Name

RRIS Gene

Respiratory rhythmicity in sleep

NRF1 Gene

nuclear respiratory factor 1

This gene encodes a protein that homodimerizes and functions as a transcription factor which activates the expression of some key metabolic genes regulating cellular growth and nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. The protein has also been associated with the regulation of neurite outgrowth. Alternative splicing results in multiple transcript variants. Confusion has occurred in bibliographic databases due to the shared symbol of NRF1 for this gene and for "nuclear factor (erythroid-derived 2)-like 1" which has an official symbol of NFE2L1. [provided by RefSeq, May 2014]

LOC105378951 Gene

collagen alpha-1(III) chain-like

LOC105371176 Gene

Ig heavy chain V-III region VH26-like

LOC102725101 Gene

Ig heavy chain V-III region VH26-like

LOC101059944 Gene

collagen alpha-1(III) chain-like

LOC105379546 Gene

Ig heavy chain V-III region VH26-like

LOC105379541 Gene

Ig heavy chain V-III region VH26-like

LOC105372231 Gene

collagen alpha-1(III) chain-like

LOC102723387 Gene

Ig heavy chain V-III region J606-like

LOC105379421 Gene

collagen alpha-1(III) chain-like

LOC105373982 Gene

collagen alpha-1(III) chain-like

LOC100652743 Gene

ig kappa chain V-III region VH-like pseudogene

LOC105379210 Gene

Ig heavy chain V-III region VH26-like

LOC102725144 Gene

collagen alpha-1(III) chain-like

LOC101927503 Gene

collagen alpha-1(III) chain-like

LOC105373289 Gene

collagen alpha-1(III) chain-like

LOC101928728 Gene

collagen alpha-1(III) chain-like

LOC105375110 Gene

collagen alpha-1(III) chain-like

LOC644310 Gene

ubiquinol-cytochrome c reductase, complex III subunit X pseudogene

UQCR10 Gene

ubiquinol-cytochrome c reductase, complex III subunit X

UCRC is a subunit of mitochondrial complex III (ubiquinol-cytochrome c reductase; EC 1.10.2.2), which forms the middle segment of the respiratory chain of the inner mitochondrial membrane (Schagger et al., 1995 [PubMed 8592474]).[supplied by OMIM, Mar 2008]

UQCR11 Gene

ubiquinol-cytochrome c reductase, complex III subunit XI

This gene encodes the smallest known component of the ubiquinol-cytochrome c reductase complex, which forms part of the mitochondrial respiratory chain. The encoded protein may function as a binding factor for the iron-sulfur protein in this complex. [provided by RefSeq, Oct 2009]

UQCRQ Gene

ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5kDa

This gene encodes a ubiquinone-binding protein of low molecular mass. This protein is a small core-associated protein and a subunit of ubiquinol-cytochrome c reductase complex III, which is part of the mitochondrial respiratory chain. [provided by RefSeq, Jul 2008]

ECHS1 Gene

enoyl CoA hydratase, short chain, 1, mitochondrial

The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature. [provided by RefSeq, Jul 2008]

BCAT2 Gene

branched chain amino-acid transaminase 2, mitochondrial

This gene encodes a branched chain aminotransferase found in mitochondria. The encoded protein forms a dimer that catalyzes the first step in the production of the branched chain amino acids leucine, isoleucine, and valine. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

CD74 Gene

CD74 molecule, major histocompatibility complex, class II invariant chain

The protein encoded by this gene associates with class II major histocompatibility complex (MHC) and is an important chaperone that regulates antigen presentation for immune response. It also serves as cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF) which, when bound to the encoded protein, initiates survival pathways and cell proliferation. This protein also interacts with amyloid precursor protein (APP) and suppresses the production of amyloid beta (Abeta). Multiple alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Aug 2011]

ATP5C1 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the gamma subunit of the catalytic core. Alternatively spliced transcript variants encoding different isoforms have been identified. This gene also has a pseudogene on chromosome 14. [provided by RefSeq, Jul 2008]

ATP5L2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G2

LOC100127892 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene

LOC100289091 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G2 pseudogene

ATP5BP1 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide pseudogene 1

ATP5J2LP Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2-like pseudogene

LOC100288416 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 pseudogene

ATP5JP1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6 pseudogene 1

ATP5A1 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, using an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the alpha subunit of the catalytic core. Alternatively spliced transcript variants encoding the different isoforms have been identified. Pseudogenes of this gene are located on chromosomes 9, 2, and 16. [provided by RefSeq, Mar 2012]

ATP5J2P6 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 pseudogene 6

ATP5J2P4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 pseudogene 4

ATP5J2P5 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 pseudogene 5

ATP5J2P2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 pseudogene 2

ATP5J2P3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2 pseudogene 3

ATP5S Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit s (factor B)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. This gene encodes the subunit s, also known as factor B, of the proton channel. This subunit is necessary for the energy transduction activity of the ATP synthase complexes. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

ATP5J Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6

Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the F6 subunit of the Fo complex, required for F1 and Fo interactions. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. A pseudogene exists on chromosome Yp11.[provided by RefSeq, Jun 2010]

ATP5I Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit E

Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the e subunit of the Fo complex. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Jun 2010]

ATP5H Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d

Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the d subunit of the Fo complex. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. In addition, three pseudogenes are located on chromosomes 9, 12 and 15. [provided by RefSeq, Jun 2010]

ATP5O Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit

The protein encoded by this gene is a component of the F-type ATPase found in the mitochondrial matrix. F-type ATPases are composed of a catalytic core and a membrane proton channel. The encoded protein appears to be part of the connector linking these two components and may be involved in transmission of conformational changes or proton conductance. [provided by RefSeq, Jul 2008]

ATP5B Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the beta subunit of the catalytic core. [provided by RefSeq, Jul 2008]

ATP5E Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the epsilon subunit of the catalytic core. Two pseudogenes of this gene are located on chromosomes 4 and 13. Read-through transcripts that include exons from this gene are expressed from the upstream gene SLMO2.[provided by RefSeq, Mar 2011]

ATP5D Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the delta subunit of the catalytic core. Alternatively spliced transcript variants encoding the same isoform have been identified. [provided by RefSeq, Jul 2008]

LOC100132849 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit pseudogene

ATP5C1P1 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1 pseudogene 1

LOC100507083 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene

ATP5J2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2

Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The catalytic portion of mitochondrial ATP synthase consists of five different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and single representatives of the gamma, delta, and epsilon subunits. The proton channel likely has nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the f subunit of the Fo complex. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. This gene has multiple pseudogenes. Naturally occurring read-through transcription also exists between this gene and the downstream pentatricopeptide repeat domain 1 (PTCD1) gene. [provided by RefSeq, Nov 2010]

ATP5EP1 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit pseudogene 1

ATP5EP2 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit pseudogene 2

ATP5G2P1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 1

ATP5G2P3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 3

ATP5G2P2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 2

ATP5G2P4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 4

ATP5HP1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d, pseudogene 1

ATP5HP3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d, pseudogene 3

ATP5HP2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d, pseudogene 2

ATP5HP4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d, pseudogene 4

ATP5G3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene is one of three genes that encode subunit c of the proton channel. Each of the three genes have distinct mitochondrial import sequences but encode the identical mature protein. Alternatively spliced transcript variants encoding different proteins have been identified. [provided by RefSeq, Jun 2010]

ATP5G2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and single representatives of the gamma, delta, and epsilon subunits. The proton channel likely has nine subunits (a, b, c, d, e, f, g, F6 and 8). There are three separate genes which encode subunit c of the proton channel and they specify precursors with different import sequences but identical mature proteins. The protein encoded by this gene is one of three precursors of subunit c. Alternatively spliced transcript variants encoding different isoforms have been identified. This gene has multiple pseudogenes. [provided by RefSeq, Jun 2010]

ATP5A1P4 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 4

ATP5A1P5 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 5

ATP5A1P7 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 7

ATP5A1P2 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 2

ATP5A1P3 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 3

ATP5A1P8 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 8

NDUFA4 Gene

NDUFA4, mitochondrial complex associated

The protein encoded by this gene belongs to the complex I 9kDa subunit family. Mammalian complex I of mitochondrial respiratory chain is composed of 45 different subunits. This protein has NADH dehydrogenase activity and oxidoreductase activity. It transfers electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. [provided by RefSeq, Jul 2008]

ATP5A1P10 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 pseudogene 10

ATP5F1P1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 1

ATP5F1P3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 3

ATP5F1P5 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 5

ATP5F1P4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 4

ATP5F1P7 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 7

ATP5F1P6 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 6

LOC100130270 Gene

NDUFA4, mitochondrial complex associated pseudogene

ATPAF2 Gene

ATP synthase mitochondrial F1 complex assembly factor 2

This gene encodes an assembly factor for the F(1) component of the mitochondrial ATP synthase. This protein binds specifically to the F1 alpha subunit and is thought to prevent this subunit from forming nonproductive homooligomers during enzyme assembly. This gene is located within the Smith-Magenis syndrome region on chromosome 17. An alternatively spliced transcript variant has been described, but its biological validity has not been determined. [provided by RefSeq, Jul 2008]

ATPAF1 Gene

ATP synthase mitochondrial F1 complex assembly factor 1

This gene encodes an assembly factor for the F(1) component of the mitochondrial ATP synthase. This protein binds specifically to the F1 beta subunit and is thought to prevent this subunit from forming nonproductive homooligomers during enzyme assembly. Alternatively spliced transcript variants have been identified. [provided by RefSeq, Aug 2011]

ATP5LP5 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 5

ATP5LP4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 4

ATP5LP7 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 7

ATP5LP6 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 6

ATP5LP1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 1

ATP5LP3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 3

ATP5LP2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 2

ATP5LP8 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit g, pseudogene 8

ATP5G1P3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 3

ATP5G1P1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 1

ATP5F1P2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 pseudogene 2

ATP5L Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G

Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the g subunit of the Fo complex. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Jun 2010]

ATP5G1P2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 2

ATP5G1P6 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 6

ATP5G1P7 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 7

ATP5G1P4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 4

ATP5G1P5 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 5

ATP5G1P8 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 8

ATP5F1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the b subunit of the proton channel. [provided by RefSeq, Jul 2008]

LOC100287498 Gene

NDUFA4, mitochondrial complex associated pseudogene

ATP5G1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene is one of three genes that encode subunit c of the proton channel. Each of the three genes have distinct mitochondrial import sequences but encode the identical mature protein. Alternatively spliced transcript variants encoding the same protein have been identified. [provided by RefSeq, Jul 2008]

SYT3 Gene

synaptotagmin III

PLA2G3 Gene

phospholipase A2, group III

This gene encodes a protein that belongs to the secreted phospholipase A2 family, whose members include the bee venom enzyme. The encoded enzyme functions in lipid metabolism and catalyzes the calcium-dependent hydrolysis of the sn-2 acyl bond of phospholipids to release arachidonic acid and lysophospholipids. This enzyme acts as a negative regulator of ciliogenesis, and may play a role in cancer development by stimulating tumor cell growth and angiogenesis. This gene is associated with oxidative stress, and polymorphisms in this gene are linked to risk for Alzheimer's disease. [provided by RefSeq, Apr 2014]

IGHVIII-26-1 Gene

immunoglobulin heavy variable (III)-26-1 (pseudogene)

FSD1L Gene

fibronectin type III and SPRY domain containing 1-like

FANK1 Gene

fibronectin type III and ankyrin repeat domains 1

DROSHA Gene

drosha, ribonuclease type III

Members of the ribonuclease III superfamily of double-stranded (ds) RNA-specific endoribonucleases participate in diverse RNA maturation and decay pathways in eukaryotic and prokaryotic cells (Fortin et al., 2002 [PubMed 12191433]). The RNase III Drosha is the core nuclease that executes the initiation step of microRNA (miRNA) processing in the nucleus (Lee et al., 2003 [PubMed 14508493]).[supplied by OMIM, Mar 2008]

POLR3GP2 Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD) pseudogene 2

POLR3GP1 Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD) pseudogene 1

ANKFN1 Gene

ankyrin-repeat and fibronectin type III domain containing 1

APOC3 Gene

apolipoprotein C-III

Apolipoprotein C-III is a very low density lipoprotein (VLDL) protein. APOC3 inhibits lipoprotein lipase and hepatic lipase; it is thought to delay catabolism of triglyceride-rich particles. The APOA1, APOC3 and APOA4 genes are closely linked in both rat and human genomes. The A-I and A-IV genes are transcribed from the same strand, while the A-1 and C-III genes are convergently transcribed. An increase in apoC-III levels induces the development of hypertriglyceridemia. [provided by RefSeq, Jul 2008]

LOC101060521 Gene

DNA-directed RNA polymerase III subunit RPC5

POLR3F Gene

polymerase (RNA) III (DNA directed) polypeptide F, 39 kDa

The protein encoded by this gene is one of more than a dozen subunits forming eukaryotic RNA polymerase III (RNA Pol III), which transcribes 5S ribosomal RNA and tRNA genes. This protein has been shown to bind both TFIIIB90 and TBP, two subunits of RNA polymerase III transcription initiation factor IIIB (TFIIIB). Unlike most of the other RNA Pol III subunits, the encoded protein is unique to this polymerase. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

