Gene

TP53 induced glycolysis regulatory phosphatase

This gene is regulated as part of the p53 tumor suppressor pathway and encodes a protein with sequence similarity to the bisphosphate domain of the glycolytic enzyme that degrades fructose-2,6-bisphosphate. The protein functions by blocking glycolysis and directing the pathway into the pentose phosphate shunt. Expression of this protein also protects cells from DNA damaging reactive oxygen species and provides some protection from DNA damage-induced apoptosis. The 12p13.32 region that includes this gene is paralogous to the 11q13.3 region. [provided by RefSeq, Jul 2008]

SSU72 Gene

SSU72 RNA polymerase II CTD phosphatase homolog (S. cerevisiae)

LOC400927 Gene

TPTE and PTEN homologous inositol lipid phosphatase pseudogene

DUSP5P2 Gene

dual specificity phosphatase 5 pseudogene 2

DUSP5P1 Gene

dual specificity phosphatase 5 pseudogene 1

LOC643605 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2 pseudogene

INPP5A Gene

inositol polyphosphate-5-phosphatase, 40kDa

The protein encoded by this gene is a membrane-associated type I inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase. InsP3 5-phosphatases hydrolyze Ins(1,4,5)P3, which mobilizes intracellular calcium and acts as a second messenger mediating cell responses to various stimulation. [provided by RefSeq, Jul 2008]

INPP5B Gene

inositol polyphosphate-5-phosphatase, 75kDa

This gene encodes a member of a family of inositol polyphosphate-5-phosphatases. These enzymes function in the regulation of calcium signaling by inactivating inositol phosphates. The encoded protein is localized to the cytosol and mitochondria, and associates with membranes through an isoprenyl modification near the C-terminus. Alternatively spliced transcript variants of this gene have been described. [provided by RefSeq, Jul 2014]

INPP5D Gene

inositol polyphosphate-5-phosphatase, 145kDa

This gene is a member of the inositol polyphosphate-5-phosphatase (INPP5) family and encodes a protein with an N-terminal SH2 domain, an inositol phosphatase domain, and two C-terminal protein interaction domains. Expression of this protein is restricted to hematopoietic cells where its movement from the cytosol to the plasma membrane is mediated by tyrosine phosphorylation. At the plasma membrane, the protein hydrolyzes the 5' phosphate from phosphatidylinositol (3,4,5)-trisphosphate and inositol-1,3,4,5-tetrakisphosphate, thereby affecting multiple signaling pathways. The protein is also partly localized to the nucleus, where it may be involved in nuclear inositol phosphate signaling processes. Overall, the protein functions as a negative regulator of myeloid cell proliferation and survival. Mutations in this gene are associated with defects and cancers of the immune system. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Feb 2014]

INPP5E Gene

inositol polyphosphate-5-phosphatase, 72 kDa

The protein encoded by this gene is an inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase. InsP3 5-phosphatases hydrolyze Ins(1,4,5)P3, which mobilizes intracellular calcium and acts as a second messenger mediating cell responses to various stimulation. Studies of the mouse counterpart suggest that this protein may hydrolyze phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,5-bisphosphate on the cytoplasmic Golgi membrane and thereby regulate Golgi-vesicular trafficking. Mutations in this gene cause Joubert syndrome; a clinically and genetically heterogenous group of disorders characterized by midbrain-hindbrain malformation and various associated ciliopathies that include retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly.[provided by RefSeq, Feb 2011]

INPP5F Gene

inositol polyphosphate-5-phosphatase F

The protein encoded by this gene is an inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase and contains a Sac domain. The activity of this protein is specific for phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Aug 2011]

INPP5J Gene

inositol polyphosphate-5-phosphatase J

INPP5K Gene

inositol polyphosphate-5-phosphatase K

This gene encodes a protein with 5-phosphatase activity toward polyphosphate inositol. The protein localizes to the cytosol in regions lacking actin stress fibers. It is thought that this protein may negatively regulate the actin cytoskeleton. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Oct 2008]

LOC102724677 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

CTDSP1 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1

This gene encodes a member of the small C-terminal domain phosphatase (SCP) family of nuclear phosphatases. These proteins play a role in transcriptional regulation through specific dephosphorylation of phosphoserine 5 within tandem heptapeptide repeats of the C-terminal domain of RNA polymerase II. The encoded protein plays a role in neuronal gene silencing in non-neuronal cells, and may also inhibit osteoblast differentiation. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Oct 2011]

CTDSP2 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2

CTDSPL Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like

EYA4 Gene

EYA transcriptional coactivator and phosphatase 4

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may act as a transcriptional activator through its protein phosphatase activity, and it may be important for eye development, and for continued function of the mature organ of Corti. Mutations in this gene are associated with postlingual, progressive, autosomal dominant hearing loss at the deafness, autosomal dominant non-syndromic sensorineural 10 locus. The encoded protein is also a putative oncogene that mediates DNA repair, apoptosis, and innate immunity following DNA damage, cellular damage, and viral attack. Defects in this gene are also associated with dilated cardiomyopathy 1J. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2014]

EYA1 Gene

EYA transcriptional coactivator and phosphatase 1

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may play a role in the developing kidney, branchial arches, eye, and ear. Mutations of this gene have been associated with branchiootorenal dysplasia syndrome, branchiootic syndrome, and sporadic cases of congenital cataracts and ocular anterior segment anomalies. A similar protein in mice can act as a transcriptional activator. Alternatively spliced transcript variants have been identified for this gene. [provided by RefSeq, Dec 2013]

EYA3 Gene

EYA transcriptional coactivator and phosphatase 3

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may act as a transcriptional activator and have a role during development. It can act as a mediator of chemoresistance and cell survival in Ewing sarcoma cells, where this gene is up-regulated via a micro-RNA that binds to the 3' UTR of the transcript. A similar protein in mice acts as a transcriptional activator. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Sep 2013]

EYA2 Gene

EYA transcriptional coactivator and phosphatase 2

This gene encodes a member of the eyes absent (EYA) family of proteins. The encoded protein may be post-translationally modified and may play a role in eye development. A similar protein in mice can act as a transcriptional activator. Alternative splicing results in multiple transcript variants, but the full-length natures of all of these variants have not yet been determined. [provided by RefSeq, Jul 2009]

G6PC3 Gene

glucose 6 phosphatase, catalytic, 3

This gene encodes the catalytic subunit of glucose-6-phosphatase (G6Pase). G6Pase is located in the endoplasmic reticulum (ER) and catalyzes the hydrolysis of glucose-6-phosphate to glucose and phosphate in the last step of the gluconeogenic and glycogenolytic pathways. Mutations in this gene result in autosomal recessive severe congenital neutropenia. Multiple transcript variants have been found for this gene, only one of which is expected to express a protein.[provided by RefSeq, Sep 2009]

G6PC2 Gene

glucose-6-phosphatase, catalytic, 2

This gene encodes an enzyme belonging to the glucose-6-phosphatase catalytic subunit family. These enzymes are part of a multicomponent integral membrane system that catalyzes the hydrolysis of glucose-6-phosphate, the terminal step in gluconeogenic and glycogenolytic pathways, allowing the release of glucose into the bloodstream. The family member encoded by this gene is found in pancreatic islets and does not exhibit phosphohydrolase activity, but it is a major target of cell-mediated autoimmunity in diabetes. Several alternatively spliced transcript variants of this gene have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

CTDNEP1 Gene

CTD nuclear envelope phosphatase 1

PSPHP1 Gene

phosphoserine phosphatase pseudogene 1

This gene is significantly upregulated in Fanconi's anemia fibroblasts but downregulated or absent in fibroblasts from normal donors. It is also highly expressed in FA B-cells of complementation group A. [provided by RefSeq, Jul 2008]

ALPQTL4 Gene

Alkaline phosphatase, plasma level of, QTL4

LOC102724822 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

ILKAP Gene

integrin-linked kinase-associated serine/threonine phosphatase

The protein encoded by this gene is a protein serine/threonine phosphatase of the PP2C family. This protein can interact with integrin-linked kinase (ILK/ILK1), a regulator of integrin mediated signaling, and regulate the kinase activity of ILK. Through the interaction with ILK, this protein may selectively affect the signaling process of ILK-mediated glycogen synthase kinase 3 beta (GSK3beta), and thus participate in Wnt signaling pathway. [provided by RefSeq, Jul 2008]

PHPT1 Gene

phosphohistidine phosphatase 1

This gene encodes an enzyme that catalyzes the reversible dephosphorylation of histidine residues in proteins. It may be involved in the dephosphorylation of G-beta and ATP citrate lyase and in negatively regulating CD4 T lymphocytes by dephosphorylation and inhibition of KCa3.1 channels. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

RNGTTP1 Gene

RNA guanylyltransferase and 5'-phosphatase pseudogene 1

TPTEP1 Gene

transmembrane phosphatase with tensin homology pseudogene 1

LOC647299 Gene

enolase-phosphatase 1 pseudogene

G6PC Gene

glucose-6-phosphatase, catalytic subunit

Glucose-6-phosphatase (G6Pase) is a multi-subunit integral membrane protein of the endoplasmic reticulum that is composed of a catalytic subunit and transporters for G6P, inorganic phosphate, and glucose. This gene (G6PC) is one of the three glucose-6-phosphatase catalytic-subunit-encoding genes in human: G6PC, G6PC2 and G6PC3. Glucose-6-phosphatase catalyzes the hydrolysis of D-glucose 6-phosphate to D-glucose and orthophosphate and is a key enzyme in glucose homeostasis, functioning in gluconeogenesis and glycogenolysis. Mutations in this gene cause glycogen storage disease type I (GSD1). This disease, also known as von Gierke disease, is a metabolic disorder characterized by severe hypoglycemia associated with the accumulation of glycogen and fat in the liver and kidneys.[provided by RefSeq, Feb 2011]

G6PR Gene

glucose-6-phosphatase regulator

MINPP1 Gene

multiple inositol-polyphosphate phosphatase 1

This gene encodes multiple inositol polyphosphate phosphatase; an enzyme that removes 3-phosphate from inositol phosphate substrates. It is the only enzyme known to hydrolzye inositol pentakisphosphate and inositol hexakisphosphate. This enzyme also converts 2,3 bisphosphoglycerate (2,3-BPG) to 2-phosphoglycerate; an activity formerly thought to be exclusive to 2,3-BPG synthase/2-phosphatase (BPGM) in the Rapoport-Luebering shunt of the glycolytic pathway.[provided by RefSeq, Sep 2009]

PNKP Gene

polynucleotide kinase 3'-phosphatase

This locus represents a gene involved in DNA repair. In response to ionizing radiation or oxidative damage, the protein encoded by this locus catalyzes 5' phosphorylation and 3' dephosphorylation of nucleic acids. Mutations at this locus have been associated with microcephaly, seizures, and developmental delay.[provided by RefSeq, Sep 2010]

CTDP1 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1

This gene encodes a protein which interacts with the carboxy-terminus of the RAP74 subunit of transcription initiation factor TFIIF, and functions as a phosphatase that processively dephosphorylates the C-terminus of POLR2A (a subunit of RNA polymerase II), making it available for initiation of gene expression. Mutations in this gene are associated with congenital cataracts, facial dysmorphism and neuropathy syndrome (CCFDN). Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Feb 2011]

LOC283922 Gene

pyruvate dehydrogenase phosphatase regulatory subunit pseudogene

PALD1 Gene

phosphatase domain containing, paladin 1

LOC100129155 Gene

phosphatase, orphan 1 pseudogene

DUSP19 Gene

dual specificity phosphatase 19

Dual-specificity phosphatases (DUSPs) constitute a large heterogeneous subgroup of the type I cysteine-based protein-tyrosine phosphatase superfamily. DUSPs are characterized by their ability to dephosphorylate both tyrosine and serine/threonine residues. They have been implicated as major modulators of critical signaling pathways. DUSP19 contains a variation of the consensus DUSP C-terminal catalytic domain, with the last serine residue replaced by alanine, and lacks the N-terminal CH2 domain found in the MKP (mitogen-activated protein kinase phosphatase) class of DUSPs (see MIM 600714) (summary by Patterson et al., 2009 [PubMed 19228121]).[supplied by OMIM, Dec 2009]

DUSP15 Gene

dual specificity phosphatase 15

The protein encoded by this gene belongs to the non-receptor class of the protein-tyrosine phosphatase family. The encoded protein has both protein-tyrosine phophatase activity and serine/threonine-specific phosphatase activity, and therefore is known as a dual specificity phosphatase. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

DUSP14 Gene

dual specificity phosphatase 14

Dual-specificity phosphatases (DUSPs) constitute a large heterogeneous subgroup of the type I cysteine-based protein-tyrosine phosphatase superfamily. DUSPs are characterized by their ability to dephosphorylate both tyrosine and serine/threonine residues. They have been implicated as major modulators of critical signaling pathways. DUSP14 contains the consensus DUSP C-terminal catalytic domain but lacks the N-terminal CH2 domain found in the MKP (mitogen-activated protein kinase phosphatase) class of DUSPs (see MIM 600714) (summary by Patterson et al., 2009 [PubMed 19228121]).[supplied by OMIM, Dec 2009]

DUSP16 Gene

dual specificity phosphatase 16

This gene encodes a mitogen-activated protein kinase phosphatase that is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. The encoded protein specifically regulates the c-Jun amino-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways.[provided by RefSeq, May 2010]

DUSP11 Gene

dual specificity phosphatase 11 (RNA/RNP complex 1-interacting)

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which is associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product is localized to the nucleus and binds directly to RNA and splicing factors, and thus it is suggested to participate in nuclear mRNA metabolism. [provided by RefSeq, Sep 2008]

DUSP10 Gene

dual specificity phosphatase 10

Dual specificity protein phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the MAP kinase superfamily, which is associated with cellular proliferation and differentiation. Different members of this family of dual specificity phosphatases show distinct substrate specificities for MAP kinases, different tissue distribution and subcellular localization, and different modes of expression induction by extracellular stimuli. This gene product binds to and inactivates p38 and SAPK/JNK. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

DUSP12 Gene

dual specificity phosphatase 12

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which is associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product is the human ortholog of the Saccharomyces cerevisiae YVH1 protein tyrosine phosphatase. It is localized predominantly in the nucleus, and is novel in that it contains, and is regulated by a zinc finger domain. [provided by RefSeq, Jul 2008]

SGPP2 Gene

sphingosine-1-phosphate phosphatase 2

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biologic processes. SGPP2 catalyzes the degradation of S1P (Ogawa et al., 2003 [PubMed 12411432]).[supplied by OMIM, Jun 2009]

SGPP1 Gene

sphingosine-1-phosphate phosphatase 1

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biologic processes. SGPP1 catalyzes the degradation of S1P via salvage and recycling of sphingosine into long-chain ceramides (Mandala et al., 2000 [PubMed 10859351]; Le Stunff et al., 2007 [PubMed 17895250]).[supplied by OMIM, Jun 2009]

ENOPH1 Gene

enolase-phosphatase 1

INPPL1 Gene

inositol polyphosphate phosphatase-like 1

The protein encoded by this gene is an SH2-containing 5'-inositol phosphatase that is involved in the regulation of insulin function. The encoded protein also plays a role in the regulation of epidermal growth factor receptor turnover and actin remodelling. Additionally, this gene supports metastatic growth in breast cancer and is a valuable biomarker for breast cancer. [provided by RefSeq, Jan 2009]

LOC100420528 Gene

CTD nuclear envelope phosphatase 1 pseudogene

DUPD1 Gene

dual specificity phosphatase and pro isomerase domain containing 1

MDP1 Gene

magnesium-dependent phosphatase 1

PTEN Gene

phosphatase and tensin homolog

This gene was identified as a tumor suppressor that is mutated in a large number of cancers at high frequency. The protein encoded by this gene is a phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase. It contains a tensin like domain as well as a catalytic domain similar to that of the dual specificity protein tyrosine phosphatases. Unlike most of the protein tyrosine phosphatases, this protein preferentially dephosphorylates phosphoinositide substrates. It negatively regulates intracellular levels of phosphatidylinositol-3,4,5-trisphosphate in cells and functions as a tumor suppressor by negatively regulating AKT/PKB signaling pathway. The use of a non-canonical (CUG) upstream initiation site produces a longer isoform that initiates translation with a leucine, and is thought to be preferentially associated with the mitochondrial inner membrane. This longer isoform may help regulate energy metabolism in the mitochondria. A pseudogene of this gene is found on chromosome 9. Alternative splicing and the use of multiple translation start codons results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Feb 2015]

PHACTR2P1 Gene

phosphatase and actin regulator 2 pseudogene 1

FIG4 Gene

FIG4 phosphoinositide 5-phosphatase

The protein encoded by this gene belongs to the SAC domain-containing protein gene family. The SAC domain, approximately 400 amino acids in length and consisting of seven conserved motifs, has been shown to possess phosphoinositide phosphatase activity. The yeast homolog, Sac1p, is involved in the regulation of various phosphoinositides, and affects diverse cellular functions such as actin cytoskeleton organization, Golgi function, and maintenance of vacuole morphology. Membrane-bound phosphoinositides function as signaling molecules and play a key role in vesicle trafficking in eukaryotic cells. Mutations in this gene have been associated with Charcot-Marie-Tooth disease, type 4J. [provided by RefSeq, Jul 2008]

TPTE2P5 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 5

ACP5 Gene

acid phosphatase 5, tartrate resistant

This gene encodes an iron containing glycoprotein which catalyzes the conversion of orthophosphoric monoester to alcohol and orthophosphate. It is the most basic of the acid phosphatases and is the only form not inhibited by L(+)-tartrate. [provided by RefSeq, Aug 2008]

ACP6 Gene

acid phosphatase 6, lysophosphatidic

ACP1 Gene

acid phosphatase 1, soluble

The product of this gene belongs to the phosphotyrosine protein phosphatase family of proteins. It functions as an acid phosphatase and a protein tyrosine phosphatase by hydrolyzing protein tyrosine phosphate to protein tyrosine and orthophosphate. This enzyme also hydrolyzes orthophosphoric monoesters to alcohol and orthophosphate. This gene is genetically polymorphic, and three common alleles segregating at the corresponding locus give rise to six phenotypes. Each allele appears to encode at least two electrophoretically different isozymes, Bf and Bs, which are produced in allele-specific ratios. Multiple alternatively spliced transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Aug 2008]

ACP2 Gene

acid phosphatase 2, lysosomal

This gene encodes the beta subunit of lysosomal acid phosphatase (LAP). LAP is chemically and genetically distinct from red cell acid phosphatase. The encoded protein belongs to a family of distinct isoenzymes which hydrolyze orthophosphoric monoesters to alcohol and phosphate. LAP-deficiencies in mice cause multiple defects including bone structure alterations, lysosomal storage defects in the kidneys and central nervous system, and an increased tendency towards seizures. An enzymatically-inactive allele of LAP in mice exhibited a more severe phenotype than the null allele, and defects included cerebellum abnormalities, growth retardation, hair-follicle abnormalities, and an ataxia-like phenotype. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Oct 2014]

ACPT Gene

acid phosphatase, testicular

Acid phosphatases are enzymes capable of hydrolyzing orthophosphoric acid esters in an acid medium. This gene is up-regulated by androgens and is down-regulated by estrogens in the prostate cancer cell line. This gene exhibits a lower level of expression in testicular cancer tissues than in normal tissues. The protein encoded by this gene has structural similarity to prostatic and lysosomal acid phosphatases. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

ACPP Gene

acid phosphatase, prostate

This gene encodes an enzyme that catalyzes the conversion of orthophosphoric monoester to alcohol and orthophosphate. It is synthesized under androgen regulation and is secreted by the epithelial cells of the prostate gland. An alternatively spliced transcript variant encoding a longer isoform has been found for this gene. This isoform contains a transmembrane domain and is localized in the plasma membrane-endosomal-lysosomal pathway. [provided by RefSeq, Sep 2008]

UBLCP1 Gene

ubiquitin-like domain containing CTD phosphatase 1

TPTE Gene

transmembrane phosphatase with tensin homology

This gene encodes a PTEN-related tyrosine phosphatase which may play a role in the signal transduction pathways of the endocrine or spermatogenic function of the testis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2014]

PGP Gene

phosphoglycolate phosphatase

LOC100422645 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2 pseudogene

LOC100128056 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2 pseudogene

DUSP18 Gene

dual specificity phosphatase 18

Dual-specificity phosphatases (DUSPs) constitute a large heterogeneous subgroup of the type I cysteine-based protein-tyrosine phosphatase superfamily. DUSPs are characterized by their ability to dephosphorylate both tyrosine and serine/threonine residues. They have been implicated as major modulators of critical signaling pathways. DUSP18 contains the consensus DUSP C-terminal catalytic domain but lacks the N-terminal CH2 domain found in the MKP (mitogen-activated protein kinase phosphatase) class of DUSPs (see MIM 600714) (summary by Patterson et al., 2009 [PubMed 19228121]).[supplied by OMIM, Dec 2009]

DUSP13 Gene

dual specificity phosphatase 13

Members of the protein-tyrosine phosphatase superfamily cooperate with protein kinases to regulate cell proliferation and differentiation. This superfamily is separated into two families based on the substrate that is dephosphorylated. One family, the dual specificity phosphatases (DSPs) acts on both phosphotyrosine and phosphoserine/threonine residues. This gene encodes different but related DSP proteins through the use of non-overlapping open reading frames, alternate splicing, and presumed different transcription promoters. Expression of the distinct proteins from this gene has been found to be tissue specific and the proteins may be involved in postnatal development of specific tissues. A protein encoded by the upstream ORF was found in skeletal muscle, whereas the encoded protein from the downstream ORF was found only in testis. In mouse, a similar pattern of expression was found. Multiple alternatively spliced transcript variants were described, but the full-length sequence of only some were determined. [provided by RefSeq, Jul 2008]

DUSP8P4 Gene

dual specificity phosphatase 8 pseudogene 4

DUSP8P3 Gene

dual specificity phosphatase 8 pseudogene 3

ALPQTL1 Gene

Alkaline phosphatase, plasma level of, QTL1

DUSP9 Gene

dual specificity phosphatase 9

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which is associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product shows selectivity for members of the ERK family of MAP kinases, is expressed only in placenta, kidney, and fetal liver, and is localized to the cytoplasm and nucleus. [provided by RefSeq, Jul 2008]

DUSP8 Gene

dual specificity phosphatase 8

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which is associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates SAPK/JNK and p38, is expressed predominantly in the adult brain, heart, and skeletal muscle, is localized in the cytoplasm, and is induced by nerve growth factor and insulin. An intronless pseudogene for DUSP8 is present on chromosome 10q11.2. [provided by RefSeq, Jul 2008]

DUSP5 Gene

dual specificity phosphatase 5

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates ERK1, is expressed in a variety of tissues with the highest levels in pancreas and brain, and is localized in the nucleus. [provided by RefSeq, Jul 2008]

DUSP4 Gene

dual specificity phosphatase 4

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates ERK1, ERK2 and JNK, is expressed in a variety of tissues, and is localized in the nucleus. Two alternatively spliced transcript variants, encoding distinct isoforms, have been observed for this gene. In addition, multiple polyadenylation sites have been reported. [provided by RefSeq, Jul 2008]

DUSP7 Gene

dual specificity phosphatase 7

Dual-specificity phosphatases (DUSPs) constitute a large heterogeneous subgroup of the type I cysteine-based protein-tyrosine phosphatase superfamily. DUSPs are characterized by their ability to dephosphorylate both tyrosine and serine/threonine residues. DUSP7 belongs to a class of DUSPs, designated MKPs, that dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (see MIM 601795), JNK (see MIM 601158), and p38 (see MIM 600289) with specificity distinct from that of individual MKP proteins. MKPs contain a highly conserved C-terminal catalytic domain and an N-terminal Cdc25 (see MIM 116947)-like (CH2) domain. MAPK activation cascades mediate various physiologic processes, including cellular proliferation, apoptosis, differentiation, and stress responses (summary by Patterson et al., 2009 [PubMed 19228121]).[supplied by OMIM, Dec 2009]

DUSP6 Gene

dual specificity phosphatase 6

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates ERK2, is expressed in a variety of tissues with the highest levels in heart and pancreas, and unlike most other members of this family, is localized in the cytoplasm. Mutations in this gene have been associated with congenital hypogonadotropic hypogonadism. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jan 2014]

DUSP1 Gene

dual specificity phosphatase 1

The expression of DUSP1 gene is induced in human skin fibroblasts by oxidative/heat stress and growth factors. It specifies a protein with structural features similar to members of the non-receptor-type protein-tyrosine phosphatase family, and which has significant amino-acid sequence similarity to a Tyr/Ser-protein phosphatase encoded by the late gene H1 of vaccinia virus. The bacterially expressed and purified DUSP1 protein has intrinsic phosphatase activity, and specifically inactivates mitogen-activated protein (MAP) kinase in vitro by the concomitant dephosphorylation of both its phosphothreonine and phosphotyrosine residues. Furthermore, it suppresses the activation of MAP kinase by oncogenic ras in extracts of Xenopus oocytes. Thus, DUSP1 may play an important role in the human cellular response to environmental stress as well as in the negative regulation of cellular proliferation. [provided by RefSeq, Jul 2008]

DUSP3 Gene

dual specificity phosphatase 3

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene maps in a region that contains the BRCA1 locus which confers susceptibility to breast and ovarian cancer. Although DUSP3 is expressed in both breast and ovarian tissues, mutation screening in breast cancer pedigrees and in sporadic tumors was negative, leading to the conclusion that this gene is not BRCA1. [provided by RefSeq, Jul 2008]

DUSP2 Gene

dual specificity phosphatase 2

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates ERK1 and ERK2, is predominantly expressed in hematopoietic tissues, and is localized in the nucleus. [provided by RefSeq, Jul 2008]

TPTE2P2 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 2

TPTE2P3 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 3

TPTE2P1 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 1

TPTE2P6 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 6

TPTE2P4 Gene

transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 4

CTDSPL2 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2

CNEP1R1 Gene

CTD nuclear envelope phosphatase 1 regulatory subunit 1

This gene encodes a transmembrane protein that belongs to the Tmemb_18A family. A similar protein in yeast is a component of an endoplasmic reticulum-associated protein phosphatase complex and is thought to play a role in the synthesis of triacylglycerol. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

PSPH Gene

phosphoserine phosphatase

The protein encoded by this gene belongs to a subfamily of the phosphotransferases. This encoded enzyme is responsible for the third and last step in L-serine formation. It catalyzes magnesium-dependent hydrolysis of L-phosphoserine and is also involved in an exchange reaction between L-serine and L-phosphoserine. Deficiency of this protein is thought to be linked to Williams syndrome. [provided by RefSeq, Jul 2008]

GNAL Gene

guanine nucleotide binding protein (G protein), alpha activating activity polypeptide, olfactory type

This gene encodes a stimulatory G protein alpha subunit which mediates odorant signaling in the olfactory epithelium. This protein couples dopamine type 1 receptors and adenosine A2A receptors and is widely expressed in the central nervous system. Mutations in this gene have been associated with dystonia 25 and this gene is located in a susceptibility region for bipolar disorder and schizophrenia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

PRKAR2A Gene

protein kinase, cAMP-dependent, regulatory, type II, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins and determine the subcellular localization of cAMP-dependent protein kinase. This subunit has been shown to regulate protein transport from endosomes to the Golgi apparatus and further to the endoplasmic reticulum (ER). [provided by RefSeq, Jul 2008]

PRKAR2B Gene

protein kinase, cAMP-dependent, regulatory, type II, beta

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding protein 1 (CREB1) in activated T cells. Knockout studies in mice suggest that this subunit may play an important role in regulating energy balance and adiposity. The studies also suggest that this subunit may mediate the gene induction and cataleptic behavior induced by haloperidol. [provided by RefSeq, Jul 2008]

CNBP Gene

CCHC-type zinc finger, nucleic acid binding protein

This gene encodes a nucleic-acid binding protein with seven zinc-finger domains. The protein has a preference for binding single stranded DNA and RNA. The protein functions in cap-independent translation of ornithine decarboxylase mRNA, and may also function in sterol-mediated transcriptional regulation. A CCTG expansion in the first intron of this gene results in myotonic dystrophy type 2. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

CCNDBP1 Gene

cyclin D-type binding-protein 1

This gene was identified by the interaction of its gene product with Grap2, a leukocyte-specific adaptor protein important for immune cell signaling. The protein encoded by this gene was shown to interact with cyclin D. Transfection of this gene in cells was reported to reduce the phosphorylation of Rb gene product by cyclin D-dependent protein kinase, and inhibit E2F1-mediated transcription activity. This protein was also found to interact with helix-loop-helix protein E12 and is thought to be a negative regulator of liver-specific gene expression. Several alternatively spliced variants have been found for this gene. [provided by RefSeq, Apr 2009]

SWSAP1 Gene

SWIM-type zinc finger 7 associated protein 1

PRKAR1AP Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha pseudogene

SPOP Gene

speckle-type POZ protein

This gene encodes a protein that may modulate the transcriptional repression activities of death-associated protein 6 (DAXX), which interacts with histone deacetylase, core histones, and other histone-associated proteins. In mouse, the encoded protein binds to the putative leucine zipper domain of macroH2A1.2, a variant H2A histone that is enriched on inactivated X chromosomes. The BTB/POZ domain of this protein has been shown in other proteins to mediate transcriptional repression and to interact with components of histone deacetylase co-repressor complexes. Alternative splicing of this gene results in multiple transcript variants encoding the same protein. [provided by RefSeq, Jul 2008]