POLR3G Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD)

POLR3D Gene

polymerase (RNA) III (DNA directed) polypeptide D, 44kDa

This gene complements a temperature-sensitive mutant isolated from the BHK-21 Syrian hamster cell line. It leads to a block in progression through the G1 phase of the cell cycle at nonpermissive temperatures. [provided by RefSeq, Jul 2008]

POLR3E Gene

polymerase (RNA) III (DNA directed) polypeptide E (80kD)

POLR3B Gene

polymerase (RNA) III (DNA directed) polypeptide B

This gene encodes the second largest subunit of RNA polymerase III, the polymerase responsible for synthesizing transfer and small ribosomal RNAs in eukaryotes. The largest subunit and the encoded protein form the catalytic center of RNA polymerase III. Mutations in this gene are a cause of hypomyelinating leukodystrophy. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Dec 2011]

POLR3C Gene

polymerase (RNA) III (DNA directed) polypeptide C (62kD)

POLR3A Gene

polymerase (RNA) III (DNA directed) polypeptide A, 155kDa

The protein encoded by this gene is the catalytic component of RNA polymerase III, which synthesizes small RNAs. The encoded protein also acts as a sensor to detect foreign DNA and trigger an innate immune response. [provided by RefSeq, Aug 2011]

POLR3K Gene

polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa

This gene encodes a small essential subunit of RNA polymerase III, the polymerase responsible for synthesizing transfer and small ribosomal RNAs in eukaryotes. The carboxy-terminal domain of this subunit shares a high degree of sequence similarity to the carboxy-terminal domain of an RNA polymerase II elongation factor. This similarity in sequence is supported by functional studies showing that this subunit is required for proper pausing and termination during transcription. Pseudogenes of this gene are found on chromosomes 13 and 17.[provided by RefSeq, Jul 2010]

POLR3H Gene

polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)

SYN3 Gene

synapsin III

This gene is a member of the synapsin gene family. Synapsins encode neuronal phosphoproteins which associate with the cytoplasmic surface of synaptic vesicles. Family members are characterized by common protein domains, and they are implicated in synaptogenesis and the modulation of neurotransmitter release, suggesting a potential role in several neuropsychiatric diseases. The protein encoded by this gene shares the synapsin family domain model, with domains A, C, and E exhibiting the highest degree of conservation. The protein contains a unique domain J, located between domains C and E. Based on this gene's localization to 22q12.3, a possible schizophrenia susceptibility locus, and the established neurobiological roles of the synapsins, this family member may represent a candidate gene for schizophrenia. The TIMP3 gene is located within an intron of this gene and is transcribed in the opposite direction. Alternative splicing of this gene results in multiple splice variants that encode different isoforms. [provided by RefSeq, Oct 2008]

TUBB3P1 Gene

tubulin, beta 3 class III pseudogene 1

IGHVIII-44 Gene

immunoglobulin heavy variable (III)-44 (pseudogene)

GTF2IP1 Gene

general transcription factor IIi pseudogene 1

GTF2IP3 Gene

general transcription factor IIi pseudogene 3

GTF2IP2 Gene

general transcription factor IIi pseudogene 2

GTF2IP5 Gene

general transcription factor IIi pseudogene 5

GTF2IP4 Gene

general transcription factor IIi, pseudogene 4

GTF2IP6 Gene

general transcription factor IIi pseudogene 6

FNDC8 Gene

fibronectin type III domain containing 8

FNDC9 Gene

fibronectin type III domain containing 9

FNDC4 Gene

fibronectin type III domain containing 4

FNDC5 Gene

fibronectin type III domain containing 5

This gene encodes a secreted protein that is released from muscle cells during exercise. The encoded protein may participate in the development of brown fat. Translation of the precursor protein initiates at a non-AUG start codon at a position that is conserved as an AUG start codon in other organisms. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2013]

FNDC1 Gene

fibronectin type III domain containing 1

ADH5P2 Gene

alcohol dehydrogenase 5 (class III), chi polypeptide, pseudogene 2

POLR3KP2 Gene

polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa pseudogene 2

POLR3KP1 Gene

polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa pseudogene 1

IGHVIII-2-1 Gene

immunoglobulin heavy variable (III)-2-1 (pseudogene)

IGHVIII-16-1 Gene

immunoglobulin heavy variable (III)-16-1 (pseudogene)

GTF2IP20 Gene

general transcription factor IIi pseudogene 20

LIG3 Gene

ligase III, DNA, ATP-dependent

This gene is a member of the DNA ligase family. Each member of this family encodes a protein that catalyzes the joining of DNA ends but they each have a distinct role in DNA metabolism. The protein encoded by this gene is involved in excision repair and is located in both the mitochondria and nucleus, with translation initiation from the upstream start codon allowing for transport to the mitochondria and translation initiation from a downstream start codon allowing for transport to the nucleus. Additionally, alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

SCN3A Gene

sodium channel, voltage gated, type III alpha subunit

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit with 24 transmembrane domains and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel alpha subunit gene family, and is found in a cluster of five alpha subunit genes on chromosome 2. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SCN3B Gene

sodium channel, voltage gated, type III beta subunit

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel beta subunit gene family, and influences the inactivation kinetics of the sodium channel. Two alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

PAQR3 Gene

progestin and adipoQ receptor family member III

ADH5P4 Gene

alcohol dehydrogenase 5 (class III), chi polypeptide, pseudogene 4

ADH5P3 Gene

alcohol dehydrogenase 5 (class III), chi polypeptide, pseudogene 3

TOP3BP1 Gene

topoisomerase (DNA) III beta pseudogene 1

This gene was predicted by automated computational analysis. It encodes a protein with similarity to human topoisomerase (DNA) III beta, which is thought to relax supercoiled DNA upon replication, transcription, and cell division. This gene lies in the immunoglobulin lambda gene cluster on chromosome 22q11.21. [provided by RefSeq, Jul 2008]

PADI3 Gene

peptidyl arginine deiminase, type III

This gene encodes a member of the peptidyl arginine deiminase family of enzymes, which catalyze the post-translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions. The family members have distinct substrate specificities and tissue-specific expression patterns. The type III enzyme modulates hair structural proteins, such as filaggrin in the hair follicle and trichohyalin in the inner root sheath, during hair follicle formation. Together with the type I enzyme, this enzyme may also play a role in terminal differentiation of the epidermis. This gene exists in a cluster with four other paralogous genes. [provided by RefSeq, Jul 2008]

CDAN3 Gene

congenital dyserythropoietic anemia, type III

IGHVIII-47-1 Gene

immunoglobulin heavy variable (III)-47-1 (pseudogene)

UROS Gene

uroporphyrinogen III synthase

The protein encoded by this gene catalyzes the fourth step of porphyrin biosynthesis in the heme biosynthetic pathway. Defects in this gene cause congenital erythropoietic porphyria (Gunther's disease). [provided by RefSeq, Jul 2008]

IGFN1 Gene

immunoglobulin-like and fibronectin type III domain containing 1

ICR3 Gene

ichthyosis congenita III, vulgaris-like recessive ichthyosis

FNDC3A Gene

fibronectin type III domain containing 3A

FNDC3B Gene

fibronectin type III domain containing 3B

GTF2IP8 Gene

general transcription factor IIi pseudogene 8

IGHVIII-25-1 Gene

immunoglobulin heavy variable (III)-25-1 (pseudogene)

ADH5 Gene

alcohol dehydrogenase 5 (class III), chi polypeptide

This gene encodes a member of the alcohol dehydrogenase family. Members of this family metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. The encoded protein forms a homodimer. It has virtually no activity for ethanol oxidation, but exhibits high activity for oxidation of long-chain primary alcohols and for oxidation of S-hydroxymethyl-glutathione, a spontaneous adduct between formaldehyde and glutathione. This enzyme is an important component of cellular metabolism for the elimination of formaldehyde, a potent irritant and sensitizing agent that causes lacrymation, rhinitis, pharyngitis, and contact dermatitis. The human genome contains several non-transcribed pseudogenes related to this gene. [provided by RefSeq, Oct 2008]

DIO3 Gene

deiodinase, iodothyronine, type III

The protein encoded by this intronless gene belongs to the iodothyronine deiodinase family. It catalyzes the inactivation of thyroid hormone by inner ring deiodination of the prohormone thyroxine (T4) and the bioactive hormone 3,3',5-triiodothyronine (T3) to inactive metabolites, 3,3',5'-triiodothyronine (RT3) and 3,3'-diiodothyronine (T2), respectively. This enzyme is highly expressed in the pregnant uterus, placenta, fetal and neonatal tissues, suggesting that it plays an essential role in the regulation of thyroid hormone inactivation during embryological development. This protein contains a selenocysteine (Sec) residue, which is essential for efficient enzyme activity. The selenocysteine is encoded by the UGA codon, which normally signals translation termination. The 3' UTR of Sec-containing genes have a common stem-loop structure, the sec insertion sequence (SECIS), which is necessary for the recognition of UGA as a Sec codon rather than as a stop signal. [provided by RefSeq, Jul 2008]

BRF2 Gene

BRF2, RNA polymerase III transcription initiation factor 50 kDa subunit

This gene encodes one of the multiple subunits of the RNA polymerase III transcription factor complex required for transcription of genes with promoter elements upstream of the initiation site. The product of this gene, a TFIIB-like factor, is directly recruited to the TATA-box of polymerase III small nuclear RNA gene promoters through its interaction with the TATA-binding protein. [provided by RefSeq, Jul 2008]

BRF1 Gene

BRF1, RNA polymerase III transcription initiation factor 90 kDa subunit

This gene encodes one of the three subunits of the RNA polymerase III transcription factor complex. This complex plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. The gene product belongs to the TF2B family. Several alternatively spliced variants encoding different isoforms, that function at different promoters transcribed by RNA polymerase III, have been identified. [provided by RefSeq, Jun 2011]

IGHVIII-67-4 Gene

immunoglobulin heavy variable (III)-67-4 (pseudogene)

IGHVIII-67-2 Gene

immunoglobulin heavy variable (III)-67-2 (pseudogene)

IGHVIII-67-3 Gene

immunoglobulin heavy variable (III)-67-3 (pseudogene)

LOC100422267 Gene

coagulation factor III (thromboplastin, tissue factor) pseudogene

POLR3GL Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD)-like

CA3 Gene

carbonic anhydrase III

Carbonic anhydrase III (CAIII) is a member of a multigene family (at least six separate genes are known) that encodes carbonic anhydrase isozymes. These carbonic anhydrases are a class of metalloenzymes that catalyze the reversible hydration of carbon dioxide and are differentially expressed in a number of cell types. The expression of the CA3 gene is strictly tissue specific and present at high levels in skeletal muscle and much lower levels in cardiac and smooth muscle. A proportion of carriers of Duchenne muscle dystrophy have a higher CA3 level than normal. The gene spans 10.3 kb and contains seven exons and six introns. [provided by RefSeq, Oct 2008]

IGHVIII-22-2 Gene

immunoglobulin heavy variable (III)-22-2 (pseudogene)

FSD1 Gene

fibronectin type III and SPRY domain containing 1

This gene encodes a centrosome associated protein that is characterized by an N-terminal coiled-coil region downstream of B-box (BBC) domain, a central fibronectin type III domain, and a C-terminal repeats in splA and RyR (SPRY) domain. The encoded protein associates with a subset of microtubules and may be involved in the stability and organization of microtubules during cytokinesis. [provided by RefSeq, Apr 2009]

FSD2 Gene

fibronectin type III and SPRY domain containing 2

This gene encodes a protein that belongs to the FN3/SPRY family of proteins. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

IGHVIII-51-1 Gene

immunoglobulin heavy variable (III)-51-1 (pseudogene)

TUBB3 Gene

tubulin, beta 3 class III

This gene encodes a class III member of the beta tubulin protein family. Beta tubulins are one of two core protein families (alpha and beta tubulins) that heterodimerize and assemble to form microtubules. This protein is primarily expressed in neurons and may be involved in neurogenesis and axon guidance and maintenance. Mutations in this gene are the cause of congenital fibrosis of the extraocular muscles type 3. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 6. [provided by RefSeq, Oct 2010]

FNDC7 Gene

fibronectin type III domain containing 7

DICER1 Gene

dicer 1, ribonuclease type III

This gene encodes a protein possessing an RNA helicase motif containing a DEXH box in its amino terminus and an RNA motif in the carboxy terminus. The encoded protein functions as a ribonuclease and is required by the RNA interference and small temporal RNA (stRNA) pathways to produce the active small RNA component that represses gene expression. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2010]

MT-CO3 Gene

cytochrome c oxidase III

P4HA3 Gene

prolyl 4-hydroxylase, alpha polypeptide III

This gene encodes a component of prolyl 4-hydroxylase, a key enzyme in collagen synthesis composed of two identical alpha subunits and two beta subunits. The encoded protein is one of several different types of alpha subunits and provides the major part of the catalytic site of the active enzyme. In collagen and related proteins, prolyl 4-hydroxylase catalyzes the formation of 4-hydroxyproline that is essential to the proper three-dimensional folding of newly synthesized procollagen chains. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