PGGT1BP1 Gene

protein geranylgeranyltransferase type I, beta subunit pseudogene 1

VMAC Gene

vimentin-type intermediate filament associated coiled-coil protein

PRKG1 Gene

protein kinase, cGMP-dependent, type I

Mammals have three different isoforms of cyclic GMP-dependent protein kinase (Ialpha, Ibeta, and II). These PRKG isoforms act as key mediators of the nitric oxide/cGMP signaling pathway and are important components of many signal transduction processes in diverse cell types. This PRKG1 gene on human chromosome 10 encodes the soluble Ialpha and Ibeta isoforms of PRKG by alternative transcript splicing. A separate gene on human chromosome 4, PRKG2, encodes the membrane-bound PRKG isoform II. The PRKG1 proteins play a central role in regulating cardiovascular and neuronal functions in addition to relaxing smooth muscle tone, preventing platelet aggregation, and modulating cell growth. This gene is most strongly expressed in all types of smooth muscle, platelets, cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. Isoforms Ialpha and Ibeta have identical cGMP-binding and catalytic domains but differ in their leucine/isoleucine zipper and autoinhibitory sequences and therefore differ in their dimerization substrates and kinase enzyme activity. [provided by RefSeq, Sep 2011]

PRKG2 Gene

protein kinase, cGMP-dependent, type II

This gene encodes a protein that belongs to the serine/threonine protein kinase family of proteins. The encoded protein plays a role in the regulation of fluid balance in the intestine. A similar protein in mouse is thought to regulate differentiation and proliferation of cells in the colon. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

LOC105369259 Gene

putative L-type amino acid transporter 1-like protein MLAS

PRKAR1A Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. This gene encodes one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids. Mutations in this gene cause Carney complex (CNC). This gene can fuse to the RET protooncogene by gene rearrangement and form the thyroid tumor-specific chimeric oncogene known as PTC2. A nonconventional nuclear localization sequence (NLS) has been found for this protein which suggests a role in DNA replication via the protein serving as a nuclear transport protein for the second subunit of the Replication Factor C (RFC40). Several alternatively spliced transcript variants encoding two different isoforms have been observed. [provided by RefSeq, Jan 2013]

PRKAR1B Gene

protein kinase, cAMP-dependent, regulatory, type I, beta

Cyclic AMP-dependent protein kinase A (PKA) is an essential enzyme in the signaling pathway of the second messenger cAMP. Through phosphorylation of target proteins, PKA controls many biochemical events in the cell including regulation of metabolism, ion transport, and gene transcription. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits and dissociates from the regulatory subunits upon binding of cAMP.[supplied by OMIM, Jun 2009]

RNF6P1 Gene

ring finger protein (C3H2C3 type) 6 pseudogene 1

LOC100422398 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

LOC642381 Gene

speckle-type POZ protein-like pseudogene

PGGT1B Gene

protein geranylgeranyltransferase type I, beta subunit

Protein geranylgeranyltransferase type I (GGTase-I) transfers a geranylgeranyl group to the cysteine residue of candidate proteins containing a C-terminal CAAX motif in which 'A' is an aliphatic amino acid and 'X' is leucine (summarized by Zhang et al., 1994 [PubMed 8106351]). The enzyme is composed of a 48-kD alpha subunit (FNTA; MIM 134635) and a 43-kD beta subunit, encoded by the PGGT1B gene. The FNTA gene encodes the alpha subunit for both GGTase-I and the related enzyme farnesyltransferase.[supplied by OMIM, Mar 2010]

TAX1BP1 Gene

Tax1 (human T-cell leukemia virus type I) binding protein 1

This gene encodes a HTLV-1 tax1 binding protein. The encoded protein interacts with TNFAIP3, and inhibits TNF-induced apoptosis by mediating the TNFAIP3 anti-apoptotic activity. Degradation of this protein by caspase-3-like family proteins is associated with apoptosis induced by TNF. This protein may also have a role in the inhibition of inflammatory signaling pathways. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, May 2011]

TAX1BP3 Gene

Tax1 (human T-cell leukemia virus type I) binding protein 3

RNF6 Gene

ring finger protein (C3H2C3 type) 6

The protein encoded by this gene contains a RING-H2 finger motif. Deletions and mutations in this gene were detected in esophageal squamous cell carcinoma (ESCC), suggesting that this protein may be a potential tumor suppressor. Studies of the mouse counterpart suggested a role of this protein in the transcription regulation that controls germinal differentiation. Multiple alternatively spliced transcript variants encoding the same protein are observed. [provided by RefSeq, Jul 2008]

PGGT1BP2 Gene

protein geranylgeranyltransferase type I, beta subunit pseudogene 2

LOC100422399 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

KHSRP Gene

KH-type splicing regulatory protein

The KHSRP gene encodes a multifunctional RNA-binding protein implicated in a variety of cellular processes, including transcription, alternative pre-mRNA splicing, and mRNA localization (Min et al., 1997 [PubMed 9136930]; Gherzi et al., 2004 [PubMed 15175153]).[supplied by OMIM, Apr 2010]

MYBPC2 Gene

myosin binding protein C, fast type

This gene encodes a member of the myosin-binding protein C family. This family includes the fast-, slow- and cardiac-type isoforms, each of which is a myosin-associated protein found in the cross-bridge-bearing zone (C region) of A bands in striated muscle. The protein encoded by this locus is referred to as the fast-type isoform. Mutations in the related but distinct genes encoding the slow-type and cardiac-type isoforms have been associated with distal arthrogryposis, type 1 and hypertrophic cardiomyopathy, respectively. [provided by RefSeq, Jul 2012]

MYBPC1 Gene

myosin binding protein C, slow type

This gene encodes a member of the myosin-binding protein C family. Myosin-binding protein C family members are myosin-associated proteins found in the cross-bridge-bearing zone (C region) of A bands in striated muscle. The encoded protein is the slow skeletal muscle isoform of myosin-binding protein C and plays an important role in muscle contraction by recruiting muscle-type creatine kinase to myosin filaments. Mutations in this gene are associated with distal arthrogryposis type I. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Dec 2011]

LOC100174950 Gene

speckle-type POZ protein-like pseudogene

LOC100127903 Gene

speckle-type POZ protein-like pseudogene

BMPR1APS1 Gene

bone morphogenetic protein receptor, type IA pseudogene 1

BMPR1APS2 Gene

bone morphogenetic protein receptor, type IA pseudogene 2

SPOPL Gene

speckle-type POZ protein-like

LOC101060604 Gene

putative L-type amino acid transporter 1-like protein IMAA

COL4A3BP Gene

collagen, type IV, alpha 3 (Goodpasture antigen) binding protein

This gene encodes a kinase that specifically phosphorylates the N-terminal region of the non-collagenous domain of the alpha 3 chain of type IV collagen, known as the Goodpasture antigen. Goodpasture disease is the result of an autoimmune response directed at this antigen. One isoform of this protein is also involved in ceramide intracellular transport. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC732229 Gene

AN1-type zinc finger protein 5 pseudogene

HIVEP1 Gene

human immunodeficiency virus type I enhancer binding protein 1

This gene encodes a transcription factor belonging to the ZAS family, members of which are large proteins that contain a ZAS domain - a modular protein structure consisting of a pair of C2H2 zinc fingers with an acidic-rich region and a serine/threonine-rich sequence. These proteins bind specifically to the DNA sequence motif, GGGACTTTCC, found in the enhancer elements of several viral promoters, including human immunodeficiency virus (HIV), and to related sequences found in the enhancer elements of a number of cellular promoters. This protein binds to this sequence motif, suggesting a role in the transcriptional regulation of both viral and cellular genes. [provided by RefSeq, Oct 2011]

HIVEP2 Gene

human immunodeficiency virus type I enhancer binding protein 2

This gene encodes a member of a family of closely related, large, zinc finger-containing transcription factors. The encoded protein regulates transcription by binding to regulatory regions of various cellular and viral genes that maybe involved in growth, development and metastasis. The protein contains the ZAS domain comprised of two widely separated regions of zinc finger motifs, a stretch of highly acidic amino acids and a serine/threonine-rich sequence. [provided by RefSeq, Nov 2012]

HIVEP3 Gene

human immunodeficiency virus type I enhancer binding protein 3

This gene encodes a member of the human immunodeficiency virus type 1 enhancer-binding protein family. Members of this protein family contain multiple zinc finger and acid-rich (ZAS) domains and serine-threonine rich regions. This protein acts as a transcription factor and is able to regulate nuclear factor kappaB-mediated transcription by binding the kappaB motif in target genes. This protein also binds the recombination signal sequence that flanks the V, D, and J regions of immunoglobulin and T-cell receptors. Alternate splicing results in both coding and non-coding transcript variants. [provided by RefSeq, Sep 2011]

KHSRPP1 Gene

KH-type splicing regulatory protein pseudogene 1

BMPR2 Gene

bone morphogenetic protein receptor, type II (serine/threonine kinase)

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of two different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension, both familial and fenfluramine-associated, and with pulmonary venoocclusive disease. [provided by RefSeq, Jul 2008]

GPR37 Gene

G protein-coupled receptor 37 (endothelin receptor type B-like)

This gene is a member of the G protein-coupled receptor family. The encoded protein contains seven transmembrane domains and is found in cell and endoplasmic reticulum membranes. G protein-coupled receptors are involved in translating outside signals into G protein mediated intracellular effects. This gene product interacts with Parkin and is involved in juvenile Parkinson disease. [provided by RefSeq, Oct 2012]

BMPR1A Gene

bone morphogenetic protein receptor, type IA

The bone morphogenetic protein (BMP) receptors are a family of transmembrane serine/threonine kinases that include the type I receptors BMPR1A and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF-betas and activins transduce their signals through the formation of heteromeric complexes with 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. [provided by RefSeq, Jul 2008]

BMPR1B Gene

bone morphogenetic protein receptor, type IB

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension. Several transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

NUDT19P5 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 19 pseudogene 5

NUDT19P1 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 19 pseudogene 1

NUDT19P3 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 19 pseudogene 3

GCNT3 Gene

glucosaminyl (N-acetyl) transferase 3, mucin type

This gene encodes a member of the N-acetylglucosaminyltransferase family. The encoded protein is a beta-6-N-acetylglucosamine-transferase that catalyzes the formation of core 2 and core 4 O-glycans on mucin-type glycoproteins.[provided by RefSeq, Apr 2009]

EBM Gene

epidermolysis bullosa, macular type

RIIAD1 Gene

regulatory subunit of type II PKA R-subunit (RIIa) domain containing 1

NPC2 Gene

Niemann-Pick disease, type C2

This gene encodes a protein containing a lipid recognition domain. The encoded protein may function in regulating the transport of cholesterol through the late endosomal/lysosomal system. Mutations in this gene have been associated with Niemann-Pick disease, type C2 and frontal lobe atrophy. [provided by RefSeq, Jul 2008]

NPC1 Gene

Niemann-Pick disease, type C1

This gene encodes a large protein that resides in the limiting membrane of endosomes and lysosomes and mediates intracellular cholesterol trafficking via binding of cholesterol to its N-terminal domain. It is predicted to have a cytoplasmic C-terminus, 13 transmembrane domains, and 3 large loops in the lumen of the endosome - the last loop being at the N-terminus. This protein transports low-density lipoproteins to late endosomal/lysosomal compartments where they are hydrolized and released as free cholesterol. Defects in this gene cause Niemann-Pick type C disease, a rare autosomal recessive neurodegenerative disorder characterized by over accumulation of cholesterol and glycosphingolipids in late endosomal/lysosomal compartments.[provided by RefSeq, Aug 2009]

PSMB9 Gene

proteasome (prosome, macropain) subunit, beta type, 9

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 1 (proteasome beta 6 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. [provided by RefSeq, Mar 2010]

PSMB8 Gene

proteasome (prosome, macropain) subunit, beta type, 8

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 3 (proteasome beta 5 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. Two alternative transcripts encoding two isoforms have been identified; both isoforms are processed to yield the same mature subunit. [provided by RefSeq, Jul 2008]

PSMB7 Gene

proteasome (prosome, macropain) subunit, beta type, 7

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. The encoded protein is a member of the proteasome B-type family, also known as the T1B family, and is a 20S core beta subunit in the proteasome. Expression of this catalytic subunit is downregulated by gamma interferon, and proteolytic processing is required to generate a mature subunit. A pseudogene of this gene is located on the long arm of chromosome 14. [provided by RefSeq, Jul 2012]

PSMB6 Gene

proteasome (prosome, macropain) subunit, beta type, 6

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. The encoded protein is a member of the proteasome B-type family, also known as the T1B family, and is a 20S core beta subunit in the proteasome. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

PSMB5 Gene

proteasome (prosome, macropain) subunit, beta type, 5

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit in the proteasome. This catalytic subunit is not present in the immunoproteasome and is replaced by catalytic subunit 3i (proteasome beta 8 subunit). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2009]

PSMB4 Gene

proteasome (prosome, macropain) subunit, beta type, 4

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. [provided by RefSeq, Jul 2008]

PSMB3 Gene

proteasome (prosome, macropain) subunit, beta type, 3

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. The 26 S proteasome may be involved in trinucleotide repeat expansion, a phenomenon which is associated with many hereditary neurological diseases. Pseudogenes have been identified on chromosomes 2 and 12. Alternative splicing results in multiple transcript variants [provided by RefSeq, Sep 2013]

PSMB2 Gene

proteasome (prosome, macropain) subunit, beta type, 2

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Dec 2010]

PSMB1 Gene

proteasome (prosome, macropain) subunit, beta type, 1

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is tightly linked to the TBP (TATA-binding protein) gene in human and in mouse, and is transcribed in the opposite orientation in both species. [provided by RefSeq, Jul 2008]

COL14A1 Gene

collagen, type XIV, alpha 1

This gene encodes the alpha chain of type XIV collagen, a member of the FACIT (fibril-associated collagens with interrupted triple helices) collagen family. Type XIV collagen interacts with the fibril surface and is involved in the regulation of fibrillogenesis. [provided by RefSeq, Jan 2013]

SBSPON Gene

somatomedin B and thrombospondin, type 1 domain containing

ITC1 Gene

hypertrichosis universalis congenita, Ambras type

ZSWIM5P3 Gene

zinc finger, SWIM-type containing 5 pseudogene 3

ZSWIM5P2 Gene

zinc finger, SWIM-type containing 5 pseudogene 2

ZSWIM5P1 Gene

zinc finger, SWIM-type containing 5 pseudogene 1

CLEC18A Gene

C-type lectin domain family 18, member A

This is one of three closely related paralogous genes on chromosome 16 encoding secreted proteins containing C-type lectin domains. These domains bind to carbohydrates in the presence of calcium, and may be involved in cell adhesion, immune response and apoptosis. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Sep 2012]

CLEC18B Gene

C-type lectin domain family 18, member B

ALOX12B Gene

arachidonate 12-lipoxygenase, 12R type

This gene encodes an enzyme involved in the converstion of arachidonic acid to 12R-hydroxyeicosatetraenoic acid. Mutations in this gene are associated with nonbullous congenital ichthyosiform erythroderma. [provided by RefSeq, Jul 2008]

WNT3 Gene

wingless-type MMTV integration site family, member 3

The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It encodes a protein which shows 98% amino acid identity to mouse Wnt3 protein, and 84% to human WNT3A protein, another WNT gene product. The mouse studies show the requirement of Wnt3 in primary axis formation in the mouse. Studies of the gene expression suggest that this gene may play a key role in some cases of human breast, rectal, lung, and gastric cancer through activation of the WNT-beta-catenin-TCF signaling pathway. This gene is clustered with WNT15, another family member, in the chromosome 17q21 region. [provided by RefSeq, Jul 2008]

WNT2 Gene

wingless-type MMTV integration site family member 2

This gene is a member of the WNT gene family. The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. Alternatively spliced transcript variants have been identified for this gene. [provided by RefSeq, Jul 2008]

WNT1 Gene

wingless-type MMTV integration site family, member 1

The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It is very conserved in evolution, and the protein encoded by this gene is known to be 98% identical to the mouse Wnt1 protein at the amino acid level. The studies in mouse indicate that the Wnt1 protein functions in the induction of the mesencephalon and cerebellum. This gene was originally considered as a candidate gene for Joubert syndrome, an autosomal recessive disorder with cerebellar hypoplasia as a leading feature. However, further studies suggested that the gene mutations might not have a significant role in Joubert syndrome. This gene is clustered with another family member, WNT10B, in the chromosome 12q13 region. [provided by RefSeq, Jul 2008]

WNT6 Gene

wingless-type MMTV integration site family, member 6

The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It is overexpressed in cervical cancer cell line and strongly coexpressed with another family member, WNT10A, in colorectal cancer cell line. The gene overexpression may play key roles in carcinogenesis. This gene and the WNT10A gene are clustered in the chromosome 2q35 region. The protein encoded by this gene is 97% identical to the mouse Wnt6 protein at the amino acid level. [provided by RefSeq, Jul 2008]

WNT4 Gene

wingless-type MMTV integration site family, member 4

The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family, and is the first signaling molecule shown to influence the sex-determination cascade. It encodes a protein which shows 98% amino acid identity to the Wnt4 protein of mouse and rat. This gene and a nuclear receptor known to antagonize the testis-determining factor play a concerted role in both the control of female development and the prevention of testes formation. This gene and another two family members, WNT2 and WNT7B, may be associated with abnormal proliferation in breast tissue. Mutations in this gene can result in Rokitansky-Kuster-Hauser syndrome and in SERKAL syndrome. [provided by RefSeq, Jul 2008]

NUDT19P4 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 19 pseudogene 4

CMT2H Gene

Charcot-Marie-Tooth disease, axonal, type 2H

PCSK9 Gene

proprotein convertase subtilisin/kexin type 9

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The encoded protein undergoes an autocatalytic processing event with its prosegment in the ER and is constitutively secreted as an inactive protease into the extracellular matrix and trans-Golgi network. It is expressed in liver, intestine and kidney tissues and escorts specific receptors for lysosomal degradation. It plays a role in cholesterol and fatty acid metabolism. Mutations in this gene have been associated with autosomal dominant familial hypercholesterolemia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

PCSK2 Gene

proprotein convertase subtilisin/kexin type 2

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The protein undergoes an initial autocatalytic processing event and interacts with a neuroendocrine secretory protein in the ER, exits the ER and sorts to secretory granules, where it is cleaved and catalytically activated during intracellular transport. The encoded protease is packaged into and activated in dense core secretory granules and expressed in the neuroendocrine system and brain. This gene encodes one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. It functions in the proteolytic activation of polypeptide hormones and neuropeptides precursors. Single nucleotide polymorphisms in this gene may increase susceptibility to myocardial infarction and type 2 diabetes. This gene may also play a role in tumor development and progression. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jan 2014]

PCSK1 Gene

proprotein convertase subtilisin/kexin type 1

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The encoded protein undergoes an initial autocatalytic processing event in the ER to generate a heterodimer which exits the ER and sorts to subcellular compartments where a second autocatalytic even takes place and the catalytic activity is acquired. The protease is packaged into and activated in dense core secretory granules and expressed in the neuroendocrine system and brain. This gene encodes one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. It functions in the proteolytic activation of polypeptide hormones and neuropeptides precursors. Mutations in this gene have been associated with susceptibility to obesity and proprotein convertase 1/3 deficiency. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene [provided by RefSeq, Jan 2014]

PCSK6 Gene

proprotein convertase subtilisin/kexin type 6

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The encoded protein undergoes an initial autocatalytic processing event in the ER to generate a heterodimer which exits the ER and sorts to the trans-Golgi network where a second autocatalytic event takes place and the catalytic activity is acquired. The encoded protease is constitutively secreted into the extracellular matrix and expressed in many tissues, including neuroendocrine, liver, gut, and brain. This gene encodes one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. Some of its substrates include transforming growth factor beta related proteins, proalbumin, and von Willebrand factor. This gene is thought to play a role in tumor progression and left-right patterning. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Feb 2014]

PCSK7 Gene

proprotein convertase subtilisin/kexin type 7

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. It encodes a type 1 membrane bound protease that is expressed in many tissues, including neuroendocrine, liver, gut, and brain. The encoded protein undergoes an initial autocatalytic processing event in the ER and then sorts to the trans-Golgi network through endosomes where a second autocatalytic event takes place and the catalytic activity is acquired. This gene encodes one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. It can process proalbumin and is thought to be responsible for the activation of HIV envelope glycoproteins gp160 and gp140. This gene has been implicated in the transcriptional regulation of housekeeping genes and plays a role in the regulation of iron metabolism. A t(11;14)(q23;q32) chromosome translocation associated with B-cell lymphoma occurs between this gene and its inverted counterpart. [provided by RefSeq, Feb 2014]

PCSK4 Gene

proprotein convertase subtilisin/kexin type 4

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The encoded protein undergoes an initial autocatalytic processing event in the ER to generate a heterodimer which exits the ER and sorts to subcellular compartments where a second autocatalytic even takes place and the catalytic activity is acquired. This gene encodes one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. The protease is expressed only in the testis, placenta, and ovary. It plays a critical role in fertilization, fetoplacental growth, and embryonic development and processes multiple prohormones including pro-pituitary adenylate cyclase-activating protein and pro-insulin-like growth factor II. [provided by RefSeq, Jan 2014]

PCSK5 Gene

proprotein convertase subtilisin/kexin type 5

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The encoded protein undergoes an initial autocatalytic processing event in the ER to generate a heterodimer which exits the ER. It then sorts to the trans-Golgi network where a second autocatalytic event takes place and the catalytic activity is acquired. This encoded protein is widely expressed and one of the seven basic amino acid-specific members which cleave their substrates at single or paired basic residues. It mediates posttranslational endoproteolytic processing for several integrin alpha subunits and is thought to process prorenin, pro-membrane type-1 matrix metalloproteinase and HIV-1 glycoprotein gp160. Alternative splicing results in multiple transcript variants, some of which encode distinct isoforms, including a protease packaged into dense core granules (PC5A) and a type 1 membrane bound protease (PC5B). [provided by RefSeq, May 2014]

CMT2G Gene

Charcot-Marie-Tooth disease, axonal, type 2G

WNT10A Gene

wingless-type MMTV integration site family, member 10A

The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It is strongly expressed in the cell lines of promyelocytic leukemia and Burkitt's lymphoma. In addition, it and another family member, the WNT6 gene, are strongly coexpressed in colorectal cancer cell lines. The gene overexpression may play key roles in carcinogenesis through activation of the WNT-beta-catenin-TCF signaling pathway. This gene and the WNT6 gene are clustered in the chromosome 2q35 region. [provided by RefSeq, Jul 2008]

WNT10B Gene

wingless-type MMTV integration site family, member 10B

The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It may be involved in breast cancer, and its protein signaling is likely a molecular switch that governs adipogenesis. This protein is 96% identical to the mouse Wnt10b protein at the amino acid level. This gene is clustered with another family member, WNT1, in the chromosome 12q13 region. [provided by RefSeq, Jul 2008]

TNNT1 Gene

troponin T type 1 (skeletal, slow)

This gene encodes a protein that is a subunit of troponin, which is a regulatory complex located on the thin filament of the sarcomere. This complex regulates striated muscle contraction in response to fluctuations in intracellular calcium concentration. This complex is composed of three subunits: troponin C, which binds calcium, troponin T, which binds tropomyosin, and troponin I, which is an inhibitory subunit. This protein is the slow skeletal troponin T subunit. Mutations in this gene cause nemaline myopathy type 5, also known as Amish nemaline myopathy, a neuromuscular disorder characterized by muscle weakness and rod-shaped, or nemaline, inclusions in skeletal muscle fibers which affects infants, resulting in death due to respiratory insufficiency, usually in the second year. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

KRT39 Gene

keratin 39, type I

This gene encodes a member of the type I (acidic) keratin family, which belongs to the superfamily of intermediate filament (IF) proteins. Keratins are heteropolymeric structural proteins which form the intermediate filament. These filaments, along with actin microfilaments and microtubules, compose the cytoskeleton of epithelial cells. The type I keratin genes are clustered in a region of chromosome 17q12-q21. [provided by RefSeq, Jul 2009]

KRT31 Gene

keratin 31, type I

The protein encoded by this gene is a member of the keratin gene family. As a type I hair keratin, it is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

KRT32 Gene

keratin 32, type I

The protein encoded by this gene is a member of the keratin gene family. As a type I hair keratin, it is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

KRT35 Gene

keratin 35, type I

The protein encoded by this gene is a member of the keratin gene family. This type I hair keratin is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

KRT34 Gene

keratin 34, type I

The protein encoded by this gene is a member of the keratin gene family. As a type I hair keratin, it is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

KRT37 Gene

keratin 37, type I

The protein encoded by this gene is a member of the keratin gene family. As a type I hair keratin, it is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

KRT36 Gene

keratin 36, type I

The protein encoded by this gene is a member of the keratin gene family. This type I hair keratin is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

ZDHHC3 Gene

zinc finger, DHHC-type containing 3

FRA4A Gene

fragile site, aphidicolin type, common, fra(4)(p16.1)

FRA4B Gene

fragile site, BrdU type, common, fra(4)(q12)

FRA4C Gene

fragile site, aphidicolin type, common, fra(4)(q31.1)

FRA4D Gene

fragile site, aphidicolin type, common, fra(4)(p15)

MMAA Gene

methylmalonic aciduria (cobalamin deficiency) cblA type

The protein encoded by this gene is involved in the translocation of cobalamin into the mitochondrion, where it is used in the final steps of adenosylcobalamin synthesis. Adenosylcobalamin is a coenzyme required for the activity of methylmalonyl-CoA mutase. Defects in this gene are a cause of methylmalonic aciduria. [provided by RefSeq, Jul 2008]

MMAB Gene

methylmalonic aciduria (cobalamin deficiency) cblB type

This gene encodes a protein that catalyzes the final step in the conversion of vitamin B(12) into adenosylcobalamin (AdoCbl), a vitamin B12-containing coenzyme for methylmalonyl-CoA mutase. Mutations in the gene are the cause of vitamin B12-dependent methylmalonic aciduria linked to the cblB complementation group. Alternatively spliced transcript variants have been found. [provided by RefSeq, Apr 2011]

WS2B Gene

Waardenburg syndrome, type 2B

WS2C Gene

Waardenburg syndrome, type IIC

KRT33B Gene

keratin 33B, type I

This gene encodes a member of the keratin gene family. This gene is one of multiple type I hair keratin genes that are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. As a type I hair keratin, the encoded protein is an acidic protein which heterodimerizes with type II keratins to form hair and nails. There are two isoforms of this protein, encoded by two separate genes, keratin 33A and keratin 33B. [provided by RefSeq, May 2012]

KRT33A Gene

keratin 33A, type I

This gene encodes a member of the keratin gene family. This gene is one of multiple type I hair keratin genes that are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. As a type I hair keratin, the encoded protein is an acidic protein which heterodimerizes with type II keratins to form hair and nails. There are two isoforms of this protein, encoded by two separate genes, keratin 33A and keratin 33B. [provided by RefSeq, May 2012]

GNRHR2P1 Gene

gonadotropin-releasing hormone (type 2) receptor 2 pseudogene 1

FRA22B Gene

fragile site, aphidicolin type, common, fra(22)(q12.2)

ZMYND19P1 Gene

zinc finger, MYND-type containing 19 pseudogene 1

CLEC1A Gene

C-type lectin domain family 1, member A

This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signaling, glycoprotein turnover, and roles in inflammation and immune response. The encoded protein may play a role in regulating dendritic cell function. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

CLEC1B Gene

C-type lectin domain family 1, member B

Natural killer (NK) cells express multiple calcium-dependent (C-type) lectin-like receptors, such as CD94 (KLRD1; MIM 602894) and NKG2D (KLRC4; MIM 602893), that interact with major histocompatibility complex class I molecules and either inhibit or activate cytotoxicity and cytokine secretion. CLEC2 is a C-type lectin-like receptor expressed in myeloid cells and NK cells (Colonna et al., 2000 [PubMed 10671229]).[supplied by OMIM, Jan 2011]

CDH20 Gene

cadherin 20, type 2

This gene is a type II classical cadherin from the cadherin superfamily and one of three cadherin 7-like genes located in a cluster on chromosome 18. The encoded membrane protein is a calcium dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. Since disturbance of intracellular adhesion is a prerequisite for invasion and metastasis of tumor cells, cadherins are considered prime candidates for tumor suppressor genes. [provided by RefSeq, Jul 2008]

CDH22 Gene

cadherin 22, type 2

This gene is a member of the cadherin superfamily. The gene product is composed of five cadherin repeat domains and a cytoplasmic tail similar to the highly conserved cytoplasmic region of classical cadherins. Expressed predominantly in the brain, this putative calcium-dependent cell adhesion protein may play an important role in morphogenesis and tissue formation in neural and non-neural cells during development and maintenance of the brain and neuroendocrine organs. [provided by RefSeq, Jul 2008]

CDH24 Gene

cadherin 24, type 2

HMN7A Gene

Motor neuronopathy, distal hereditary, type VIIA

FSD1L Gene

fibronectin type III and SPRY domain containing 1-like

COL27A1 Gene

collagen, type XXVII, alpha 1

This gene encodes a member of the fibrillar collagen family, and plays a role during the calcification of cartilage and the transition of cartilage to bone. The encoded protein product is a preproprotein. It includes an N-terminal signal peptide, which is followed by an N-terminal propetide, mature peptide and a C-terminal propeptide. The N-terminal propeptide contains thrombospondin N-terminal-like and laminin G-like domains. The mature peptide is a major triple-helical region. The C-terminal propeptide, also known as COLFI domain, plays crucial roles in tissue growth and repair. Mutations in this gene cause Steel syndrome. Alternatively spliced transcript variants have been found, but the full-length nature of some variants has not been determined. [provided by RefSeq, Sep 2014]