LOC100190934 Gene

alcohol dehydrogenase 5 (class III), chi polypeptide pseudogene

CPNE3 Gene

copine III

Calcium-dependent membrane-binding proteins may regulate molecular events at the interface of the cell membrane and cytoplasm. This gene encodes a protein which contains two type II C2 domains in the amino-terminus and an A domain-like sequence in the carboxy-terminus. The A domain mediates interactions between integrins and extracellular ligands. [provided by RefSeq, Aug 2008]

IGHVIII-76-1 Gene

immunoglobulin heavy variable (III)-76-1 (pseudogene)

SCG3 Gene

secretogranin III

The protein encoded by this gene is a member of the chromogranin/secretogranin family of neuroendocrine secretory proteins. Granins may serve as precursors for biologically active peptides. Some granins have been shown to function as helper proteins in sorting and proteolytic processing of prohormones; however, the function of this protein is unknown. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

EGFLAM Gene

EGF-like, fibronectin type III and laminin G domains

TUBB3P2 Gene

tubulin, beta 3 class III pseudogene 2

TGFBR3 Gene

transforming growth factor, beta receptor III

This locus encodes the transforming growth factor (TGF)-beta type III receptor. The encoded receptor is a membrane proteoglycan that often functions as a co-receptor with other TGF-beta receptor superfamily members. Ectodomain shedding produces soluble TGFBR3, which may inhibit TGFB signaling. Decreased expression of this receptor has been observed in various cancers. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene.[provided by RefSeq, Sep 2010]

POLR3DP1 Gene

polymerase (RNA) III (DNA directed) polypeptide D, 44kDa pseudogene 1

LRFN5 Gene

leucine rich repeat and fibronectin type III domain containing 5

IGHVIII-5-2 Gene

immunoglobulin heavy variable (III)-5-2 (pseudogene)

IGHVIII-5-1 Gene

immunoglobulin heavy variable (III)-5-1 (pseudogene)

IGHVIII-38-1 Gene

immunoglobulin heavy variable (III)-38-1 (pseudogene)

LRFN3 Gene

leucine rich repeat and fibronectin type III domain containing 3

LRFN2 Gene

leucine rich repeat and fibronectin type III domain containing 2

LRFN1 Gene

leucine rich repeat and fibronectin type III domain containing 1

LRFN4 Gene

leucine rich repeat and fibronectin type III domain containing 4

IGHVIII-82 Gene

immunoglobulin heavy variable (III)-82 (pseudogene)

LOC100289371 Gene

mitochondrially encoded cytochrome c oxidase III pseudogene

IGHVIII-11-1 Gene

immunoglobulin heavy variable (III)-11-1 (pseudogene)

TGFBR3L Gene

transforming growth factor, beta receptor III-like

IGHVIII-13-1 Gene

immunoglobulin heavy variable (III)-13-1 (pseudogene)

TOP3A Gene

topoisomerase (DNA) III alpha

This gene encodes a DNA topoisomerase, an enzyme that controls and alters the topologic states of DNA during transcription. This enzyme catalyzes the transient breaking and rejoining of a single strand of DNA which allows the strands to pass through one another, thus reducing the number of supercoils and altering the topology of DNA. This enzyme forms a complex with BLM which functions in the regulation of recombination in somatic cells. [provided by RefSeq, Jul 2008]

TOP3B Gene

topoisomerase (DNA) III beta

This gene encodes a DNA topoisomerase, an enzyme that controls and alters the topologic states of DNA during transcription. This enzyme catalyzes the transient breaking and rejoining of a single strand of DNA which allows the strands to pass through one another, thus relaxing the supercoils and altering the topology of DNA. The enzyme interacts with DNA helicase SGS1 and plays a role in DNA recombination, cellular aging and maintenance of genome stability. Low expression of this gene may be related to higher survival rates in breast cancer patients. This gene has a pseudogene on chromosome 22. Alternate splicing results in multiple transcript variants. Additional alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Aug 2013]

BDP1 Gene

B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB

The product of this gene is a subunit of the TFIIIB transcription initiation complex, which recruits RNA polymerase III to target promoters in order to initiate transcription. The encoded protein localizes to concentrated aggregates in the nucleus, and is required for transcription from all three types of polymerase III promoters. It is phosphorylated by casein kinase II during mitosis, resulting in its release from chromatin and suppression of polymerase III transcription. [provided by RefSeq, Jul 2008]

F3 Gene

coagulation factor III (thromboplastin, tissue factor)

This gene encodes coagulation factor III which is a cell surface glycoprotein. This factor enables cells to initiate the blood coagulation cascades, and it functions as the high-affinity receptor for the coagulation factor VII. The resulting complex provides a catalytic event that is responsible for initiation of the coagulation protease cascades by specific limited proteolysis. Unlike the other cofactors of these protease cascades, which circulate as nonfunctional precursors, this factor is a potent initiator that is fully functional when expressed on cell surfaces. There are 3 distinct domains of this factor: extracellular, transmembrane, and cytoplasmic. This protein is the only one in the coagulation pathway for which a congenital deficiency has not been described. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2010]

FNDC3CP Gene

fibronectin type III domain containing 3C, pseudogene

NTHL1 Gene

nth endonuclease III-like 1 (E. coli)

The protein encoded by this gene is a DNA N-glycosylase of the endonuclease III family. Like a similar protein in E. coli, the encoded protein has DNA glycosylase activity on DNA substrates containing oxidized pyrimidine residues and has apurinic/apyrimidinic lyase activity. [provided by RefSeq, Oct 2008]

COL3A1 Gene

collagen, type III, alpha 1

This gene encodes the pro-alpha1 chains of type III collagen, a fibrillar collagen that is found in extensible connective tissues such as skin, lung, uterus, intestine and the vascular system, frequently in association with type I collagen. Mutations in this gene are associated with Ehlers-Danlos syndrome types IV, and with aortic and arterial aneurysms. Two transcripts, resulting from the use of alternate polyadenylation signals, have been identified for this gene. [provided by R. Dalgleish, Feb 2008]

GTF2I Gene

general transcription factor IIi

This gene encodes a phosphoprotein containing six characteristic repeat motifs. The encoded protein binds to the initiator element (Inr) and E-box element in promoters and functions as a regulator of transcription. This locus, along with several other neighboring genes, is deleted in Williams-Beuren syndrome. There are many closely related genes and pseudogenes for this gene on chromosome 7. This gene also has pseudogenes on chromosomes 9, 13, and 21. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Jul 2013]

ELFN1 Gene

extracellular leucine-rich repeat and fibronectin type III domain containing 1

ELFN2 Gene

extracellular leucine-rich repeat and fibronectin type III domain containing 2

LOC101930347 Gene

collagen alpha-2(I) chain-like

SDR42E1 Gene

short chain dehydrogenase/reductase family 42E, member 1

ACSS3 Gene

acyl-CoA synthetase short-chain family member 3

ACSS2 Gene

acyl-CoA synthetase short-chain family member 2

This gene encodes a cytosolic enzyme that catalyzes the activation of acetate for use in lipid synthesis and energy generation. The protein acts as a monomer and produces acetyl-CoA from acetate in a reaction that requires ATP. Expression of this gene is regulated by sterol regulatory element-binding proteins, transcription factors that activate genes required for the synthesis of cholesterol and unsaturated fatty acids. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2009]

ACSS1 Gene

acyl-CoA synthetase short-chain family member 1

This gene encodes a mitochondrial acetyl-CoA synthetase enzyme. A similar protein in mice plays an important role in the tricarboxylic acid cycle by catalyzing the conversion of acetate to acetyl CoA. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Nov 2011]

DYNC1I1 Gene

dynein, cytoplasmic 1, intermediate chain 1

DYNC1I2 Gene

dynein, cytoplasmic 1, intermediate chain 2

This gene encodes a member of the dynein intermediate chain family. The encoded protein is a non-catalytic component of the cytoplasmic dynein 1 complex, which acts as a retrograde microtubule motor to transport organelles and vesicles. A pseudogene of this gene is located on chromosome 10. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2012]

LOC105379419 Gene

Ig kappa chain V-I region Walker-like

SLC7A6 Gene

solute carrier family 7 (amino acid transporter light chain, y+L system), member 6

MYL8P Gene

myosin, light chain 8, pseudogene

MAP1LC3B2 Gene

microtubule-associated protein 1 light chain 3 beta 2

CSCI Gene

Corticosterone side-chain isomerase

LOC105369637 Gene

collagen alpha-1(I) chain-like

MYLK4 Gene

myosin light chain kinase family, member 4

MYLK2 Gene

myosin light chain kinase 2

This gene encodes a myosin light chain kinase, a calcium/calmodulin dependent enzyme, that is exclusively expressed in adult skeletal muscle. [provided by RefSeq, Jul 2008]

MYLK3 Gene

myosin light chain kinase 3

Phosphorylation of cardiac myosin heavy chains (see MYH7B, MIM 609928) and light chains (see MYL2, MIM 160781) by a kinase, such as MYLK3, potentiates the force and rate of cross-bridge recruitment in cardiac myocytes (Chan et al., 2008 [PubMed 18202317]).[supplied by OMIM, Jul 2008]

MYH7B Gene

myosin, heavy chain 7B, cardiac muscle, beta

The myosin II molecule is a multi-subunit complex consisting of two heavy chains and four light chains. This gene encodes a heavy chain of myosin II, which is a member of the motor-domain superfamily. The heavy chain includes a globular motor domain, which catalyzes ATP hydrolysis and interacts with actin, and a tail domain in which heptad repeat sequences promote dimerization by interacting to form a rod-like alpha-helical coiled coil. This heavy chain subunit is a slow-twitch myosin. Alternatively spliced transcript variants have been found, but the full-length nature of these variants is not determined. [provided by RefSeq, Mar 2010]

LOC105370705 Gene

collagen alpha-2(I) chain-like

SDR42E2 Gene

short chain dehydrogenase/reductase family 42E, member 2

LOC101060328 Gene

collagen alpha-1(I) chain-like

SCFV Gene

single-chain Fv fragment

LOC100996586 Gene

Ig lambda chain V region 4A-like

KLC1 Gene

kinesin light chain 1

Conventional kinesin is a tetrameric molecule composed of two heavy chains and two light chains, and transports various cargos along microtubules toward their plus ends. The heavy chains provide the motor activity, while the light chains bind to various cargos. This gene encodes a member of the kinesin light chain family. It associates with kinesin heavy chain through an N-terminal domain, and six tetratricopeptide repeat (TPR) motifs are thought to be involved in binding of cargos such as vesicles, mitochondria, and the Golgi complex. Thus, kinesin light chains function as adapter molecules and not motors per se. Although previously named "kinesin 2", this gene is not a member of the kinesin-2 / kinesin heavy chain subfamily of kinesin motor proteins. Extensive alternative splicing produces isoforms with different C-termini that are proposed to bind to different cargos; however, the full-length nature and/or biological validity of most of these variants have not been determined. [provided by RefSeq, Jul 2008]

KLC2 Gene

kinesin light chain 2

Kinesin is a molecular motor that generates ATP-dependent movement of vesicles and organelles along microtubules. Kinesin consists of 2 light chains, such as KLC2, and 2 heavy chains (see KIF5B; MIM 602809) in a 1:1 stoichiometric ratio (Rahman et al., 1998 [PubMed 9624122]).[supplied by OMIM, Mar 2008]

KLC3 Gene

kinesin light chain 3

This gene encodes a member of the kinesin light chain gene family. Kinesins are molecular motors involved in the transport of cargo along microtubules, and are composed of two kinesin heavy chain (KHC) and two kinesin light chain (KLC) molecules. KLCs are thought to typically be involved in binding cargo and regulating kinesin activity. In the rat, a protein similar to this gene product is expressed in post-meiotic spermatids, where it associates with structural components of sperm tails and mitochondria. [provided by RefSeq, Jul 2008]

KLC4 Gene

kinesin light chain 4

DYNLT1 Gene

dynein, light chain, Tctex-type 1

This gene encodes a component of the motor complex, cytoplasmic dynein, which transports cellular cargo along microtubules in the cell. The encoded protein regulates the length of primary cilia which are sensory organelles found on the surface of cells. The protein encoded by this gene interacts with viral proteins, like the minor capsid protein L2 of human papillomavirus, and is required for dynein-mediated delivery of the viral nucleic acid to the host nucleus. This protein interacts with oncogenic nucleoporins to disrupt gene regulation and cause leukemic transformation. Pseudogenes of this gene are present on chromosomes 4 and 17. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Apr 2014]

DYNLT3 Gene

dynein, light chain, Tctex-type 3

This gene encodes a member of a subclass of dynein light chains. The encoded protein homodimerizes and forms the light chain component of the cytoplasmic dynein motor protein complex. This protein may be important for binding dynein to specific cargos including the spindle checkpoint protein BUB3. This protein may also function independently of dynein as a transcriptional modulator. Pseudogenes of this gene are found on chromosomes 2 and 20.[provided by RefSeq, Mar 2010]