PSMB3P Gene

proteasome (prosome, macropain) subunit, beta type, 3 pseudogene

CLEC4A Gene

C-type lectin domain family 4, member A

This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signalling, glycoprotein turnover, and roles in inflammation and immune response. The encoded type 2 transmembrane protein may play a role in inflammatory and immune response. Multiple transcript variants encoding distinct isoforms have been identified for this gene. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region. [provided by RefSeq, Jul 2008]

MCDR1 Gene

macular dystrophy, retinal, 1 (North Carolina type)

MCDR4 Gene

macular dystrophy, retinal, 4 (North Carolina type with progressive sensorineural hearing loss)

HPFH2 Gene

hereditary persistence of fetal hemoglobin, heterocellular, Indian type

HHT4 Gene

Telangiectasia, hereditary hemorrhagic, type 4

SCN1B Gene

sodium channel, voltage gated, type I beta subunit

Voltage-gated sodium channels are heteromeric proteins that function in the generation and propagation of action potentials in muscle and neuronal cells. They are composed of one alpha and two beta subunits, where the alpha subunit provides channel activity and the beta-1 subunit modulates the kinetics of channel inactivation. This gene encodes a sodium channel beta-1 subunit. Mutations in this gene result in generalized epilepsy with febrile seizures plus, Brugada syndrome 5, and defects in cardiac conduction. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

SCN1A Gene

sodium channel, voltage gated, type I alpha subunit

The vertebrate sodium channel is a voltage-gated ion channel essential for the generation and propagation of action potentials, mainly in nerve and muscle. Voltage-sensitive sodium channels are heteromeric complexes consisting of a large central pore-forming glycosylated alpha subunit, and two smaller auxiliary beta subunits. This gene encodes the large alpha subunit, and mutations in this gene have been associated with several epilepsy, convulsion and migraine disorders. Alternative splicing results in multiple transcript variants. The RefSeq Project has decided to create four representative RefSeq records. Three of the transcript variants are supported by experimental evidence and the fourth contains alternate 5' untranslated exons, the exact combination of which have not been experimentally confirmed for the full-length transcript.[provided by RefSeq, Jan 2011]

OGS2 Gene

Opitz G syndrome, type II

This disorder, variously named the G, Opitz-G, or BBB syndrome, includes hypertelorism or telecanthus; laryngotracheoesophageal cleft; clefts of lip, palate, and uvula; swallowing difficulty and hoarse cry; genitourinary defects, especially hypospadias in males and splayed labia majora in females; mental retardation; and congenital heart defects.[supplied by OMIM, Jul 2002]

ATP10A Gene

ATPase, class V, type 10A

The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of aminophospholipid-transporting ATPases. The aminophospholipid translocases transport phosphatidylserine and phosphatidylethanolamine from one side of a bilayer to another. This gene is maternally expressed. It maps within the most common interval of deletion responsible for Angelman syndrome, also known as 'happy puppet syndrome'. [provided by RefSeq, Jul 2008]

ATP10B Gene

ATPase, class V, type 10B

ATP10D Gene

ATPase, class V, type 10D

TAS2R63P Gene

taste receptor, type 2, member 63, pseudogene

LOC101928444 Gene

histone H2B type 1-F/J/L-like

FRA17A Gene

fragile site, distamycin A type, rare, fra(17)(p12)

FRA17B Gene

fragile site, aphidicolin type, common, fra(17)(q23.1)

DYNLT1 Gene

dynein, light chain, Tctex-type 1

This gene encodes a component of the motor complex, cytoplasmic dynein, which transports cellular cargo along microtubules in the cell. The encoded protein regulates the length of primary cilia which are sensory organelles found on the surface of cells. The protein encoded by this gene interacts with viral proteins, like the minor capsid protein L2 of human papillomavirus, and is required for dynein-mediated delivery of the viral nucleic acid to the host nucleus. This protein interacts with oncogenic nucleoporins to disrupt gene regulation and cause leukemic transformation. Pseudogenes of this gene are present on chromosomes 4 and 17. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Apr 2014]

DYNLT3 Gene

dynein, light chain, Tctex-type 3

This gene encodes a member of a subclass of dynein light chains. The encoded protein homodimerizes and forms the light chain component of the cytoplasmic dynein motor protein complex. This protein may be important for binding dynein to specific cargos including the spindle checkpoint protein BUB3. This protein may also function independently of dynein as a transcriptional modulator. Pseudogenes of this gene are found on chromosomes 2 and 20.[provided by RefSeq, Mar 2010]

CLEC9A Gene

C-type lectin domain family 9, member A

CLEC9A is a group V C-type lectin-like receptor (CTLR) that functions as an activation receptor and is expressed on myeloid lineage cells (Huysamen et al., 2008 [PubMed 18408006]).[supplied by OMIM, Aug 2008]

COL9A2 Gene

collagen, type IX, alpha 2

This gene encodes one of the three alpha chains of type IX collagen, the major collagen component of hyaline cartilage. Type IX collagen, a heterotrimeric molecule, is usually found in tissues containing type II collagen, a fibrillar collagen. This chain is unusual in that, unlike the other two type IX alpha chains, it contains a covalently attached glycosaminoglycan side chain. Mutations in this gene are associated with multiple epiphyseal dysplasia. [provided by RefSeq, Jul 2008]

COL9A3 Gene

collagen, type IX, alpha 3

This gene encodes one of the three alpha chains of type IX collagen, the major collagen component of hyaline cartilage. Type IX collagen, a heterotrimeric molecule, is usually found in tissues containing type II collagen, a fibrillar collagen. Mutations in this gene are associated with multiple epiphyseal dysplasia type 3. [provided by RefSeq, Jan 2010]

COL9A1 Gene

collagen, type IX, alpha 1

This gene encodes one of the three alpha chains of type IX collagen, which is a minor (5-20%) collagen component of hyaline cartilage. Type IX collagen is usually found in tissues containing type II collagen, a fibrillar collagen. Studies in knockout mice have shown that synthesis of the alpha 1 chain is essential for assembly of type IX collagen molecules, a heterotrimeric molecule, and that lack of type IX collagen is associated with early onset osteoarthritis. Mutations in this gene are associated with osteoarthritis in humans, with multiple epiphyseal dysplasia, 6, a form of chondrodysplasia, and with Stickler syndrome, a disease characterized by ophthalmic, orofacial, articular, and auditory defects. Two transcript variants that encode different isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

ZC3H12A Gene

zinc finger CCCH-type containing 12A

ZC3H12A is an MCP1 (CCL2; MIM 158105)-induced protein that acts as a transcriptional activator and causes cell death of cardiomyocytes, possibly via induction of genes associated with apoptosis.[supplied by OMIM, Mar 2008]

ZC3H12B Gene

zinc finger CCCH-type containing 12B

The protein encoded by this gene belongs to a family of CCCH-type zinc finger proteins that are involved in the proinflammatory activation of macrophages. The exact function of this family member is unknown, but it is thought to function as a ribonuclease. [provided by RefSeq, May 2010]

ZC3H12C Gene

zinc finger CCCH-type containing 12C

ZC3H12D Gene

zinc finger CCCH-type containing 12D

HBHR Gene

alpha-thalassemia/mental retardation syndrome, type 1

LOC100420255 Gene

collagen, type XXII, alpha 1 pseudogene

SCN9A Gene

sodium channel, voltage gated, type IX alpha subunit

This gene encodes a voltage-gated sodium channel which plays a significant role in nociception signaling. Mutations in this gene have been associated with primary erythermalgia, channelopathy-associated insensitivity to pain, and paroxysmal extreme pain disorder. [provided by RefSeq, Aug 2009]

DNLZ Gene

DNL-type zinc finger

FANK1 Gene

fibronectin type III and ankyrin repeat domains 1

DROSHA Gene

drosha, ribonuclease type III

Members of the ribonuclease III superfamily of double-stranded (ds) RNA-specific endoribonucleases participate in diverse RNA maturation and decay pathways in eukaryotic and prokaryotic cells (Fortin et al., 2002 [PubMed 12191433]). The RNase III Drosha is the core nuclease that executes the initiation step of microRNA (miRNA) processing in the nucleus (Lee et al., 2003 [PubMed 14508493]).[supplied by OMIM, Mar 2008]

PHA2A Gene

Pseudohypoaldosteronism type II (gene A)

Pseudohypoaldosteronism type II, also known as Gordon hyperkalemia-hypertension syndrome, is characterized by hyperkalemia despite normal renal glomerular filtration, hypertension, and correction of physiologic abnormalities by thiazide diuretics. Mild hyperchloremia, metabolic acidosis, and suppressed plasma renin activity are variable associated findings.[supplied by OMIM, Jul 2002]

PSMA2P3 Gene

proteasome (prosome, macropain) subunit, alpha type, 2 pseudogene 3

PSMA2P1 Gene

proteasome (prosome, macropain) subunit, alpha type, 2 pseudogene 1

DYNLL1 Gene

dynein, light chain, LC8-type 1

Cytoplasmic dyneins are large enzyme complexes with a molecular mass of about 1,200 kD. They contain two force-producing heads formed primarily from dynein heavy chains, and stalks linking the heads to a basal domain, which contains a varying number of accessory intermediate chains. The complex is involved in intracellular transport and motility. The protein described in this record is a light chain and exists as part of this complex but also physically interacts with and inhibits the activity of neuronal nitric oxide synthase. Binding of this protein destabilizes the neuronal nitric oxide synthase dimer, a conformation necessary for activity, and it may regulate numerous biologic processes through its effects on nitric oxide synthase activity. Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul 2008]

DYNLL2 Gene

dynein, light chain, LC8-type 2

EDS8 Gene

Ehlers-Danlos syndrome, type VIII

COL1AR Gene

collagen, type I, alpha, receptor

COL1A2 Gene

collagen, type I, alpha 2

This gene encodes the pro-alpha2 chain of type I collagen whose triple helix comprises two alpha1 chains and one alpha2 chain. Type I is a fibril-forming collagen found in most connective tissues and is abundant in bone, cornea, dermis and tendon. Mutations in this gene are associated with osteogenesis imperfecta types I-IV, Ehlers-Danlos syndrome type VIIB, recessive Ehlers-Danlos syndrome Classical type, idiopathic osteoporosis, and atypical Marfan syndrome. Symptoms associated with mutations in this gene, however, tend to be less severe than mutations in the gene for the alpha1 chain of type I collagen (COL1A1) reflecting the different role of alpha2 chains in matrix integrity. Three transcripts, resulting from the use of alternate polyadenylation signals, have been identified for this gene. [provided by R. Dalgleish, Feb 2008]

COL6A1 Gene

collagen, type VI, alpha 1

The collagens are a superfamily of proteins that play a role in maintaining the integrity of various tissues. Collagens are extracellular matrix proteins and have a triple-helical domain as their common structural element. Collagen VI is a major structural component of microfibrils. The basic structural unit of collagen VI is a heterotrimer of the alpha1(VI), alpha2(VI), and alpha3(VI) chains. The alpha2(VI) and alpha3(VI) chains are encoded by the COL6A2 and COL6A3 genes, respectively. The protein encoded by this gene is the alpha 1 subunit of type VI collagen (alpha1(VI) chain). Mutations in the genes that code for the collagen VI subunits result in the autosomal dominant disorder, Bethlem myopathy. [provided by RefSeq, Jul 2008]

COL6A2 Gene

collagen, type VI, alpha 2

This gene encodes one of the three alpha chains of type VI collagen, a beaded filament collagen found in most connective tissues. The product of this gene contains several domains similar to von Willebrand Factor type A domains. These domains have been shown to bind extracellular matrix proteins, an interaction that explains the importance of this collagen in organizing matrix components. Mutations in this gene are associated with Bethlem myopathy and Ullrich scleroatonic muscular dystrophy. Three transcript variants have been identified for this gene. [provided by RefSeq, Jul 2008]

COL6A5 Gene

collagen, type VI, alpha 5

This gene encodes a member of the collagen superfamily of proteins. The encoded protein contains multiple von Willebrand factor A-like domains and may interact with the alpha 1 and alpha 2 chains of collagen VI to form the complete collagen VI trimer. Polymorphisms in this gene may be linked to dermal phenotypes, such as eczema. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2013]

TAS2R20 Gene

taste receptor, type 2, member 20

TAS2R22 Gene

taste receptor, type 2, member 22

COL17A1 Gene

collagen, type XVII, alpha 1

This gene encodes the alpha chain of type XVII collagen. Unlike most collagens, collagen XVII is a transmembrane protein. Collagen XVII is a structural component of hemidesmosomes, multiprotein complexes at the dermal-epidermal basement membrane zone that mediate adhesion of keratinocytes to the underlying membrane. Mutations in this gene are associated with both generalized atrophic benign and junctional epidermolysis bullosa. Two homotrimeric forms of type XVII collagen exist. The full length form is the transmembrane protein. A soluble form, referred to as either ectodomain or LAD-1, is generated by proteolytic processing of the full length form. [provided by RefSeq, Jul 2008]

KRT6B Gene

keratin 6B, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. As many as six of this type II cytokeratin (KRT6) have been identified; the multiplicity of the genes is attributed to successive gene duplication events. The genes are expressed with family members KRT16 and/or KRT17 in the filiform papillae of the tongue, the stratified epithelial lining of oral mucosa and esophagus, the outer root sheath of hair follicles, and the glandular epithelia. Mutations in these genes have been associated with pachyonychia congenita. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Jul 2008]

KRT6C Gene

keratin 6C, type II

Keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into epithelial keratins and hair keratins. The type II keratins are clustered in a region of chromosome 12q13. [provided by RefSeq, Jul 2009]

KRT6A Gene

keratin 6A, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. As many as six of this type II cytokeratin (KRT6) have been identified; the multiplicity of the genes is attributed to successive gene duplication events. The genes are expressed with family members KRT16 and/or KRT17 in the filiform papillae of the tongue, the stratified epithelial lining of oral mucosa and esophagus, the outer root sheath of hair follicles, and the glandular epithelia. This KRT6 gene in particular encodes the most abundant isoform. Mutations in these genes have been associated with pachyonychia congenita. In addition, peptides from the C-terminal region of the protein have antimicrobial activity against bacterial pathogens. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Oct 2014]

COMA Gene

Cogan-type congential oculomotor apraxia

ZDHHC20 Gene

zinc finger, DHHC-type containing 20

ZDHHC21 Gene

zinc finger, DHHC-type containing 21

ZDHHC22 Gene

zinc finger, DHHC-type containing 22

ZDHHC23 Gene

zinc finger, DHHC-type containing 23

ZDHHC24 Gene

zinc finger, DHHC-type containing 24

CLEC18C Gene

C-type lectin domain family 18, member C

ZC3HC1 Gene

zinc finger, C3HC-type containing 1

This gene encodes an F-box-containing protein that is a component of an SCF-type E3 ubiquitin ligase complex that regulates the onset of cell division. The G2/M transition in the cell cycle requires the interaction of the proteins cyclin B1 and cyclin-dependent kinase 1. The activated ubiquitin ligase complex targets the protein cyclin B1 for degradation, preventing this transition to mitosis. [provided by RefSeq, Aug 2013]

FRA7I Gene

fragile site, aphidicolin type, common, fra(7)(q36)