GGTLC5P Gene

gamma-glutamyltransferase light chain 5 pseudogene

SPTLC1P1 Gene

serine palmitoyltransferase, long chain base subunit 1 pseudogene 1

SPTLC1P2 Gene

serine palmitoyltransferase, long chain base subunit 1 pseudogene 2

SPTLC1P5 Gene

serine palmitoyltransferase, long chain base subunit 1 pseudogene 5

SPTLC1P4 Gene

serine palmitoyltransferase, long chain base subunit 1 pseudogene 4

LOC101927519 Gene

tubulin beta-7 chain-like

LOC100431174 Gene

clathrin, light chain A pseudogene

FGG Gene

fibrinogen gamma chain

The protein encoded by this gene is the gamma component of fibrinogen, a blood-borne glycoprotein comprised of three pairs of nonidentical polypeptide chains. Following vascular injury, fibrinogen is cleaved by thrombin to form fibrin which is the most abundant component of blood clots. In addition, various cleavage products of fibrinogen and fibrin regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and are mitogens for several cell types. Mutations in this gene lead to several disorders, including dysfibrinogenemia, hypofibrinogenemia and thrombophilia. Alternative splicing results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

FGA Gene

fibrinogen alpha chain

The protein encoded by this gene is the alpha component of fibrinogen, a blood-borne glycoprotein comprised of three pairs of nonidentical polypeptide chains. Following vascular injury, fibrinogen is cleaved by thrombin to form fibrin which is the most abundant component of blood clots. In addition, various cleavage products of fibrinogen and fibrin regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and are mitogens for several cell types. Mutations in this gene lead to several disorders, including dysfibrinogenemia, hypofibrinogenemia, afibrinogenemia and renal amyloidosis. Alternative splicing results in two isoforms which vary in the carboxy-terminus. [provided by RefSeq, Jul 2008]

FGB Gene

fibrinogen beta chain

The protein encoded by this gene is the beta component of fibrinogen, a blood-borne glycoprotein comprised of three pairs of nonidentical polypeptide chains. Following vascular injury, fibrinogen is cleaved by thrombin to form fibrin which is the most abundant component of blood clots. In addition, various cleavage products of fibrinogen and fibrin regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and are mitogens for several cell types. Mutations in this gene lead to several disorders, including afibrinogenemia, dysfibrinogenemia, hypodysfibrinogenemia and thrombotic tendency. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2014]

GGTLC4P Gene

gamma-glutamyltransferase light chain 4 pseudogene

LOC105376747 Gene

collagen alpha-3(IX) chain-like

DYNLL1 Gene

dynein, light chain, LC8-type 1

Cytoplasmic dyneins are large enzyme complexes with a molecular mass of about 1,200 kD. They contain two force-producing heads formed primarily from dynein heavy chains, and stalks linking the heads to a basal domain, which contains a varying number of accessory intermediate chains. The complex is involved in intracellular transport and motility. The protein described in this record is a light chain and exists as part of this complex but also physically interacts with and inhibits the activity of neuronal nitric oxide synthase. Binding of this protein destabilizes the neuronal nitric oxide synthase dimer, a conformation necessary for activity, and it may regulate numerous biologic processes through its effects on nitric oxide synthase activity. Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul 2008]

DYNLL2 Gene

dynein, light chain, LC8-type 2

LOC101929990 Gene

collagen alpha-1(XXVII) chain-like

LOC105377621 Gene

collagen alpha-2(I) chain-like

LOC105379509 Gene

fibril-forming collagen alpha chain-like

LOC102724652 Gene

alpha-crystallin A chain

LOC105373619 Gene

collagen alpha-1(XI) chain-like

DYNLL1P2 Gene

dynein, light chain, LC8-type 1 pseudogene 2

DYNLL1P3 Gene

dynein, light chain, LC8-type 1 pseudogene 3

DYNLL1P1 Gene

dynein, light chain, LC8-type 1 pseudogene 1

DYNLL1P6 Gene

dynein, light chain, LC8-type 1 pseudogene 6

DYNLL1P7 Gene

dynein, light chain, LC8-type 1 pseudogene 7

DYNLL1P4 Gene

dynein, light chain, LC8-type 1 pseudogene 4

ACSM5P1 Gene

acyl-CoA synthetase medium-chain family member 5 pseudogene 1

ACADSB Gene

acyl-CoA dehydrogenase, short/branched chain

Short/branched chain acyl-CoA dehydrogenase(ACADSB) is a member of the acyl-CoA dehydrogenase family of enzymes that catalyze the dehydrogenation of acyl-CoA derivatives in the metabolism of fatty acids or branch chained amino acids. Substrate specificity is the primary characteristic used to define members of this gene family. The ACADSB gene product has the greatest activity towards the short branched chain acyl-CoA derivative, (S)-2-methylbutyryl-CoA, but also reacts significantly with other 2-methyl branched chain substrates and with short straight chain acyl-CoAs. The cDNA encodes for a mitochondrial precursor protein which is cleaved upon mitochondrial import and predicted to yield a mature peptide of approximately 43.7-KDa. [provided by RefSeq, Jul 2008]

LOC105373316 Gene

collagen alpha-4(IV) chain-like

LOC105370367 Gene

collagen alpha-2(VIII) chain-like

LOC105370368 Gene

collagen alpha-2(I) chain-like

SLC7A9 Gene

solute carrier family 7 (amino acid transporter light chain, bo,+ system), member 9

This gene encodes a protein that belongs to a family of light subunits of amino acid transporters. This protein plays a role in the high-affinity and sodium-independent transport of cystine and neutral and dibasic amino acids, and appears to function in the reabsorption of cystine in the kidney tubule. Mutations in this gene cause non-type I cystinuria, a disease that leads to cystine stones in the urinary system due to impaired transport of cystine and dibasic amino acids. Alternate transcript variants, which encode the same protein, have been found for this gene. [provided by RefSeq, Jul 2011]

LOC387720 Gene

collagen alpha-1(X) chain

LOC105375661 Gene

collagen alpha-1(I) chain-like

LOC100130582 Gene

myosin, light chain 9, regulatory pseudogene

CLTCL1 Gene

clathrin, heavy chain-like 1

This gene is a member of the clathrin heavy chain family and encodes a major protein of the polyhedral coat of coated pits and vesicles. Chromosomal aberrations involving this gene are associated with meningioma, DiGeorge syndrome, and velo-cardio-facial syndrome. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2009]

DYNC2LI1 Gene

dynein, cytoplasmic 2, light intermediate chain 1

LOC105379652 Gene

DLA class II histocompatibility antigen, DR-1 beta chain-like

LOC101928297 Gene

tubulin beta-8 chain-like

MYL6BP1 Gene

myosin, light chain 6B pseudogene 1

DNAH14 Gene

dynein, axonemal, heavy chain 14

Dyneins are microtubule-associated motor protein complexes composed of several heavy, light, and intermediate chains. Two major classes of dyneins, axonemal and cytoplasmic, have been identified. DNAH14 is an axonemal dynein heavy chain (DHC) (Vaughan et al., 1996 [PubMed 8812413]).[supplied by OMIM, Mar 2008]

DNAH17 Gene

dynein, axonemal, heavy chain 17

Dyneins are microtubule-associated motor protein complexes composed of several heavy, light, and intermediate chains. DNAH17 is a heavy chain associated with axonemal dynein (Milisav and Affara, 1998 [PubMed 9545504]).[supplied by OMIM, Mar 2008]

DNAH10 Gene

dynein, axonemal, heavy chain 10

Dyneins are microtubule-associated motor protein complexes composed of several heavy, light, and intermediate chains. The axonemal dyneins, found in cilia and flagella, are components of the outer and inner dynein arms attached to the peripheral microtubule doublets. DNAH10 is an inner arm dynein heavy chain (Maiti et al., 2000 [PubMed 11175280]).[supplied by OMIM, Mar 2008]

DNAH12 Gene

dynein, axonemal, heavy chain 12

LOC101929943 Gene

tropomyosin alpha-3 chain-like

DYNC1LI1 Gene

dynein, cytoplasmic 1, light intermediate chain 1

DYNC1LI2 Gene

dynein, cytoplasmic 1, light intermediate chain 2

Cytoplasmic dynein is a microtubule-associated motor protein (Hughes et al., 1995 [PubMed 7738094]). See DYNC1H1 (MIM 600112) for general information about dyneins.[supplied by OMIM, Mar 2008]

ACOX2 Gene

acyl-CoA oxidase 2, branched chain

The product of this gene belongs to the acyl-CoA oxidase family. It encodes the branched-chain acyl-CoA oxidase which is involved in the degradation of long branched fatty acids and bile acid intermediates in peroxisomes. Deficiency of this enzyme results in the accumulation of branched fatty acids and bile acid intermediates, and may lead to Zellweger syndrome, severe mental retardation, and death in children. [provided by RefSeq, Mar 2009]

MYLL1 Gene

myosin, light chain, cardiac muscle-like 1

LOC100290036 Gene

immunglobulin heavy chain variable region

LOC105379528 Gene

Ig heavy chain V region 5A-like

ACADVL Gene

acyl-CoA dehydrogenase, very long chain

The protein encoded by this gene is targeted to the inner mitochondrial membrane where it catalyzes the first step of the mitochondrial fatty acid beta-oxidation pathway. This acyl-Coenzyme A dehydrogenase is specific to long-chain and very-long-chain fatty acids. A deficiency in this gene product reduces myocardial fatty acid beta-oxidation and is associated with cardiomyopathy. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

LOC105379603 Gene

Ig lambda chain V-I region BL2-like

MYLKP1 Gene

myosin light chain kinase pseudogene 1 (functional)

LOC105376684 Gene

collagen alpha-2(I) chain-like

LOC105371935 Gene

collagen alpha-4(IV) chain-like

LOC103156999 Gene

dynein, light chain, Tctex-type 1 pseudogene

ACSM1 Gene

acyl-CoA synthetase medium-chain family member 1

ACSM3 Gene

acyl-CoA synthetase medium-chain family member 3

ACSM5 Gene

acyl-CoA synthetase medium-chain family member 5

ACSM4 Gene

acyl-CoA synthetase medium-chain family member 4

ACSM6 Gene

acyl-CoA synthetase medium-chain family member 6

MYL12B Gene

myosin, light chain 12B, regulatory

The activity of nonmuscle myosin II (see MYH9; MIM 160775) is regulated by phosphorylation of a regulatory light chain, such as MRLC2. This phosphorylation results in higher MgATPase activity and the assembly of myosin II filaments (Iwasaki et al., 2001 [PubMed 11942626]).[supplied by OMIM, Mar 2008]

MYL12A Gene

myosin, light chain 12A, regulatory, non-sarcomeric

This gene encodes a nonsarcomeric myosin regulatory light chain. This protein is activated by phosphorylation and regulates smooth muscle and non-muscle cell contraction. This protein may also be involved in DNA damage repair by sequestering the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 which functions as a repressor of p53-driven apoptosis. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 8.[provided by RefSeq, Dec 2014]

DYNC1I2P1 Gene

dynein, cytoplasmic 1, intermediate chain 2 pseudogene 1

MYLIP Gene

myosin regulatory light chain interacting protein

The ERM protein family members ezrin, radixin, and moesin are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. Myosin regulatory light chain interacting protein (MYLIP) is a novel ERM-like protein that interacts with myosin regulatory light chain and inhibits neurite outgrowth. [provided by RefSeq, Jul 2008]

DYNLT3P1 Gene

dynein, light chain, Tctex-type 3 pseudogene 1

DYNLT3P2 Gene

dynein, light chain, Tctex-type 3 pseudogene 2

BCKDK Gene

branched chain ketoacid dehydrogenase kinase

The branched-chain alpha-ketoacid dehydrogenase complex (BCKD) is an important regulator of the valine, leucine, and isoleucine catabolic pathways. The protein encoded by this gene is found in the mitochondrion, where it phosphorylates and inactivates BCKD. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2012]

LOC100130100 Gene

Ig kappa chain V-I region Walker-like

SLC7A8 Gene

solute carrier family 7 (amino acid transporter light chain, L system), member 8

SLC7A7 Gene

solute carrier family 7 (amino acid transporter light chain, y+L system), member 7

The protein encoded by this gene is the light subunit of a cationic amino acid transporter. This sodium-independent transporter is formed when the light subunit encoded by this gene dimerizes with the heavy subunit transporter protein SLC3A2. This transporter is found in epithelial cell membranes where it transfers cationic and large neutral amino acids from the cell to the extracellular space. Defects in this gene are a cause of lysinuric protein intolerance (LPI). Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2011]

SLC7A5 Gene

solute carrier family 7 (amino acid transporter light chain, L system), member 5

LOC101059972 Gene

myosin, light chain 9, regulatory pseudogene

MYHAS Gene

myosin heavy chain gene cluster antisense RNA

LOC105375312 Gene

Ig heavy chain V region 914-like

SPTLC2 Gene

serine palmitoyltransferase, long chain base subunit 2

This gene encodes a long chain base subunit of serine palmitoyltransferase. Serine palmitoyltransferase, which consists of two different subunits, is the key enzyme in sphingolipid biosynthesis. It catalyzes the pyridoxal-5-prime-phosphate-dependent condensation of L-serine and palmitoyl-CoA to 3-oxosphinganine. Mutations in this gene were identified in patients with hereditary sensory neuropathy type I. [provided by RefSeq, Mar 2011]

SPTLC3 Gene

serine palmitoyltransferase, long chain base subunit 3

The SPTLC3 gene encodes an isoform of the third subunit of serine palmitoyltransferase (SPT; EC 2.3.1.50), which catalyzes the rate-limiting step of the de novo synthesis of sphingolipids (Hornemann et al., 2006 [PubMed 17023427]). SPT contains 2 main subunits: the common SPTLC1 subunit (MIM 605712) and either SPTLC2 (MIM 605713) or its isoform SPTLC2L (SPTLC3), depending on the tissue in which biosynthesis occurs (Hornemann et al., 2006 [PubMed 17023427]). There are also 2 highly related isoforms of a third subunit, SSSPTA (MIM 613540) and SSSPTB (MIM 610412), that confer acyl-CoA preference of the SPT enzyme and are essential for maximal enzyme activity (Han et al., 2009 [PubMed 19416851]).[supplied by OMIM, Nov 2010]

SPTLC1 Gene

serine palmitoyltransferase, long chain base subunit 1

This gene encodes a member of the class-II pyridoxal-phosphate-dependent aminotransferase family. The encoded protein is the long chain base subunit 1 of serine palmitoyltransferase. Serine palmitoyltransferase converts L-serine and palmitoyl-CoA to 3-oxosphinganine with pyridoxal 5'-phosphate and is the key enzyme in sphingolipid biosynthesis. Mutations in this gene were identified in patients with hereditary sensory neuropathy type 1. Alternatively spliced variants encoding different isoforms have been identified. Pseudogenes of this gene have been defined on chromosomes 1, 6, 10, and 13. [provided by RefSeq, Jul 2013]

CLHC1 Gene

clathrin heavy chain linker domain containing 1

LOC391405 Gene

immunoglobulin kappa light chain variable region

LOC100506596 Gene

fibril-forming collagen alpha chain

LOC105375938 Gene

collagen alpha-1(I) chain-like

LOC102724999 Gene

Ig lambda chain V-I region BL2-like

SDR16C6P Gene

short chain dehydrogenase/reductase family 16C, member 6, pseudogene

DNAH1 Gene

dynein, axonemal, heavy chain 1

DNAH6 Gene

dynein, axonemal, heavy chain 6

Dyneins are microtubule-associated motor protein complexes composed of several heavy, light, and intermediate chains. Two major classes of dyneins, axonemal and cytoplasmic, have been identified. DNAH6 is an axonemal dynein heavy chain (DHC) (Vaughan et al., 1996 [PubMed 8812413]).[supplied by OMIM, Mar 2008]

DNAH7 Gene

dynein, axonemal, heavy chain 7

DNAH7 is a component of the inner dynein arm of ciliary axonemes (Zhang et al., 2002 [PubMed 11877439]).[supplied by OMIM, Mar 2008]

DNAH5 Gene

dynein, axonemal, heavy chain 5

This gene encodes a dynein protein, which is part of a microtubule-associated motor protein complex consisting of heavy, light, and intermediate chains. This protein is an axonemal heavy chain dynein. It functions as a force-generating protein with ATPase activity, whereby the release of ADP is thought to produce the force-producing power stroke. Mutations in this gene cause primary ciliary dyskinesia type 3, as well as Kartagener syndrome, which are both diseases due to ciliary defects. [provided by RefSeq, Oct 2009]

DNAH8 Gene

dynein, axonemal, heavy chain 8

The protein encoded by this gene is a heavy chain of an axonemal dynein involved in sperm and respiratory cilia motility. Axonemal dyneins generate force through hydrolysis of ATP and binding to microtubules. [provided by RefSeq, Jan 2012]

DNAH9 Gene

dynein, axonemal, heavy chain 9

This gene encodes the heavy chain subunit of axonemal dynein, a large multi-subunit molecular motor. Axonemal dynein attaches to microtubules and hydrolyzes ATP to mediate the movement of cilia and flagella. The gene expresses at least two transcript variants; additional variants have been described, but their full length nature has not been determined. [provided by RefSeq, Jul 2008]

ACSM2A Gene

acyl-CoA synthetase medium-chain family member 2A

ACSM2B Gene

acyl-CoA synthetase medium-chain family member 2B

LOC105376068 Gene

collagen alpha-1(I) chain-like

LOC100418589 Gene

myosin, light chain 12B, regulatory pseudogene

DBT Gene

dihydrolipoamide branched chain transacylase E2

The branched-chain alpha-keto acid dehydrogenase complex (BCKD) is an inner-mitochondrial enzyme complex involved in the breakdown of the branched-chain amino acids isoleucine, leucine, and valine. The BCKD complex is thought to be composed of a core of 24 transacylase (E2) subunits, and associated decarboxylase (E1), dehydrogenase (E3), and regulatory subunits. This gene encodes the transacylase (E2) subunit. Mutations in this gene result in maple syrup urine disease, type 2. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

LOC100419969 Gene

myosin light chain kinase pseudogene

ACADS Gene

acyl-CoA dehydrogenase, C-2 to C-3 short chain

This gene encodes a tetrameric mitochondrial flavoprotein, which is a member of the acyl-CoA dehydrogenase family. This enzyme catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Mutations in this gene have been associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency. Alternative splicing results in two variants which encode different isoforms. [provided by RefSeq, Oct 2014]

ACADL Gene

acyl-CoA dehydrogenase, long chain

The protein encoded by this gene belongs to the acyl-CoA dehydrogenase family, which is a family of mitochondrial flavoenzymes involved in fatty acid and branched chain amino-acid metabolism. This protein is one of the four enzymes that catalyze the initial step of mitochondrial beta-oxidation of straight-chain fatty acid. Defects in this gene are the cause of long-chain acyl-CoA dehydrogenase (LCAD) deficiency, leading to nonketotic hypoglycemia. [provided by RefSeq, Jul 2008]

ACADM Gene

acyl-CoA dehydrogenase, C-4 to C-12 straight chain

This gene encodes the medium-chain specific (C4 to C12 straight chain) acyl-Coenzyme A dehydrogenase. The homotetramer enzyme catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Defects in this gene cause medium-chain acyl-CoA dehydrogenase deficiency, a disease characterized by hepatic dysfunction, fasting hypoglycemia, and encephalopathy, which can result in infantile death. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

DNAH2 Gene

dynein, axonemal, heavy chain 2

Dyneins are microtubule-associated motor protein complexes composed of several heavy, light, and intermediate chains. The axonemal dyneins, found in cilia and flagella, are components of the outer and inner dynein arms attached to the peripheral microtubule doublets. DNAH2 is an axonemal inner arm dynein heavy chain (Chapelin et al., 1997 [PubMed 9256245]).[supplied by OMIM, Mar 2008]

DNAH11 Gene

dynein, axonemal, heavy chain 11

This gene encodes a ciliary outer dynein arm protein and is a member of the dynein heavy chain family. It is a microtubule-dependent motor ATPase and has been reported to be involved in the movement of respiratory cilia. Mutations in this gene have been implicated in causing Kartagener Syndrome (a combination of situs inversus totalis and Primary Ciliary Dyskinesia (PCD), also called Immotile Cilia Syndrome 1 (ICS1)) and male sterility. [provided by RefSeq, Mar 2013]

LOC102725003 Gene

Ig lambda chain V-I region BL2-like

DNHD1 Gene

dynein heavy chain domain 1

LOC100418588 Gene

myosin, light chain 12B, regulatory pseudogene

LOC100418587 Gene

myosin, light chain 12B, regulatory pseudogene

ITIH1 Gene

inter-alpha-trypsin inhibitor heavy chain 1

The protein encoded by this gene is the heavy chain of a serine protease inhibitor that may serve to carry hyaluronan in plasma. This gene is part of a cluster of similar genes on chromosome 3. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]

ITIH3 Gene

inter-alpha-trypsin inhibitor heavy chain 3

The inter-alpha-trypsin inhibitors (ITI) are a family of structurally related plasma serine protease inhibitors involved in extracellular matrix stabilization and in prevention of tumor metastasis. The ITI family contains multiple proteins made up of a light chain (see MIM 176870) and a variable number of heavy chains (Salier et al., 1987 [PubMed 2446322]; Himmelfarb et al., 2004 [PubMed 14744536]).[supplied by OMIM, Nov 2009]

ITIH2 Gene

inter-alpha-trypsin inhibitor heavy chain 2

The inter-alpha-trypsin inhibitors (ITI) are a family of structurally related plasma serine protease inhibitors involved in extracellular matrix stabilization and in prevention of tumor metastasis. The ITI family contains multiple proteins made up of a light chain (see MIM 176870) and a variable number of heavy chains (Salier et al., 1987 [PubMed 2446322]; Himmelfarb et al., 2004 [PubMed 14744536]).[supplied by OMIM, Nov 2009]

ITIH5 Gene

inter-alpha-trypsin inhibitor heavy chain family, member 5

This gene encodes a heavy chain component of one of the inter-alpha-trypsin inhibitor (ITI) family members. ITI proteins are involved in extracellular matrix stabilization and in the prevention of tumor metastasis. They are also structurally related plasma serine protease inhibitors and are composed of a light chain and varying numbers of heavy chains. This family member is thought to function as a tumor suppressor in breast and thyroid cancers. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2011]

ITIH4 Gene

inter-alpha-trypsin inhibitor heavy chain family, member 4

The protein encoded by this gene is secreted into the blood, where it is cleaved by plasma kallikrein into two smaller forms. Expression of this gene has been detected only in liver, and it seems to be upregulated during surgical trauma. This gene is part of a cluster of similar genes on chromosome 3. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]

ITIH6 Gene

inter-alpha-trypsin inhibitor heavy chain family, member 6

The protein encoded by this gene belongs to the interalpha trypsin inhibitor heavy chain (ITIH) family. Interalpha trypsin inhibitor (ITI) is composed of two heavy chains (containing VWA domain) and one light chain. The light chain confers the protease-inhibitor function, while the heavy chains are involved in mediating protein-protein interactions with the components of the extracellular matrix. [provided by RefSeq, Sep 2009]

MYL6 Gene

myosin, light chain 6, alkali, smooth muscle and non-muscle

Myosin is a hexameric ATPase cellular motor protein. It is composed of two heavy chains, two nonphosphorylatable alkali light chains, and two phosphorylatable regulatory light chains. This gene encodes a myosin alkali light chain that is expressed in smooth muscle and non-muscle tissues. Genomic sequences representing several pseudogenes have been described and two transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

MYL7 Gene

myosin, light chain 7, regulatory

MYL4 Gene

myosin, light chain 4, alkali; atrial, embryonic

Myosin is a hexameric ATPase cellular motor protein. It is composed of two myosin heavy chains, two nonphosphorylatable myosin alkali light chains, and two phosphorylatable myosin regulatory light chains. This gene encodes a myosin alkali light chain that is found in embryonic muscle and adult atria. Two alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

MYL5 Gene

myosin, light chain 5, regulatory

This gene encodes one of the myosin light chains, a component of the hexameric ATPase cellular motor protein myosin. Myosin is composed of two heavy chains, two nonphosphorylatable alkali light chains, and two phosphorylatable regulatory light chains. This gene product, one of the regulatory light chains, is expressed in fetal muscle and in adult retina, cerebellum, and basal ganglia. [provided by RefSeq, Jul 2008]

MYL2 Gene

myosin, light chain 2, regulatory, cardiac, slow

Thus gene encodes the regulatory light chain associated with cardiac myosin beta (or slow) heavy chain. Ca+ triggers the phosphorylation of regulatory light chain that in turn triggers contraction. Mutations in this gene are associated with mid-left ventricular chamber type hypertrophic cardiomyopathy. [provided by RefSeq, Jul 2008]

MYL3 Gene

myosin, light chain 3, alkali; ventricular, skeletal, slow

MYL3 encodes myosin light chain 3, an alkali light chain also referred to in the literature as both the ventricular isoform and the slow skeletal muscle isoform. Mutations in MYL3 have been identified as a cause of mid-left ventricular chamber type hypertrophic cardiomyopathy. [provided by RefSeq, Jul 2008]

MYL1 Gene

myosin, light chain 1, alkali; skeletal, fast

Myosin is a hexameric ATPase cellular motor protein. It is composed of two heavy chains, two nonphosphorylatable alkali light chains, and two phosphorylatable regulatory light chains. This gene encodes a myosin alkali light chain expressed in fast skeletal muscle. Two transcript variants have been identified for this gene. [provided by RefSeq, Jul 2008]

MYL9 Gene

myosin, light chain 9, regulatory

Myosin, a structural component of muscle, consists of two heavy chains and four light chains. The protein encoded by this gene is a myosin light chain that may regulate muscle contraction by modulating the ATPase activity of myosin heads. The encoded protein binds calcium and is activated by myosin light chain kinase. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