FRA7H Gene

fragile site, aphidicolin type, common, fra(7)(q32.3)

FRA7J Gene

fragile site, aphidicolin type, common, fra(7)(q11)

FRA7A Gene

fragile site, folic acid type, rare, fra(7)(p11.2)

FRA7C Gene

fragile site, aphidicolin type, common, fra(7)(p14.2)

FRA7B Gene

fragile site, aphidicolin type, common, fra(7)(p22)

FRA7E Gene

fragile site, aphidicolin type, common, fra(7)(q21.2)

FRA7D Gene

fragile site, aphidicolin type, common, fra(7)(p13)

FRA7G Gene

fragile site, aphidicolin type, common, fra(7)(q31.2)

FRA7F Gene

fragile site, aphidicolin type, common, fra(7)(q22)

WNT7A Gene

wingless-type MMTV integration site family, member 7A

This gene is a member of the WNT gene family, which consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is involved in the development of the anterior-posterior axis in the female reproductive tract, and also plays a critical role in uterine smooth muscle pattering and maintenance of adult uterine function. Mutations in this gene are associated with Fuhrmann and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndromes. [provided by RefSeq, Jul 2008]

WNT7B Gene

wingless-type MMTV integration site family, member 7B

This gene is a member of the WNT gene family, which consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. Among members of the human WNT family, this gene product is most similar to WNT7A protein. [provided by RefSeq, Oct 2008]

ANKFN1 Gene

ankyrin-repeat and fibronectin type III domain containing 1

DYNLL1P2 Gene

dynein, light chain, LC8-type 1 pseudogene 2

DYNLL1P3 Gene

dynein, light chain, LC8-type 1 pseudogene 3

DYNLL1P1 Gene

dynein, light chain, LC8-type 1 pseudogene 1

DYNLL1P6 Gene

dynein, light chain, LC8-type 1 pseudogene 6

DYNLL1P7 Gene

dynein, light chain, LC8-type 1 pseudogene 7

DYNLL1P4 Gene

dynein, light chain, LC8-type 1 pseudogene 4

PSMA2P2 Gene

proteasome (prosome, macropain) subunit, alpha type, 2 pseudogene 2

ZC3H6 Gene

zinc finger CCCH-type containing 6

LOC100419859 Gene

zinc finger, MYM-type 1 pseudogene

LOC100419678 Gene

zinc finger, MYM-type 1 pseudogene

CLEC4M Gene

C-type lectin domain family 4, member M

This gene encodes a transmembrane receptor and is often referred to as L-SIGN because of its expression in the endothelial cells of the lymph nodes and liver. The encoded protein is involved in the innate immune system and recognizes numerous evolutionarily divergent pathogens ranging from parasites to viruses, with a large impact on public health. The protein is organized into three distinct domains: an N-terminal transmembrane domain, a tandem-repeat neck domain and C-type lectin carbohydrate recognition domain. The extracellular region consisting of the C-type lectin and neck domains has a dual function as a pathogen recognition receptor and a cell adhesion receptor by binding carbohydrate ligands on the surface of microbes and endogenous cells. The neck region is important for homo-oligomerization which allows the receptor to bind multivalent ligands with high avidity. Variations in the number of 23 amino acid repeats in the neck domain of this protein are common and have a significant impact on ligand binding ability. This gene is closely related in terms of both sequence and function to a neighboring gene (GeneID 30835; often referred to as DC-SIGN or CD209). DC-SIGN and L-SIGN differ in their ligand-binding properties and distribution. Alternative splicing results in multiple variants.[provided by RefSeq, Feb 2009]

CLEC4G Gene

C-type lectin domain family 4, member G

This gene encodes a glycan-binding receptor and member of the C-type lectin family which plays a role in the T-cell immune response. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

CLEC4F Gene

C-type lectin domain family 4, member F

CLEC4E Gene

C-type lectin domain family 4, member E

This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signalling, glycoprotein turnover, and roles in inflammation and immune response. The encoded type II transmembrane protein is a downstream target of CCAAT/enhancer binding protein (C/EBP), beta (CEBPB) and may play a role in inflammation. Alternative splice variants have been described but their full-length sequence has not been determined. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region. [provided by RefSeq, Jul 2008]

CLEC4D Gene

C-type lectin domain family 4, member D

This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signalling, glycoprotein turnover, and roles in inflammation and immune response. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region. [provided by RefSeq, Jul 2008]

CLEC4C Gene

C-type lectin domain family 4, member C

This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signalling, glycoprotein turnover, and roles in inflammation and immune response. The encoded type 2 transmembrane protein may play a role in dendritic cell function. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

CFTDX Gene

Myopathy, congenital, with fiber-type disproportion, X-linked

CDH11 Gene

cadherin 11, type 2, OB-cadherin (osteoblast)

This gene encodes a type II classical cadherin from the cadherin superfamily, integral membrane proteins that mediate calcium-dependent cell-cell adhesion. Mature cadherin proteins are composed of a large N-terminal extracellular domain, a single membrane-spanning domain, and a small, highly conserved C-terminal cytoplasmic domain. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. Expression of this particular cadherin in osteoblastic cell lines, and its upregulation during differentiation, suggests a specific function in bone development and maintenance. [provided by RefSeq, Jul 2008]

CDH10 Gene

cadherin 10, type 2 (T2-cadherin)

This gene encodes a type II classical cadherin from the cadherin superfamily, integral membrane proteins that mediate calcium-dependent cell-cell adhesion. Mature cadherin proteins are composed of a large N-terminal extracellular domain, a single membrane-spanning domain, and a small, highly conserved C-terminal cytoplasmic domain. The extracellular domain consists of 5 subdomains, each containing a cadherin motif, and appears to determine the specificity of the protein's homophilic cell adhesion activity. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. This particular cadherin is predominantly expressed in brain and is putatively involved in synaptic adhesions, axon outgrowth and guidance. [provided by RefSeq, Jan 2011]

CDH12 Gene

cadherin 12, type 2 (N-cadherin 2)

This gene encodes a type II classical cadherin from the cadherin superfamily of integral membrane proteins that mediate calcium-dependent cell-cell adhesion. Mature cadherin proteins are composed of a large N-terminal extracellular domain, a single membrane-spanning domain, and a small, highly conserved C-terminal cytoplasmic domain. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. This particular cadherin appears to be expressed specifically in the brain and its temporal pattern of expression would be consistent with a role during a critical period of neuronal development, perhaps specifically during synaptogenesis. [provided by RefSeq, Jul 2008]

CDH15 Gene

cadherin 15, type 1, M-cadherin (myotubule)

This gene is a member of the cadherin superfamily of genes, encoding calcium-dependent intercellular adhesion glycoproteins. Cadherins consist of an extracellular domain containing 5 cadherin domains, a transmembrane region, and a conserved cytoplasmic domain. Transcripts from this particular cadherin are expressed in myoblasts and upregulated in myotubule-forming cells. The protein is thought to be essential for the control of morphogenetic processes, specifically myogenesis, and may provide a trigger for terminal muscle cell differentiation. [provided by RefSeq, Jul 2008]

CDH19 Gene

cadherin 19, type 2

This gene is one of three related type II cadherin genes situated in a cluster on chromosome 18. The encoded protein is a calcium dependent cell-cell adhesion glycoprotein containing five extracellular cadherin repeats. Loss of cadherins may be associated with cancer formation. Alternative splicing results in multiple transcript variants for this gene. [provided by RefSeq, Aug 2012]

CDH18 Gene

cadherin 18, type 2

This gene encodes a type II classical cadherin from the cadherin superfamily of integral membrane proteins that mediate calcium-dependent cell-cell adhesion. Mature cadherin proteins are composed of a large N-terminal extracellular domain, a single membrane-spanning domain, and a small, highly conserved C-terminal cytoplasmic domain. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. This particular cadherin is expressed specifically in the central nervous system and is putatively involved in synaptic adhesion, axon outgrowth and guidance. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

ZDHHC20P3 Gene

zinc finger, DHHC-type containing 20 pseudogene 3

NPHS1 Gene

nephrosis 1, congenital, Finnish type (nephrin)

This gene encodes a member of the immunoglobulin family of cell adhesion molecules that functions in the glomerular filtration barrier in the kidney. The gene is primarily expressed in renal tissues, and the protein is a type-1 transmembrane protein found at the slit diaphragm of glomerular podocytes. The slit diaphragm is thought to function as an ultrafilter to exclude albumin and other plasma macromolecules in the formation of urine. Mutations in this gene result in Finnish-type congenital nephrosis 1, characterized by severe proteinuria and loss of the slit diaphragm and foot processes.[provided by RefSeq, Oct 2009]

SCN11A Gene

sodium channel, voltage gated, type XI alpha subunit

Voltage-gated sodium channels are membrane protein complexes that play a fundamental role in the rising phase of the action potential in most excitable cells. Alpha subunits, such as SCN11A, mediate voltage-dependent gating and conductance, while auxiliary beta subunits regulate the kinetic properties of the channel and facilitate membrane localization of the complex. Aberrant expression patterns or mutations of alpha subunits underlie a number of disorders. Each alpha subunit consists of 4 domains connected by 3 intracellular loops; each domain consists of 6 transmembrane segments and intra- and extracellular linkers.[supplied by OMIM, Apr 2004]

SPINK9 Gene

serine peptidase inhibitor, Kazal type 9

SPINK8 Gene

serine peptidase inhibitor, Kazal type 8 (putative)

CTRCT37 Gene

Cataract, congenital cerulean type, 5

ACVR1 Gene

activin A receptor, type I

Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I ( I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. This gene encodes activin A type I receptor which signals a particular transcriptional response in concert with activin type II receptors. Mutations in this gene are associated with fibrodysplasia ossificans progressive. [provided by RefSeq, Jul 2008]

KAZALD1 Gene

Kazal-type serine peptidase inhibitor domain 1

This gene encodes a secreted member of the insulin growth factor-binding protein (IGFBP) superfamily. It contains an N-terminal insulin growth factor-binding domain, a central Kazal-type serine protease inhibitor and follistatin-like domain, and a C-terminal immunoglobulin-like domain. Studies of the mouse ortholog suggest that this gene product may have a function in bone development and bone regeneration. [provided by RefSeq, Feb 2009]

TAS2R50 Gene

taste receptor, type 2, member 50

TAS2R50 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). See also TAS2R10 (MIM 604791).[supplied by OMIM, Mar 2008]

ZFAND6P1 Gene

zinc finger, AN1-type domain 6 pseudogene 1

ZMIZ2 Gene

zinc finger, MIZ-type containing 2

ZMIZ2 and ZMIZ1 (MIM 607159) are members of a PIAS (see MIM 603566)-like family of proteins that interact with nuclear hormone receptors. ZMIZ2 interacts with androgen receptor (AR; MIM 313700) and enhances AR-mediated transcription (Huang et al., 2005 [PubMed 16051670]).[supplied by OMIM, May 2010]

ZMIZ1 Gene

zinc finger, MIZ-type containing 1

This gene encodes a member of the PIAS (protein inhibitor of activated STAT) family of proteins. The encoded protein regulates the activity of various transcription factors, including the androgen receptor, Smad3/4, and p53. The encoded protein may also play a role in sumoylation. A translocation between this locus on chromosome 10 and the protein tyrosine kinase ABL1 locus on chromosome 9 has been associated with acute lymphoblastic leukemia. [provided by RefSeq, Mar 2010]

OI16 Gene

Osteogenesis imperfecta, type XVI

NUDT4P2 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 2

NUDT4P1 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 1

ZBED4 Gene

zinc finger, BED-type containing 4

NUDT15P1 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 15 pseudogene 1

KRT222 Gene

keratin 222, type II

PFHB2 Gene

Progressive familial heart block, type II

NUDT16 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 16

COL21A1 Gene

collagen, type XXI, alpha 1

This gene encodes the alpha chain of type XXI collagen, a member of the FACIT collagen family (fibril-associated collagens with interrupted helices). Type XXI collagen is localized to tissues containing type I collagen so, like other members of this collagen family, it may serve to maintain the integrity of the extracellular matrix. An alternatively spliced transcript variant has been described, but its full-length nature has yet to be determined. [provided by RefSeq, Jul 2008]

ZDHHC11B Gene

zinc finger, DHHC-type containing 11B

TAS2R64P Gene

taste receptor, type 2, member 64, pseudogene

KRT38 Gene

keratin 38, type I

The protein encoded by this gene is a member of the keratin gene family. As a type I hair keratin, it is an acidic protein which heterodimerizes with type II keratins to form hair and nails. The type I hair keratins are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. [provided by RefSeq, Jul 2008]

SPIRE1 Gene

spire-type actin nucleation factor 1

Spire proteins, such as SPIRE1, are highly conserved between species. They belong to the family of Wiskott-Aldrich homology region-2 (WH2) proteins, which are involved in actin organization (Kerkhoff et al., 2001 [PubMed 11747823]).[supplied by OMIM, Mar 2008]

SPIRE2 Gene

spire-type actin nucleation factor 2

LOC100129391 Gene

zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2 pseudogene

ATP2C2 Gene

ATPase, Ca++ transporting, type 2C, member 2

ATP2C1 Gene

ATPase, Ca++ transporting, type 2C, member 1

The protein encoded by this gene belongs to the family of P-type cation transport ATPases. This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium ions. Defects in this gene cause Hailey-Hailey disease, an autosomal dominant disorder. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Aug 2011]

FRA10D Gene

fragile site, aphidicolin type, common, fra(10)(q22.1)

FRA10E Gene

fragile site, aphidicolin type, common, fra(10)(q25.2)

FRA10F Gene

fragile site, aphidicolin type, common, fra(10)(q26.1)

FRA10G Gene

fragile site, aphidicolin type, common, fra(10)(q11.2)

FRA10A Gene

fragile site, folic acid type, rare, fra(10)(q23.3) or fra(10)(q24.2)

FRA10C Gene

fragile site, BrdU type, common, fra(10)(q21)

ZFAND2B Gene

zinc finger, AN1-type domain 2B

This gene encodes a protein containing AN1-type zinc-fingers and ubiquitin-interacting motifs. The encoded protein likely associates with the proteosome to stimulate the degradation of toxic or misfolded proteins. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Aug 2012]

ZFAND2A Gene

zinc finger, AN1-type domain 2A

COL18A1 Gene

collagen, type XVIII, alpha 1

This gene encodes the alpha chain of type XVIII collagen. This collagen is one of the multiplexins, extracellular matrix proteins that contain multiple triple-helix domains (collagenous domains) interrupted by non-collagenous domains. A long isoform of the protein has an N-terminal domain that is homologous to the extracellular part of frizzled receptors. Proteolytic processing at several endogenous cleavage sites in the C-terminal domain results in production of endostatin, a potent antiangiogenic protein that is able to inhibit angiogenesis and tumor growth. Mutations in this gene are associated with Knobloch syndrome. The main features of this syndrome involve retinal abnormalities, so type XVIII collagen may play an important role in retinal structure and in neural tube closure. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

ECTD5 Gene

Ectodermal dysplasia 5, hair/nail type

ECTD7 Gene

Ectodermal dysplasia 7, hair/nail type

ECTD6 Gene

Ectodermal dysplasia 6, hair/nail type

ZC3H10 Gene

zinc finger CCCH-type containing 10

ZC3H13 Gene

zinc finger CCCH-type containing 13

ZC3H14 Gene

zinc finger CCCH-type containing 14

ZC3H14 belongs to a family of poly(A)-binding proteins that influence gene expression by regulating mRNA stability, nuclear export, and translation (Kelly et al., 2007 [PubMed 17630287]).[supplied by OMIM, Mar 2010]

ZC3H18 Gene

zinc finger CCCH-type containing 18

NUDT9P1 Gene

nudix (nucleoside diphosphate linked moiety X)-type motif 9 pseudogene 1

FNDC8 Gene

fibronectin type III domain containing 8

FNDC9 Gene

fibronectin type III domain containing 9

FNDC4 Gene

fibronectin type III domain containing 4

FNDC5 Gene

fibronectin type III domain containing 5

This gene encodes a secreted protein that is released from muscle cells during exercise. The encoded protein may participate in the development of brown fat. Translation of the precursor protein initiates at a non-AUG start codon at a position that is conserved as an AUG start codon in other organisms. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2013]

FNDC1 Gene

fibronectin type III domain containing 1

FRA2F Gene

fragile site, aphidicolin type, common, fra(2)(q21.3)

FRA2G Gene

fragile site, aphidicolin type, common, fra(2)(q31)

FRA2D Gene

fragile site, aphidicolin type, common, fra(2)(p16.2)

FRA2E Gene

fragile site, aphidicolin type, common, fra(2)(p13)

FRA2B Gene

fragile site, folic acid type, rare, fra(2)(q13)

FRA2C Gene

fragile site, aphidicolin type, common, fra(2)(p24.2)

FRA2A Gene

fragile site, folic acid type, rare, fra(2)(q11.2)

FRA2J Gene

fragile site, aphidicolin type, common, fra(2)(q37.3)

FRA2K Gene

fragile site, folic acid type, rare, fra(2)(q22.3)

FRA2H Gene

fragile site, aphidicolin type, common, fra(2)(q32.1)

FRA2I Gene

fragile site, aphidicolin type, common, fra(2)(q33)

BDH2 Gene

3-hydroxybutyrate dehydrogenase, type 2

BDH1 Gene

3-hydroxybutyrate dehydrogenase, type 1

This gene encodes a member of the short-chain dehydrogenase/reductase gene family. The encoded protein forms a homotetrameric lipid-requiring enzyme of the mitochondrial membrane and has a specific requirement for phosphatidylcholine for optimal enzymatic activity. The encoded protein catalyzes the interconversion of acetoacetate and (R)-3-hydroxybutyrate, the two major ketone bodies produced during fatty acid catabolism. Alternatively spliced transcript variants encoding the same protein have been described. [provided by RefSeq, Jul 2008]

KRT3 Gene

keratin 3, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in the corneal epithelium with family member KRT12 and mutations in these genes have been associated with Meesmann's Corneal Dystrophy. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Jul 2008]

KRT2 Gene

keratin 2, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is expressed largely in the upper spinous layer of epidermal keratinocytes and mutations in this gene have been associated with bullous congenital ichthyosiform erythroderma. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Jul 2008]

KRT1 Gene

keratin 1, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in the spinous and granular layers of the epidermis with family member KRT10 and mutations in these genes have been associated with bullous congenital ichthyosiform erythroderma. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Jul 2008]

KRT7 Gene

keratin 7, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in the simple epithelia lining the cavities of the internal organs and in the gland ducts and blood vessels. The genes encoding the type II cytokeratins are clustered in a region of chromosome 12q12-q13. Alternative splicing may result in several transcript variants; however, not all variants have been fully described. [provided by RefSeq, Jul 2008]

KRT5 Gene

keratin 5, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in the basal layer of the epidermis with family member KRT14. Mutations in these genes have been associated with a complex of diseases termed epidermolysis bullosa simplex. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Jul 2008]

KRT4 Gene

keratin 4, type II

The protein encoded by this gene is a member of the keratin gene family. The type II cytokeratins consist of basic or neutral proteins which are arranged in pairs of heterotypic keratin chains coexpressed during differentiation of simple and stratified epithelial tissues. This type II cytokeratin is specifically expressed in differentiated layers of the mucosal and esophageal epithelia with family member KRT13. Mutations in these genes have been associated with White Sponge Nevus, characterized by oral, esophageal, and anal leukoplakia. The type II cytokeratins are clustered in a region of chromosome 12q12-q13. [provided by RefSeq, Jul 2008]

KRT9 Gene

keratin 9, type I

This gene encodes the type I keratin 9, an intermediate filament chain expressed only in the terminally differentiated epidermis of palms and soles. Mutations in this gene cause epidermolytic palmoplantar keratoderma. [provided by RefSeq, Jul 2008]

KRT8 Gene

keratin 8, type II

This gene is a member of the type II keratin family clustered on the long arm of chromosome 12. Type I and type II keratins heteropolymerize to form intermediate-sized filaments in the cytoplasm of epithelial cells. The product of this gene typically dimerizes with keratin 18 to form an intermediate filament in simple single-layered epithelial cells. This protein plays a role in maintaining cellular structural integrity and also functions in signal transduction and cellular differentiation. Mutations in this gene cause cryptogenic cirrhosis. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jan 2012]

FRA18A Gene

fragile site, aphidicolin type, common, fra(18)(q12.2)

FRA18B Gene

fragile site, aphidicolin type, common, fra(18)(q21.3)

ZGPAT Gene

zinc finger, CCCH-type with G patch domain

EDNRA Gene

endothelin receptor type A

This gene encodes the receptor for endothelin-1, a peptide that plays a role in potent and long-lasting vasoconstriction. This receptor associates with guanine-nucleotide-binding (G) proteins, and this coupling activates a phosphatidylinositol-calcium second messenger system. Polymorphisms in this gene have been linked to migraine headache resistance. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

EDNRB Gene

endothelin receptor type B

The protein encoded by this gene is a G protein-coupled receptor which activates a phosphatidylinositol-calcium second messenger system. Its ligand, endothelin, consists of a family of three potent vasoactive peptides: ET1, ET2, and ET3. Studies suggest that the multigenic disorder, Hirschsprung disease type 2, is due to mutations in the endothelin receptor type B gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2011]

MORC2 Gene

MORC family CW-type zinc finger 2

MORC3 Gene

MORC family CW-type zinc finger 3

This gene encodes a protein that localizes to the nuclear matrix. The protein also has RNA binding activity, and has a predicted coiled-coil domain. [provided by RefSeq, Jul 2008]

MORC1 Gene

MORC family CW-type zinc finger 1

This gene encodes the human homolog of mouse morc and like the mouse protein it is testis-specific. Mouse studies support a testis-specific function since only male knockout mice are infertile; infertility is the only apparent defect. These studies further support a role for this protein early in spermatogenesis, possibly by affecting entry into apoptosis because testis from knockout mice show greatly increased numbers of apoptotic cells. [provided by RefSeq, Jan 2009]

MORC4 Gene

MORC family CW-type zinc finger 4

In human, the four current members of the microrchidia (morc) gene family share an N-terminal ATPase-like ATP-binding region and a CW four-cysteine zinc-finger motif. The protein encoded by this gene also has a nuclear matrix binding domain and a two-stranded coiled-coil motif near its C-terminus. This gene is widely expressed at low levels in normal tissues and has elevated expression in placenta and testis. Alternative splicing results in multiple transcript variants encoding distinct proteins. [provided by RefSeq, Jan 2010]

COL28A1 Gene

collagen, type XXVIII, alpha 1

COL28A1 belongs to a class of collagens containing von Willebrand factor (VWF; MIM 613160) type A (VWFA) domains (Veit et al., 2006 [PubMed 16330543]).[supplied by OMIM, Nov 2010]

ZNFX1 Gene

zinc finger, NFX1-type containing 1

CLEC7A Gene

C-type lectin domain family 7, member A

This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. The encoded glycoprotein is a small type II membrane receptor with an extracellular C-type lectin-like domain fold and a cytoplasmic domain with an immunoreceptor tyrosine-based activation motif. It functions as a pattern-recognition receptor that recognizes a variety of beta-1,3-linked and beta-1,6-linked glucans from fungi and plants, and in this way plays a role in innate immune response. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region. [provided by RefSeq, Jul 2008]

ZNHIT3 Gene

zinc finger, HIT-type containing 3

ZNHIT2 Gene

zinc finger, HIT-type containing 2

ZNHIT1 Gene

zinc finger, HIT-type containing 1

ZNHIT6 Gene

zinc finger, HIT-type containing 6

KRT17 Gene

keratin 17, type I

This gene encodes the type I intermediate filament chain keratin 17, expressed in nail bed, hair follicle, sebaceous glands, and other epidermal appendages. Mutations in this gene lead to Jackson-Lawler type pachyonychia congenita and steatocystoma multiplex. [provided by RefSeq, Aug 2008]

KRT16 Gene

keratin 16, type I

The protein encoded by this gene is a member of the keratin gene family. The keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into cytokeratins and hair keratins. Most of the type I cytokeratins consist of acidic proteins which are arranged in pairs of heterotypic keratin chains and are clustered in a region of chromosome 17q12-q21. This keratin has been coexpressed with keratin 14 in a number of epithelial tissues, including esophagus, tongue, and hair follicles. Mutations in this gene are associated with type 1 pachyonychia congenita, non-epidermolytic palmoplantar keratoderma and unilateral palmoplantar verrucous nevus. [provided by RefSeq, Jul 2008]

KRT15 Gene

keratin 15, type I

The protein encoded by this gene is a member of the keratin gene family. The keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into cytokeratins and hair keratins. Most of the type I cytokeratins consist of acidic proteins which are arranged in pairs of heterotypic keratin chains and are clustered in a region on chromosome 17q21.2. [provided by RefSeq, Jul 2008]

KRT14 Gene

keratin 14, type I

This gene encodes a member of the keratin family, the most diverse group of intermediate filaments. This gene product, a type I keratin, is usually found as a heterotetramer with two keratin 5 molecules, a type II keratin. Together they form the cytoskeleton of epithelial cells. Mutations in the genes for these keratins are associated with epidermolysis bullosa simplex. At least one pseudogene has been identified at 17p12-p11. [provided by RefSeq, Jul 2008]

KRT13 Gene

keratin 13, type I

The protein encoded by this gene is a member of the keratin gene family. The keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into cytokeratins and hair keratins. Most of the type I cytokeratins consist of acidic proteins which are arranged in pairs of heterotypic keratin chains. This type I cytokeratin is paired with keratin 4 and expressed in the suprabasal layers of non-cornified stratified epithelia. Mutations in this gene and keratin 4 have been associated with the autosomal dominant disorder White Sponge Nevus. The type I cytokeratins are clustered in a region of chromosome 17q21.2. Alternative splicing of this gene results in multiple transcript variants; however, not all variants have been described. [provided by RefSeq, Jul 2008]

KRT12 Gene

keratin 12, type I

KRT12 encodes the type I intermediate filament chain keratin 12, expressed in corneal epithelia. Mutations in this gene lead to Meesmann corneal dystrophy. [provided by RefSeq, Jul 2008]

KRT10 Gene

keratin 10, type I

This gene encodes a member of the type I (acidic) cytokeratin family, which belongs to the superfamily of intermediate filament (IF) proteins. Keratins are heteropolymeric structural proteins which form the intermediate filament. These filaments, along with actin microfilaments and microtubules, compose the cytoskeleton of epithelial cells. Mutations in this gene are associated with epidermolytic hyperkeratosis. This gene is located within a cluster of keratin family members on chromosome 17q21. [provided by RefSeq, Jul 2008]

KRT19 Gene

keratin 19, type I

The protein encoded by this gene is a member of the keratin family. The keratins are intermediate filament proteins responsible for the structural integrity of epithelial cells and are subdivided into cytokeratins and hair keratins. The type I cytokeratins consist of acidic proteins which are arranged in pairs of heterotypic keratin chains. Unlike its related family members, this smallest known acidic cytokeratin is not paired with a basic cytokeratin in epithelial cells. It is specifically expressed in the periderm, the transiently superficial layer that envelopes the developing epidermis. The type I cytokeratins are clustered in a region of chromosome 17q12-q21. [provided by RefSeq, Jul 2008]

KRT18 Gene

keratin 18, type I

KRT18 encodes the type I intermediate filament chain keratin 18. Keratin 18, together with its filament partner keratin 8, are perhaps the most commonly found members of the intermediate filament gene family. They are expressed in single layer epithelial tissues of the body. Mutations in this gene have been linked to cryptogenic cirrhosis. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

THSD1P1 Gene

thrombospondin, type I, domain containing 1 pseudogene 1

COL11A1 Gene

collagen, type XI, alpha 1

This gene encodes one of the two alpha chains of type XI collagen, a minor fibrillar collagen. Type XI collagen is a heterotrimer but the third alpha chain is a post-translationally modified alpha 1 type II chain. Mutations in this gene are associated with type II Stickler syndrome and with Marshall syndrome. A single-nucleotide polymorphism in this gene is also associated with susceptibility to lumbar disc herniation. Multiple transcript variants have been identified for this gene. [provided by RefSeq, Nov 2009]

COL11A2 Gene

collagen, type XI, alpha 2

This gene encodes one of the two alpha chains of type XI collagen, a minor fibrillar collagen. It is located on chromosome 6 very close to but separate from the gene for retinoid X receptor beta. Type XI collagen is a heterotrimer but the third alpha chain is a post-translationally modified alpha 1 type II chain. Proteolytic processing of this type XI chain produces PARP, a proline/arginine-rich protein that is an amino terminal domain. Mutations in this gene are associated with type III Stickler syndrome, otospondylomegaepiphyseal dysplasia (OSMED syndrome), Weissenbacher-Zweymuller syndrome, autosomal dominant non-syndromic sensorineural type 13 deafness (DFNA13), and autosomal recessive non-syndromic sensorineural type 53 deafness (DFNB53). Alternative splicing results in multiple transcript variants. A related pseudogene is located nearby on chromosome 6. [provided by RefSeq, Jul 2009]

ACVR2A Gene

activin A receptor, type IIA

This gene encodes a receptor that mediates the functions of activins, which are members of the transforming growth factor-beta (TGF-beta) superfamily involved in diverse biological processes. The encoded protein is a transmembrane serine-threonine kinase receptor which mediates signaling by forming heterodimeric complexes with various combinations of type I and type II receptors and ligands in a cell-specific manner. The encoded type II receptor is primarily involved in ligand-binding and includes an extracellular ligand-binding domain, a transmembrane domain and a cytoplasmic serine-threonine kinase domain. This gene may be associated with susceptibility to preeclampsia, a pregnancy-related disease which can result in maternal and fetal morbidity and mortality. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jun 2013]