MYLK Gene

myosin light chain kinase

This gene, a muscle member of the immunoglobulin gene superfamily, encodes myosin light chain kinase which is a calcium/calmodulin dependent enzyme. This kinase phosphorylates myosin regulatory light chains to facilitate myosin interaction with actin filaments to produce contractile activity. This gene encodes both smooth muscle and nonmuscle isoforms. In addition, using a separate promoter in an intron in the 3' region, it encodes telokin, a small protein identical in sequence to the C-terminus of myosin light chain kinase, that is independently expressed in smooth muscle and functions to stabilize unphosphorylated myosin filaments. A pseudogene is located on the p arm of chromosome 3. Four transcript variants that produce four isoforms of the calcium/calmodulin dependent enzyme have been identified as well as two transcripts that produce two isoforms of telokin. Additional variants have been identified but lack full length transcripts. [provided by RefSeq, Jul 2008]

DNAH3 Gene

dynein, axonemal, heavy chain 3

LOC100422348 Gene

short chain dehydrogenase/reductase family 42E, member 1 pseudogene

LOC100422346 Gene

short chain dehydrogenase/reductase family 42E, member 1 pseudogene

LOC100422347 Gene

short chain dehydrogenase/reductase family 42E, member 1 pseudogene

LOC390714 Gene

immunoglobulin heavy chain variable region

DNAH10OS Gene

dynein, axonemal, heavy chain 10 opposite strand

LOC100420983 Gene

acyl-CoA synthetase medium-chain family member 6 pseudogene

ZAP70 Gene

zeta-chain (TCR) associated protein kinase 70kDa

This gene encodes an enzyme belonging to the protein tyrosine kinase family, and it plays a role in T-cell development and lymphocyte activation. This enzyme, which is phosphorylated on tyrosine residues upon T-cell antigen receptor (TCR) stimulation, functions in the initial step of TCR-mediated signal transduction in combination with the Src family kinases, Lck and Fyn. This enzyme is also essential for thymocyte development. Mutations in this gene cause selective T-cell defect, a severe combined immunodeficiency disease characterized by a selective absence of CD8-positive T-cells. Two transcript variants that encode different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC105373154 Gene

myosin heavy chain IB-like

JCHAIN Gene

joining chain of multimeric IgA and IgM

BCAT1 Gene

branched chain amino-acid transaminase 1, cytosolic

This gene encodes the cytosolic form of the enzyme branched-chain amino acid transaminase. This enzyme catalyzes the reversible transamination of branched-chain alpha-keto acids to branched-chain L-amino acids essential for cell growth. Two different clinical disorders have been attributed to a defect of branched-chain amino acid transamination: hypervalinemia and hyperleucine-isoleucinemia. As there is also a gene encoding a mitochondrial form of this enzyme, mutations in either gene may contribute to these disorders. Alternatively spliced transcript variants have been described. [provided by RefSeq, May 2010]

LOC101929301 Gene

collagen alpha-1(I) chain-like

LOC105377821 Gene

collagen alpha-2(I) chain-like

DYNC2H1 Gene

dynein, cytoplasmic 2, heavy chain 1

This gene encodes a large cytoplasmic dynein protein that is involved in retrograde transport in the cilium and has a role in intraflagellar transport, a process required for ciliary/flagellar assembly. Mutations in this gene cause a heterogeneous spectrum of conditions related to altered primary cilium function and often involve polydactyly, abnormal skeletogenesis, and polycystic kidneys. Alternative splicing results in multiple transcript variants encoding distinct proteins. [provided by RefSeq, Jan 2010]

KIF2A Gene

kinesin heavy chain member 2A

The protein encoded by this gene is a plus end-directed motor required for normal mitotic progression. The encoded protein is required for normal spindle activity during mitosis and is necessary for normal brain development. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

MYL12AP1 Gene

myosin, light chain 12A pseudogene 1

LOC100422263 Gene

serine palmitoyltransferase, long chain base subunit 2 pseudogene

LOC101059958 Gene

collagen alpha-1(II) chain-like

CYAT1 Gene

immunoglobulin lambda light chain-like

SPTLC1P3 Gene

serine palmitoyltransferase, long chain base subunit 1 pseudogene 3

C1QB Gene

complement component 1, q subcomponent, B chain

This gene encodes a major constituent of the human complement subcomponent C1q. C1q associates with C1r and C1s in order to yield the first component of the serum complement system. Deficiency of C1q has been associated with lupus erythematosus and glomerulonephritis. C1q is composed of 18 polypeptide chains: six A-chains, six B-chains, and six C-chains. Each chain contains a collagen-like region located near the N terminus and a C-terminal globular region. The A-, B-, and C-chains are arranged in the order A-C-B on chromosome 1. This gene encodes the B-chain polypeptide of human complement subcomponent C1q [provided by RefSeq, Jul 2008]

MYL6B Gene

myosin, light chain 6B, alkali, smooth muscle and non-muscle

Myosin is a hexameric ATPase cellular motor protein. It is composed of two heavy chains, two nonphosphorylatable alkali light chains, and two phosphorylatable regulatory light chains. This gene encodes a myosin alkali light chain expressed in both slow-twitch skeletal muscle and in nonmuscle tissue. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2010]

LOC102724760 Gene

Ig heavy chain V-I region V35-like

SLC3A2 Gene

solute carrier family 3 (amino acid transporter heavy chain), member 2

This gene is a member of the solute carrier family and encodes a cell surface, transmembrane protein. The protein exists as the heavy chain of a heterodimer, covalently bound through di-sulfide bonds to one of several possible light chains. The encoded transporter plays a role in regulation of intracellular calcium levels and transports L-type amino acids. Alternatively spliced transcript variants, encoding different isoforms, have been characterized. [provided by RefSeq, Nov 2010]

SLC3A1 Gene

solute carrier family 3 (amino acid transporter heavy chain), member 1

This gene encodes a type II membrane glycoprotein which is one of the components of the renal amino acid transporter which transports neutral and basic amino acids in the renal tubule and intestinal tract. Mutations and deletions in this gene are associated with cystinuria. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

LOC105379570 Gene

DLA class II histocompatibility antigen, DR-1 beta chain-like

LOC105379575 Gene

collagen alpha-2(IV) chain-like

LOC100887080 Gene

acyl-CoA synthetase medium-chain family member 4 pseudogene

SDR42E1P1 Gene

short chain dehydrogenase/reductase family 42E, member 1 pseudogene 1

LOC105379665 Gene

DLA class II histocompatibility antigen, DR-1 beta chain-like

LOC105371095 Gene

collagen alpha-3(IX) chain-like

DNALI1 Gene

dynein, axonemal, light intermediate chain 1

This gene is the human homolog of the Chlamydomonas inner dynein arm gene, p28. The precise function of this gene is not known, however, it is a potential candidate for immotile cilia syndrome (ICS). Ultrastructural defects of the inner dynein arms are seen in patients with ICS. Immotile mutant strains of Chlamydomonas, a biflagellated algae, exhibit similar defects. [provided by RefSeq, Jul 2008]

LOC105371190 Gene

Ig heavy chain V-I region V35-like

LOC730668 Gene

dynein heavy chain -like pseudogene

MAP1LC3BP1 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene 1

LOC387869 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene

LOC100420320 Gene

kinesin heavy chain member 2A pseudogene

LOC105379658 Gene

DLA class II histocompatibility antigen, DR-1 beta chain-like

DYNC1H1 Gene

dynein, cytoplasmic 1, heavy chain 1

Dyneins are a group of microtubule-activated ATPases that function as molecular motors. They are divided into two subgroups of axonemal and cytoplasmic dyneins. The cytoplasmic dyneins function in intracellular motility, including retrograde axonal transport, protein sorting, organelle movement, and spindle dynamics. Molecules of conventional cytoplasmic dynein are comprised of 2 heavy chain polypeptides and a number of intermediate and light chains.This gene encodes a member of the cytoplasmic dynein heavy chain family. [provided by RefSeq, Oct 2008]

LOC105379779 Gene

collagen alpha-1(I) chain-like

LOC100287355 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene

SDR9C7 Gene

short chain dehydrogenase/reductase family 9C, member 7

This gene encodes a protein with similarity to the short-chain dehydrogenase/reductase (SDR) family but has not been shown to have retinoid or dehydrogenase activities. [provided by RefSeq, Apr 2010]

LOC101928841 Gene

collagen alpha-1(II) chain-like

LOC100421637 Gene

acyl-CoA synthetase long-chain family member 3 pseudogene

MYLPF Gene

myosin light chain, phosphorylatable, fast skeletal muscle

SLC7A5P1 Gene

solute carrier family 7 (amino acid transporter light chain, L system), member 5 pseudogene 1

This locus represents a transcribed pseudogene of the L-type amino acid transporter 1. [provided by RefSeq, Jul 2008]

SLC7A5P2 Gene

solute carrier family 7 (amino acid transporter light chain, L system), member 5 pseudogene 2

LOC105375304 Gene

collagen alpha-1(I) chain-like

MHRT Gene

myosin heavy chain-associated RNA transcript

This gene encodes a spliced long non-coding RNA that may act as a cardioprotective agent in the heart. Based on a study of a similar gene in mouse, the encoded transcript may regulate chromatin remodeling by acting as a decoy to the BRG1 chromatin repressor complex thus preventing it from binding to its genomic targets. Blocking the actions of BRG1 could be crucial in protecting the heart from pathological hypertrophy. [provided by RefSeq, Dec 2014]

MYL6P3 Gene

myosin, light chain 6 pseudogene 3

CLTA Gene

clathrin, light chain A

Clathrin is a large, soluble protein composed of heavy and light chains. It functions as the main structural component of the lattice-type cytoplasmic face of coated pits and vesicles which entrap specific macromolecules during receptor-mediated endocytosis. This gene encodes one of two clathrin light chain proteins which are believed to function as regulatory elements. Alternative splicing results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 8 and 12. [provided by RefSeq, May 2010]

CLTC Gene

clathrin, heavy chain (Hc)

Clathrin is a major protein component of the cytoplasmic face of intracellular organelles, called coated vesicles and coated pits. These specialized organelles are involved in the intracellular trafficking of receptors and endocytosis of a variety of macromolecules. The basic subunit of the clathrin coat is composed of three heavy chains and three light chains. [provided by RefSeq, Jul 2008]

CLTB Gene

clathrin, light chain B

Clathrin is a large, soluble protein composed of heavy and light chains. It functions as the main structural component of the lattice-type cytoplasmic face of coated pits and vesicles which entrap specific macromolecules during receptor-mediated endocytosis. This gene encodes one of two clathrin light chain proteins which are believed to function as regulatory elements. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2008]

DNAI1 Gene

dynein, axonemal, intermediate chain 1

This gene encodes a member of the dynein intermediate chain family. The encoded protein is part of the dynein complex in respiratory cilia. The inner- and outer-arm dyneins, which bridge between the doublet microtubules in axonemes, are the force-generating proteins responsible for the sliding movement in axonemes. The intermediate and light chains, thought to form the base of the dynein arm, help mediate attachment and may also participate in regulating dynein activity. Mutations in this gene result in abnormal ciliary ultrastructure and function associated with primary ciliary dyskinesia and Kartagener syndrome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

DNAI2 Gene

dynein, axonemal, intermediate chain 2

The protein encoded by this gene belongs to the dynein intermediate chain family, and is part of the dynein complex of respiratory cilia and sperm flagella. Mutations in this gene are associated with primary ciliary dyskinesia type 9. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Mar 2010]

LOC100287951 Gene

dynein, light chain, Tctex-type 1 pseudogene

GGTLC2 Gene

gamma-glutamyltransferase light chain 2

This gene encodes a protein related to enzymes that cleaves gamma-glutamyl peptide bonds in glutathione and other peptides. Unlike similar proteins, the encoded protein contains only the light chain portion and may not have catalytic activity. Alternative splicing results in multiple transcript variants. There are several related family members and related pseudogene for this gene situated in the same region of chromosome 22. [provided by RefSeq, Sep 2013]

MYL6P2 Gene

myosin, light chain 6 pseudogene 2

MYL6P1 Gene

myosin, light chain 6 pseudogene 1

MYL6P4 Gene

myosin, light chain 6 pseudogene 4

MYL6P5 Gene

myosin, light chain 6 pseudogene 5

MAP1LC3P Gene

microtubule-associated protein 1 light chain 3 pseudogene

MAP1LC3A Gene

microtubule-associated protein 1 light chain 3 alpha

MAP1A and MAP1B are microtubule-associated proteins which mediate the physical interactions between microtubules and components of the cytoskeleton. MAP1A and MAP1B each consist of a heavy chain subunit and multiple light chain subunits. The protein encoded by this gene is one of the light chain subunits and can associate with either MAP1A or MAP1B. Two transcript variants encoding different isoforms have been found for this gene. The expression of variant 1 is suppressed in many tumor cell lines, suggesting that may be involved in carcinogenesis. [provided by RefSeq, Feb 2012]

MAP1LC3C Gene

microtubule-associated protein 1 light chain 3 gamma

Autophagy is a highly regulated bulk degradation process that plays an important role in cellular maintenance and development. MAP1LC3C is an ortholog of the yeast autophagosome protein Atg8 (He et al., 2003 [PubMed 12740394]).[supplied by OMIM, Nov 2010]