ACVR2B Gene

activin A receptor, type IIB

Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I (I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. Type II receptors are considered to be constitutively active kinases. This gene encodes activin A type IIB receptor, which displays a 3- to 4-fold higher affinity for the ligand than activin A type II receptor. [provided by RefSeq, Jul 2008]

ZMYND15 Gene

zinc finger, MYND-type containing 15

This gene encodes a MYND-containing zinc-binding protein with a nuclear localization sequence. A similar gene in mice has been shown to act as a testis-specific transcriptional repressor by recruiting histone deacetylase enzymes to regulate spatiotemporal expression of many haploid genes. This protein may play an important role in spermatogenesis. Alternative splicing results in multiple transcript variants and protein isoforms. [provided by RefSeq, Jun 2012]

ZMYND12 Gene

zinc finger, MYND-type containing 12

ZMYND10 Gene

zinc finger, MYND-type containing 10

ZMYND11 Gene

zinc finger, MYND-type containing 11

The protein encoded by this gene was first identified by its ability to bind the adenovirus E1A protein. The protein localizes to the nucleus. It functions as a transcriptional repressor, and expression of E1A inhibits this repression. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

ZMYND19 Gene

zinc finger, MYND-type containing 19

ZMYND19 is a MYND zinc finger domain-containing protein that binds to the C terminus of melanin-concentrating hormone receptor-1 (MCHR1; MIM 601751) (Bachner et al., 2002 [PubMed 12208518]), and to the N termini of alpha-tubulin (TUBA1; MIM 191110), and beta-tubulin (TUBB; MIM 191130) (Francke et al., 2005 [PubMed 16039987]).[supplied by OMIM, Mar 2008]

WNT2B Gene

wingless-type MMTV integration site family, member 2B

This gene encodes a member of the wingless-type MMTV integration site (WNT) family of highly conserved, secreted signaling factors. WNT family members function in a variety of developmental processes including regulation of cell growth and differentiation and are characterized by a WNT-core domain. This gene may play a role in human development as well as carcinogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

CYB5AP5 Gene

cytochrome b5 type A (microsomal) pseudogene 5

PSMA3 Gene

proteasome (prosome, macropain) subunit, alpha type, 3

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the peptidase T1A family, that is a 20S core alpha subunit. Two alternative transcripts encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

CDO1 Gene

cysteine dioxygenase type 1

PIP4K2A Gene

phosphatidylinositol-5-phosphate 4-kinase, type II, alpha

Phosphatidylinositol-5,4-bisphosphate, the precursor to second messengers of the phosphoinositide signal transduction pathways, is thought to be involved in the regulation of secretion, cell proliferation, differentiation, and motility. The protein encoded by this gene is one of a family of enzymes capable of catalyzing the phosphorylation of phosphatidylinositol-5-phosphate on the fourth hydroxyl of the myo-inositol ring to form phosphatidylinositol-5,4-bisphosphate. The amino acid sequence of this enzyme does not show homology to other kinases, but the recombinant protein does exhibit kinase activity. This gene is a member of the phosphatidylinositol-5-phosphate 4-kinase family. [provided by RefSeq, Jul 2008]

PIP4K2C Gene

phosphatidylinositol-5-phosphate 4-kinase, type II, gamma

PIP4K2B Gene

phosphatidylinositol-5-phosphate 4-kinase, type II, beta

The protein encoded by this gene catalyzes the phosphorylation of phosphatidylinositol-5-phosphate on the fourth hydroxyl of the myo-inositol ring to form phosphatidylinositol-5,4-bisphosphate. This gene is a member of the phosphatidylinositol-5-phosphate 4-kinase family. The encoded protein sequence does not show similarity to other kinases, but the protein does exhibit kinase activity. Additionally, the encoded protein interacts with p55 TNF receptor. [provided by RefSeq, Jul 2008]

LOC103156999 Gene

dynein, light chain, Tctex-type 1 pseudogene

LOC105379861 Gene

neuropeptide Y receptor type 4

PIEZO1P1 Gene

piezo-type mechanosensitive ion channel component 1 pseudogene 1

PIEZO1P2 Gene

piezo-type mechanosensitive ion channel component 1 pseudogene 2

ALOX15B Gene

arachidonate 15-lipoxygenase, type B

This gene encodes a member of the lipoxygenase family of structurally related nonheme iron dioxygenases involved in the production of fatty acid hydroperoxides. The encoded protein converts arachidonic acid exclusively to 15S-hydroperoxyeicosatetraenoic acid, while metabolizing linoleic acid less effectively. This gene is located in a cluster of related genes and a pseudogene that spans approximately 100 kilobases on the short arm of chromosome 17. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

HBN1 Gene

Progressive familial heart block, type I, locus 1

DYNLT3P1 Gene

dynein, light chain, Tctex-type 3 pseudogene 1

DYNLT3P2 Gene

dynein, light chain, Tctex-type 3 pseudogene 2

PSMB11 Gene

proteasome (prosome, macropain) subunit, beta type, 11

Proteasomes generate peptides that are presented by major histocompatibility complex (MHC) I molecules to other cells of the immune system. Proteolysis is conducted by 20S proteasomes, complexes of 28 subunits arranged as a cylinder in 4 heteroheptameric rings: alpha-1 to -7, beta-1 to -7, beta-1 to -7, and alpha-1 to -7. The catalytic subunits are beta-1 (PSMB6; MIM 600307), beta-2 (PSMB7; MIM 604030), and beta-5 (PSMB5; MIM 600306). Three additional subunits, beta-1i (PSMB9; MIM 177045), beta-2i (PSMB10; MIM 176847), and beta-5i (PSMB8; MIM 177046), are induced by gamma-interferon (IFNG; MIM 147570) and are preferentially incorporated into proteasomes to make immunoproteasomes. PSMB11, or beta-5t, is a catalytic subunit expressed exclusively in cortical thymic epithelial cells (Murata et al., 2007 [PubMed 17540904]).[supplied by OMIM, Mar 2008]

PSMB10 Gene

proteasome (prosome, macropain) subunit, beta type, 10

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Proteolytic processing is required to generate a mature subunit. Expression of this gene is induced by gamma interferon, and this gene product replaces catalytic subunit 2 (proteasome beta 7 subunit) in the immunoproteasome. [provided by RefSeq, Jul 2008]

ADAMTS8 Gene

ADAM metallopeptidase with thrombospondin type 1 motif, 8

This gene encodes a member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) protein family. Members of the family share several distinct protein modules, including a propeptide region, a metalloproteinase domain, a disintegrin-like domain, and a thrombospondin type 1 (TS) motif. Individual members of this family differ in the number of C-terminal TS motifs, and some have unique C-terminal domains. The enzyme encoded by this gene contains two C-terminal TS motifs, and disrupts angiogenesis in vivo. A number of disorders have been mapped in the vicinity of this gene, most notably lung neoplasms. [provided by RefSeq, Jul 2008]

CDH8 Gene

cadherin 8, type 2

This gene encodes a type II classical cadherin from the cadherin superfamily, integral membrane proteins that mediate calcium-dependent cell-cell adhesion. Mature cadherin proteins are composed of a large N-terminal extracellular domain, a single membrane-spanning domain, and a small, highly conserved C-terminal cytoplasmic domain. The extracellular domain consists of 5 subdomains, each containing a cadherin motif, and appears to determine the specificity of the protein's homophilic cell adhesion activity. Type II (atypical) cadherins are defined based on their lack of a HAV cell adhesion recognition sequence specific to type I cadherins. This particular cadherin is expressed in brain and is putatively involved in synaptic adhesion, axon outgrowth and guidance. [provided by RefSeq, Jul 2008]

CDH2 Gene

cadherin 2, type 1, N-cadherin (neuronal)

This gene is a classical cadherin from the cadherin superfamily. The encoded protein is a calcium dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail. The protein functions during gastrulation and is required for establishment of left-right asymmetry. At certain central nervous system synapses, presynaptic to postsynaptic adhesion is mediated at least in part by this gene product. [provided by RefSeq, Jul 2008]

SCN3A Gene

sodium channel, voltage gated, type III alpha subunit

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit with 24 transmembrane domains and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel alpha subunit gene family, and is found in a cluster of five alpha subunit genes on chromosome 2. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SCN3B Gene

sodium channel, voltage gated, type III beta subunit

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel beta subunit gene family, and influences the inactivation kinetics of the sodium channel. Two alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

PIK3C2B Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 beta

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. The PI3-kinase activity of this protein is sensitive to low nanomolar levels of the inhibitor wortmanin. The C2 domain of this protein was shown to bind phospholipids but not Ca2+, which suggests that this enzyme may function in a calcium-independent manner. [provided by RefSeq, Jul 2008]

PIK3C2A Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. The PI3-kinase activity of this protein is not sensitive to nanomolar levels of the inhibitor wortmanin. This protein was shown to be able to be activated by insulin and may be involved in integrin-dependent signaling. [provided by RefSeq, Jul 2008]

PIK3C2G Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. This gene may play a role in several diseases, including type II diabetes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

AFD1 Gene

acrofacial dysostosis 1, Nager type

PIP5K1P1 Gene

phosphatidylinositol-4-phosphate 5-kinase, type I, pseudogene 1

PIP5K1P2 Gene

phosphatidylinositol-4-phosphate 5-kinase, type I, pseudogene 2

LOC100132830 Gene

zinc finger CCCH-type containing 14 pseudogene

LOC100421641 Gene

zinc finger CCHC-type and RNA binding motif 1 pseudogene

BDET Gene

Bleeding disorder, east Texas type

LOC391813 Gene

zinc finger, DHHC-type containing 3 pseudogene

NMSR Gene

Neuropathy, hereditary motor and sensory, Russe type

FRA15A Gene

fragile site, aphidicolin type, common, fra(15)(q22)

LOC100133225 Gene

zinc finger, DHHC-type containing 7 pseudogene

ZC3H8 Gene

zinc finger CCCH-type containing 8

ZC3H3 Gene

zinc finger CCCH-type containing 3

COL22A1 Gene

collagen, type XXII, alpha 1

COL22A1, a member of the FACIT (fibrillar-associated collagens with interrupted triple helices) subgroup of the collagen protein family, specifically localizes to tissue junctions (Koch et al., 2004 [PubMed 15016833]).[supplied by OMIM, Mar 2008]

ZC3H4 Gene

zinc finger CCCH-type containing 4

This gene encodes a member of a family of CCCH (C-x8-C-x5-C-x3-H type) zinc finger domain-containing proteins. These zinc finger domains, which coordinate zinc finger binding and are characterized by three cysteine residues and one histidine residue, are nucleic acid-binding. Other family members are known to function in post-transcriptional regulation. [provided by RefSeq, Aug 2011]

LOC100422416 Gene

ADAM metallopeptidase with thrombospondin type 1 motif, 7 pseudogene

ZDHHC20P4 Gene

zinc finger, DHHC-type containing 20 pseudogene 4

ZDHHC20P2 Gene

zinc finger, DHHC-type containing 20 pseudogene 2

ZDHHC20P1 Gene

zinc finger, DHHC-type containing 20 pseudogene 1

COL5A2 Gene

collagen, type V, alpha 2

This gene encodes an alpha chain for one of the low abundance fibrillar collagens. Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in tissues containing type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This gene product is closely related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type with tissue-specific chain combinations. Mutations in this gene are associated with Ehlers-Danlos syndrome, types I and II. [provided by RefSeq, Jul 2008]

COL5A3 Gene

collagen, type V, alpha 3

This gene encodes an alpha chain for one of the low abundance fibrillar collagens. Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in tissues containing type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This gene product is closely related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type with tissue-specific chain combinations. Mutations in this gene are thought to be responsible for the symptoms of a subset of patients with Ehlers-Danlos syndrome type III. Messages of several sizes can be detected in northern blots but sequence information cannot confirm the identity of the shorter messages. [provided by RefSeq, Jul 2008]

COL5A1 Gene

collagen, type V, alpha 1

This gene encodes an alpha chain for one of the low abundance fibrillar collagens. Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in tissues containing type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This gene product is closely related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type with tissue-specific chain combinations. The encoded procollagen protein occurs commonly as the heterotrimer pro-alpha1(V)-pro-alpha1(V)-pro-alpha2(V). Mutations in this gene are associated with Ehlers-Danlos syndrome, types I and II. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2013]

ZBED1 Gene

zinc finger, BED-type containing 1

This gene is located in the pseudoautosomal region 1 (PAR1) of X and Y chromosomes. It was earlier identified as a gene with similarity to Ac transposable elements, however, was found not to have transposase activity. Later studies show that this gene product is localized in the nucleus and functions as a transcription factor. It binds to DNA elements found in the promoter regions of several genes related to cell proliferation, such as histone H1, hence may have a role in regulating genes related to cell proliferation. Alternatively spliced transcript variants with different 5' untranslated region have been found for this gene. [provided by RefSeq, Jan 2010]

ZBED2 Gene

zinc finger, BED-type containing 2

ZBED3 Gene

zinc finger, BED-type containing 3

ZBED5 Gene

zinc finger, BED-type containing 5

This gene is unusual in that its coding sequence is mostly derived from Charlie-like DNA transposon; however, it does not appear to be an active DNA transposon as it is not flanked by terminal inverted repeats. The encoded protein is conserved among the mammalian Laurasiatheria branch. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jan 2009]

ZBED6 Gene

zinc finger, BED-type containing 6

ZBED8 Gene

zinc finger, BED-type containing 8

ZBED9 Gene

zinc finger, BED-type containing 9

NIDDM2 Gene

non-insulin-dependent diabetes mellitus (common, type 2) 2

NIDDM1 Gene

non-insulin-dependent diabetes mellitus (common, type 2) 1

FHII Gene

Hyperaldosteronism, familial, type II

CYB5AP2 Gene

cytochrome b5 type A (microsomal) pseudogene 2

HMU Gene

Hypotrichosis, Marie Unna type

CELSR3 Gene

cadherin, EGF LAG seven-pass G-type receptor 3

This gene belongs to the flamingo subfamily, which is included in the cadherin superfamily. The flamingo cadherins consist of nonclassic-type cadherins that do not interact with catenins. They are plasma membrane proteins containing seven epidermal growth factor-like repeats, nine cadherin domains and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic feature of their subfamily. The encoded protein may be involved in the regulation of contact-dependent neurite growth and may play a role in tumor formation. [provided by RefSeq, Jun 2013]

CELSR2 Gene

cadherin, EGF LAG seven-pass G-type receptor 2

The protein encoded by this gene is a member of the flamingo subfamily, part of the cadherin superfamily. The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. It is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. The specific function of this particular member has not been determined. [provided by RefSeq, Jul 2008]

CELSR1 Gene

cadherin, EGF LAG seven-pass G-type receptor 1

The protein encoded by this gene is a member of the flamingo subfamily, part of the cadherin superfamily. The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. It is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. This particular member is a developmentally regulated, neural-specific gene which plays an unspecified role in early embryogenesis. [provided by RefSeq, Jul 2008]

PSMA2 Gene

proteasome (prosome, macropain) subunit, alpha type, 2

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is com