MAP1LC3B Gene

microtubule-associated protein 1 light chain 3 beta

The product of this gene is a subunit of neuronal microtubule-associated MAP1A and MAP1B proteins, which are involved in microtubule assembly and important for neurogenesis. Studies on the rat homolog implicate a role for this gene in autophagy, a process that involves the bulk degradation of cytoplasmic component. [provided by RefSeq, Jul 2008]

GGTLC1 Gene

gamma-glutamyltransferase light chain 1

This gene encodes a member of the gamma-glutamyl transpeptidase (GGT) family, which are important in the metabolism of glutathione. The most ubiquitously expressed human GGT gene, GGT1, encodes a single transmembrane polypeptide that is post-translationally processed to form a heavy and a light chain. In contrast, the product of this gene only contains homology to the light chain region, and lacks a transmembrane domain. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Oct 2008]

GGTLC3 Gene

gamma-glutamyltransferase light chain 3

Gamma-glutamyltransferase-1 (GGT1; MIM 612346) is a membrane-bound extracellular enzyme that cleaves gamma-glutamyl peptide bonds in glutathione and other peptides and transfers the gamma-glutamyl moiety to acceptors. Autocatalytic cleavage of the GGT1 precursor polypeptide produces a heavy chain and a light chain that associate with each other to form the functional enzyme. Light chain-only GGTs, such as GGTLC3, contain a region corresponding to the GGT1 light chain, but they lack the membrane-anchoring heavy chain region (Heisterkamp et al., 2008 [PubMed 18357469]).[supplied by OMIM, Oct 2008]

LOC102725119 Gene

Ig heavy chain V region 5A-like

AXDND1 Gene

axonemal dynein light chain domain containing 1

LOC105379559 Gene

Ig kappa chain V-I region Hau-like

LOC101929708 Gene

Ig kappa chain V-I region Walker-like

MYH10 Gene

myosin, heavy chain 10, non-muscle

This gene encodes a member of the myosin superfamily. The protein represents a conventional non-muscle myosin; it should not be confused with the unconventional myosin-10 (MYO10). Myosins are actin-dependent motor proteins with diverse functions including regulation of cytokinesis, cell motility, and cell polarity. Mutations in this gene have been associated with May-Hegglin anomaly and developmental defects in brain and heart. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2011]

MYH11 Gene

myosin, heavy chain 11, smooth muscle

The protein encoded by this gene is a smooth muscle myosin belonging to the myosin heavy chain family. The gene product is a subunit of a hexameric protein that consists of two heavy chain subunits and two pairs of non-identical light chain subunits. It functions as a major contractile protein, converting chemical energy into mechanical energy through the hydrolysis of ATP. The gene encoding a human ortholog of rat NUDE1 is transcribed from the reverse strand of this gene, and its 3' end overlaps with that of the latter. The pericentric inversion of chromosome 16 [inv(16)(p13q22)] produces a chimeric transcript that encodes a protein consisting of the first 165 residues from the N terminus of core-binding factor beta in a fusion with the C-terminal portion of the smooth muscle myosin heavy chain. This chromosomal rearrangement is associated with acute myeloid leukemia of the M4Eo subtype. Alternative splicing generates isoforms that are differentially expressed, with ratios changing during muscle cell maturation. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

MYH13 Gene

myosin, heavy chain 13, skeletal muscle

MYH14 Gene

myosin, heavy chain 14, non-muscle

This gene encodes a member of the myosin superfamily. The protein represents a conventional non-muscle myosin; it should not be confused with the unconventional myosin-14 (MYO14). Myosins are actin-dependent motor proteins with diverse functions including regulation of cytokinesis, cell motility, and cell polarity. Mutations in this gene result in one form of autosomal dominant hearing impairment. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2011]

MYH15 Gene

myosin, heavy chain 15

MYH16 Gene

myosin, heavy chain 16 pseudogene

The MYH16 gene, encoding a sarcomeric myosin heavy chain expressed in nonhuman primate masticatory muscles, is inactivated in humans. Stedman et al. (2004) [PubMed 15042088] hypothesized that the decrement in masticatory muscle size caused by the inactivation of MYH16 removed an evolutionary constraint on encephalization in early man.[supplied by OMIM, Mar 2008]

LOC100418590 Gene

myosin, light chain 12B, regulatory pseudogene

LOC102723531 Gene

collagen alpha-1(I) chain-like

LOC105379648 Gene

DLA class II histocompatibility antigen, DR-1 beta chain-like

LOC100422339 Gene

short chain dehydrogenase/reductase family 42E, member 1 pseudogene

LOC105374865 Gene

Ig kappa chain V-I region HK102-like

LOC102725000 Gene

collagen alpha-2(V) chain-like

BCKDHB Gene

branched chain keto acid dehydrogenase E1, beta polypeptide

Branched-chain keto acid dehydrogenase is a multienzyme complex associated with the inner membrane of mitochondria, and functions in the catabolism of branched-chain amino acids. The complex consists of multiple copies of 3 components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). This gene encodes the E1 beta subunit, and mutations therein have been associated with maple syrup urine disease (MSUD), type 1B, a disease characterized by a maple syrup odor to the urine in addition to mental and physical retardation, and feeding problems. Alternative splicing at this locus results in transcript variants with different 3' non-coding regions, but encoding the same isoform. [provided by RefSeq, Jul 2008]

BCKDHA Gene

branched chain keto acid dehydrogenase E1, alpha polypeptide

The branched-chain alpha-keto acid (BCAA) dehydrogenase (BCKD) complex is an innter mitochondrial enzyme complex that catalyzes the second major step in the catabolism of the branched-chain amino acids leucine, isoleucine, and valine. The BCKD complex consists of three catalytic components: a heterotetrameric (alpha2-beta2) branched-chain alpha-keto acid decarboxylase (E1), a dihydrolipoyl transacylase (E2), and a dihydrolipoamide dehydrogenase (E3). This gene encodes the alpha subunit of the decarboxylase (E1) component. Mutations in this gene result in maple syrup urine disease, type IA. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Sep 2009]

LOC100131676 Gene

clathrin, light chain A pseudogene

DNAL4 Gene

dynein, axonemal, light chain 4

This gene encodes an axonemal dynein light chain which functions as a component of the outer dynein arms complex. This complex acts as the molecular motor that provides the force to move cilia in an ATP-dependent manner. The encoded protein is expressed in tissues with motile cilia or flagella and may be involved in the movement of sperm flagella. [provided by RefSeq, Dec 2014]

DNAL1 Gene

dynein, axonemal, light chain 1

This gene encodes an axonemal dynein light chain which functions as a component of the outer dynein arms complex. This complex acts as the molecular motor that provides the force to move cilia in an ATP-dependent manner. The encoded protein is expressed in tissues with motile cilia or flagella and may be involved in the movement of sperm flagella. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Jan 2011]

LOC105376877 Gene

collagen alpha-2(IV) chain-like

MYL12BP2 Gene

myosin, light chain 12B pseudogene 2

MYL12BP1 Gene

myosin, light chain 12B pseudogene 1

LOC101901828 Gene

dynein, light chain, roadblock-type 1 pseudogene

LOC101901829 Gene

dynein, light chain, roadblock-type 1 pseudogene

LOC105379637 Gene

collagen alpha-2(IV) chain-like

LOC105374379 Gene

collagen alpha-1(X) chain-like

SDR16C5 Gene

short chain dehydrogenase/reductase family 16C, member 5

RDHE2 belongs to a family of short-chain alcohol dehydrogenases/reductases that catalyze the first and rate-limiting step that generates retinaldehyde from retinol (Matsuzaka et al., 2002 [PubMed 12372410]).[supplied by OMIM, Mar 2008]

LOC105369230 Gene

HLA class II histocompatibility antigen, DRB1-7 beta chain

LOC105379510 Gene

collagen alpha-1(II) chain-like

DYNLRB2 Gene

dynein, light chain, roadblock-type 2

DYNLRB1 Gene

dynein, light chain, roadblock-type 1

This gene is a member of the roadblock dynein light chain family. The encoded cytoplasmic protein is capable of binding intermediate chain proteins, interacts with transforming growth factor-beta, and has been implicated in the regulation of actin modulating proteins. Upregulation of this gene has been associated with hepatocellular carcinomas, suggesting that this gene may be involved in tumor progression. Alternative splicing results in multiple transcript variants. Pseudogenes of this gene have been defined on chromosomes 12 and 18. [provided by RefSeq, Aug 2013]

LOC102723626 Gene

tubulin beta-8 chain-like

LOC105371405 Gene

collagen alpha-1(XIII) chain

C1QC Gene

complement component 1, q subcomponent, C chain

This gene encodes a major constituent of the human complement subcomponent C1q. C1q associates with C1r and C1s in order to yield the first component of the serum complement system. A deficiency in C1q has been associated with lupus erythematosus and glomerulonephritis. C1q is composed of 18 polypeptide chains: six A-chains, six B-chains, and six C-chains. Each chain contains a collagen-like region located near the N-terminus, and a C-terminal globular region. The A-, B-, and C-chains are arranged in the order A-C-B on chromosome 1. This gene encodes the C-chain polypeptide of human complement subcomponent C1q. Alternatively spliced transcript variants that encode the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

C1QA Gene

complement component 1, q subcomponent, A chain

This gene encodes a major constituent of the human complement subcomponent C1q. C1q associates with C1r and C1s in order to yield the first component of the serum complement system. Deficiency of C1q has been associated with lupus erythematosus and glomerulonephritis. C1q is composed of 18 polypeptide chains: six A-chains, six B-chains, and six C-chains. Each chain contains a collagen-like region located near the N terminus and a C-terminal globular region. The A-, B-, and C-chains are arranged in the order A-C-B on chromosome 1. This gene encodes the A-chain polypeptide of human complement subcomponent C1q. [provided by RefSeq, Jul 2008]

MYL10 Gene

myosin, light chain 10, regulatory

LOC101059906 Gene

collagen alpha-2(IV) chain-like

LOC100507703 Gene

HLA class I histocompatibility antigen, A-69 alpha chain-like

ACSL3 Gene

acyl-CoA synthetase long-chain family member 3

The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. This isozyme is highly expressed in brain, and preferentially utilizes myristate, arachidonate, and eicosapentaenoate as substrates. The amino acid sequence of this isozyme is 92% identical to that of rat homolog. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

ACSL1 Gene

acyl-CoA synthetase long-chain family member 1

The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]

ACSL6 Gene

acyl-CoA synthetase long-chain family member 6

The protein encoded by this gene catalyzes the formation of acyl-CoA from fatty acids, ATP, and CoA, using magnesium as a cofactor. The encoded protein plays a major role in fatty acid metabolism in the brain. Translocations with the ETV6 gene are causes of myelodysplastic syndrome with basophilia, acute myelogenous leukemia with eosinophilia, and acute eosinophilic leukemia. Several transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Apr 2011]

ACSL4 Gene

acyl-CoA synthetase long-chain family member 4

The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. This isozyme preferentially utilizes arachidonate as substrate. The absence of this enzyme may contribute to the mental retardation or Alport syndrome. Alternative splicing of this gene generates 2 transcript variants. [provided by RefSeq, Jul 2008]

ACSL5 Gene

acyl-CoA synthetase long-chain family member 5

The protein encoded by this gene is an isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long-chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation. This isozyme is highly expressed in uterus and spleen, and in trace amounts in normal brain, but has markedly increased levels in malignant gliomas. This gene functions in mediating fatty acid-induced glioma cell growth. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC101928120 Gene

collagen alpha-1(I) chain-like

LOC100505797 Gene

myosin heavy chain IB-like

MYH2 Gene

myosin, heavy chain 2, skeletal muscle, adult

Myosins are actin-based motor proteins that function in the generation of mechanical force in eukaryotic cells. Muscle myosins are heterohexamers composed of 2 myosin heavy chains and 2 pairs of nonidentical myosin light chains. This gene encodes a member of the class II or conventional myosin heavy chains, and functions in skeletal muscle contraction. This gene is found in a cluster of myosin heavy chain genes on chromosome 17. A mutation in this gene results in inclusion body myopathy-3. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Sep 2009]

MYH3 Gene

myosin, heavy chain 3, skeletal muscle, embryonic

Myosin is a major contractile protein which converts chemical energy into mechanical energy through the hydrolysis of ATP. Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. This gene is a member of the MYH family and encodes a protein with an IQ domain and a myosin head-like domain. Mutations in this gene have been associated with two congenital contracture (arthrogryposis) syndromes, Freeman-Sheldon syndrome and Sheldon-Hall syndrome. [provided by RefSeq, Jul 2008]

MYH1 Gene

myosin, heavy chain 1, skeletal muscle, adult

Myosin is a major contractile protein which converts chemical energy into mechanical energy through the hydrolysis of ATP. Myosin is a hexameric protein composed of a pair of myosin heavy chains (MYH) and two pairs of nonidentical light chains. Myosin heavy chains are encoded by a multigene family. In mammals at least 10 different myosin heavy chain (MYH) isoforms have been described from striated, smooth, and nonmuscle cells. These isoforms show expression that is spatially and temporally regulated during development. [provided by RefSeq, Jul 2008]

MYH6 Gene

myosin, heavy chain 6, cardiac muscle, alpha

Cardiac muscle myosin is a hexamer consisting of two heavy chain subunits, two light chain subunits, and two regulatory subunits. This gene encodes the alpha heavy chain subunit of cardiac myosin. The gene is located ~4kb downstream of the gene encoding the beta heavy chain subunit of cardiac myosin. Mutations in this gene cause familial hypertrophic cardiomyopathy and atrial septal defect 3. [provided by RefSeq, Mar 2010]

MYH7 Gene

myosin, heavy chain 7, cardiac muscle, beta

Muscle myosin is a hexameric protein containing 2 heavy chain subunits, 2 alkali light chain subunits, and 2 regulatory light chain subunits. This gene encodes the beta (or slow) heavy chain subunit of cardiac myosin. It is expressed predominantly in normal human ventricle. It is also expressed in skeletal muscle tissues rich in slow-twitch type I muscle fibers. Changes in the relative abundance of this protein and the alpha (or fast) heavy subunit of cardiac myosin correlate with the contractile velocity of cardiac muscle. Its expression is also altered during thyroid hormone depletion and hemodynamic overloading. Mutations in this gene are associated with familial hypertrophic cardiomyopathy, myosin storage myopathy, dilated cardiomyopathy, and Laing early-onset distal myopathy. [provided by RefSeq, Jul 2008]

MYH4 Gene

myosin, heavy chain 4, skeletal muscle

MYH8 Gene

myosin, heavy chain 8, skeletal muscle, perinatal

Myosins are actin-based motor proteins that function in the generation of mechanical force in eukaryotic cells. Muscle myosins are heterohexamers composed of 2 myosin heavy chains and 2 pairs of nonidentical myosin light chains. This gene encodes a member of the class II or conventional myosin heavy chains, and functions in skeletal muscle contraction. This gene is predominantly expressed in fetal skeletal muscle. This gene is found in a cluster of myosin heavy chain genes on chromosome 17. A mutation in this gene results in trismus-pseudocamptodactyly syndrome. [provided by RefSeq, Sep 2009]

MYH9 Gene

myosin, heavy chain 9, non-muscle

This gene encodes a conventional non-muscle myosin; this protein should not be confused with the unconventional myosin-9a or 9b (MYO9A or MYO9B). The encoded protein is a myosin IIA heavy chain that contains an IQ domain and a myosin head-like domain which is involved in several important functions, including cytokinesis, cell motility and maintenance of cell shape. Defects in this gene have been associated with non-syndromic sensorineural deafness autosomal dominant type 17, Epstein syndrome, Alport syndrome with macrothrombocytopenia, Sebastian syndrome, Fechtner syndrome and macrothrombocytopenia with progressive sensorineural deafness. [provided by RefSeq, Dec 2011]

LOC100132824 Gene

tubulin alpha-1C chain-like

SDR39U1 Gene

short chain dehydrogenase/reductase family 39U, member 1

This gene encodes a member of the short-chain dehydrogenases/reductases (SDR) superfamily, which includes both classical and extended types. The encoded protein represents an extended type, with similarity to epimerases. Alternatively spliced transcript variants that encode different protein isoforms have been described. [provided by RefSeq, Mar 2014]

MYO5A Gene

myosin VA (heavy chain 12, myoxin)

This gene is one of three myosin V heavy-chain genes, belonging to the myosin gene superfamily. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. The protein encoded by this gene is abundant in melanocytes and nerve cells. Mutations in this gene cause Griscelli syndrome type-1 (GS1), Griscelli syndrome type-3 (GS3) and neuroectodermal melanolysosomal disease, or Elejalde disease. Multiple alternatively spliced transcript variants encoding different isoforms have been reported, but the full-length nature of some variants has not been determined. [provided by RefSeq, Dec 2008]

GS1-279B7.1 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene

HAO2 Gene

hydroxyacid oxidase 2 (long chain)

This gene is one of three related genes that have 2-hydroxyacid oxidase activity. The encoded protein localizes to the peroxisome has the highest activity toward the substrate 2-hydroxypalmitate. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

LOC105371187 Gene

putative short-chain dehydrogenase/reductase family 42E member 2

LOC105371184 Gene

collagen alpha-1(I) chain-like

SLC7A10 Gene

solute carrier family 7 (neutral amino acid transporter light chain, asc system), member 10

SLC7A10, in association with 4F2HC (SLC3A2; MIM 158070), mediates high-affinity transport of D-serine and several other neutral amino acids (Nakauchi et al., 2000 [PubMed 10863037]).[supplied by OMIM, Mar 2008]

SLC7A11 Gene

solute carrier family 7 (anionic amino acid transporter light chain, xc- system), member 11

This gene encodes a member of a heteromeric, sodium-independent, anionic amino acid transport system that is highly specific for cysteine and glutamate. In this system, designated Xc(-), the anionic form of cysteine is transported in exchange for glutamate. This protein has been identified as the predominant mediator of Kaposi sarcoma-associated herpesvirus fusion and entry permissiveness into cells. Also, increased expression of this gene in primary gliomas (compared to normal brain tissue) was associated with increased glutamate secretion via the XCT channels, resulting in neuronal cell death. [provided by RefSeq, Sep 2011]

MRPS31P4 Gene

mitochondrial ribosomal protein S31 pseudogene 4

TIMM44 Gene

translocase of inner mitochondrial membrane 44 homolog (yeast)

SLC25A3P2 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 pseudogene 2

PTPMT1 Gene

protein tyrosine phosphatase, mitochondrial 1

MRPS24P1 Gene

mitochondrial ribosomal protein S24 pseudogene 1

LOC100421594 Gene

mitochondrial carrier 2 pseudogene

LOC359819 Gene

mitochondrial ribosomal protein L39 pseudogene

MTCH2 Gene

mitochondrial carrier 2

MTCH1 Gene

mitochondrial carrier 1

This gene encodes a member of the mitochondrial carrier family. The encoded protein is localized to the mitochondrion inner membrane and induces apoptosis independent of the proapoptotic proteins Bax and Bak. Pseudogenes on chromosomes 6 and 11 have been identified for this gene. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Oct 2012]

MARC1 Gene

mitochondrial amidoxime reducing component 1

MARC2 Gene

mitochondrial amidoxime reducing component 2

MIPEPP3 Gene

mitochondrial intermediate peptidase pseudogene 3

MIPEPP1 Gene

mitochondrial intermediate peptidase pseudogene 1

NMTRS-TGA3-1 Gene

nuclear-encoded mitochondrial transfer RNA-Ser (TGA) 3-1

MRPL3P1 Gene

mitochondrial ribosomal protein L3 pseudogene 1

MRPL42P5 Gene

mitochondrial ribosomal protein L42 pseudogene 5

MRPL42P4 Gene

mitochondrial ribosomal protein L42 pseudogene 4

MRPL42P1 Gene

mitochondrial ribosomal protein L42 pseudogene 1

MRPS35P2 Gene

mitochondrial ribosomal protein S35 pseudogene 2

MRPS35P3 Gene

mitochondrial ribosomal protein S35 pseudogene 3

MRPS35P1 Gene

mitochondrial ribosomal protein S35 pseudogene 1

NMTRL-TAA1-1 Gene

nuclear-encoded mitochondrial transfer RNA-Leu (TAA) 1-1

MRPL22P1 Gene

mitochondrial ribosomal protein L22 pseudogene 1

MPC2 Gene

mitochondrial pyruvate carrier 2

MPC1 Gene

mitochondrial pyruvate carrier 1

The protein encoded by this gene is part of an MPC1/MPC2 heterodimer that is responsible for transporting pyruvate into mitochondria. The encoded protein is found in the inner mitochondrial membrane. Defects in this gene are a cause of mitochondrial pyruvate carrier deficiency. Several transcript variants, some protein coding and one non-protein coding, have been found for this gene. [provided by RefSeq, Aug 2012]

LOC101929104 Gene

mitochondrial import receptor subunit TOM22 homolog pseudogene

SLC25A37 Gene

solute carrier family 25 (mitochondrial iron transporter), member 37

SLC25A37 is a solute carrier localized in the mitochondrial inner membrane. It functions as an essential iron importer for the synthesis of mitochondrial heme and iron-sulfur clusters (summary by Chen et al., 2009 [PubMed 19805291]).[supplied by OMIM, Jan 2011]

SLC25A31 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 31

Mitochondrial ADP/ATP carriers, such as SLC25A31, are nuclear-coded mitochondrial proteins that catalyze the exchange of ATP generated in mitochondria by ATP synthase (see MIM 108729) against ADP produced in cytosol by most energy-consuming reactions (Dolce et al., 2005 [PubMed 15670820]).[supplied by OMIM, Mar 2008]

SLC25A32 Gene

solute carrier family 25 (mitochondrial folate carrier), member 32

This gene encodes a member of the P(I/L)W subfamily of mitochondrial carrier family transport proteins. The encoded protein transports folate across the inner mitochondrial membrane. Alternatively spliced transcript variants have been described. [provided by RefSeq, Mar 2013]

LOC441996 Gene

aconitase 2, mitochondrial pseudogene

MRPS17 Gene

mitochondrial ribosomal protein S17

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S17P family. The encoded protein is moderately conserved between human mitochondrial and prokaryotic ribosomal proteins. Pseudogenes corresponding to this gene are found on chromosomes 1p, 3p, 6q, 14p, 18q, and Xq. [provided by RefSeq, Jul 2008]

CKMT2 Gene

creatine kinase, mitochondrial 2 (sarcomeric)

Mitochondrial creatine kinase (MtCK) is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine. It belongs to the creatine kinase isoenzyme family. It exists as two isoenzymes, sarcomeric MtCK and ubiquitous MtCK, encoded by separate genes. Mitochondrial creatine kinase occurs in two different oligomeric forms: dimers and octamers, in contrast to the exclusively dimeric cytosolic creatine kinase isoenzymes. Sarcomeric mitochondrial creatine kinase has 80% homology with the coding exons of ubiquitous mitochondrial creatine kinase. This gene contains sequences homologous to several motifs that are shared among some nuclear genes encoding mitochondrial proteins and thus may be essential for the coordinated activation of these genes during mitochondrial biogenesis. Three transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

MRPS9 Gene

mitochondrial ribosomal protein S9

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. [provided by RefSeq, Jul 2008]

MRPS7 Gene

mitochondrial ribosomal protein S7

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. In the prokaryotic ribosome, the comparable protein is thought to play an essential role in organizing the 3' domain of the 16 S rRNA in the vicinity of the P- and A-sites. Pseudogenes corresponding to this gene are found on chromosomes 8p and 12p. [provided by RefSeq, Jul 2008]

MRPS6 Gene

mitochondrial ribosomal protein S6

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S6P family. Pseudogenes corresponding to this gene are found on chromosomes 1p and 12q. [provided by RefSeq, Jul 2008]

MRPS5 Gene

mitochondrial ribosomal protein S5

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S5P family. Pseudogenes corresponding to this gene are found on chromosomes 4q, 5q, and 18q. [provided by RefSeq, Jul 2008]

MRPS2 Gene

mitochondrial ribosomal protein S2

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S2 family. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2012]

CKMT1A Gene

creatine kinase, mitochondrial 1A

Mitochondrial creatine (MtCK) kinase is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine. It belongs to the creatine kinase isoenzyme family. It exists as two isoenzymes, sarcomeric MtCK and ubiquitous MtCK, encoded by separate genes. Mitochondrial creatine kinase occurs in two different oligomeric forms: dimers and octamers, in contrast to the exclusively dimeric cytosolic creatine kinase isoenzymes. Many malignant cancers with poor prognosis have shown overexpression of ubiquitous mitochondrial creatine kinase; this may be related to high energy turnover and failure to eliminate cancer cells via apoptosis. Ubiquitous mitochondrial creatine kinase has 80% homology with the coding exons of sarcomeric mitochondrial creatine kinase. Two genes located near each other on chromosome 15 have been identified which encode identical mitochondrial creatine kinase proteins. [provided by RefSeq, Jul 2008]

CKMT1B Gene

creatine kinase, mitochondrial 1B

Mitochondrial creatine (MtCK) kinase is responsible for the transfer of high energy phosphate from mitochondria to the cytosolic carrier, creatine. It belongs to the creatine kinase isoenzyme family. It exists as two isoenzymes, sarcomeric MtCK and ubiquitous MtCK, encoded by separate genes. Mitochondrial creatine kinase occurs in two different oligomeric forms: dimers and octamers, in contrast to the exclusively dimeric cytosolic creatine kinase isoenzymes. Many malignant cancers with poor prognosis have shown overexpression of ubiquitous mitochondrial creatine kinase; this may be related to high energy turnover and failure to eliminate cancer cells via apoptosis. Ubiquitous mitochondrial creatine kinase has 80% homology with the coding exons of sarcomeric mitochondrial creatine kinase. Two genes located near each other on chromosome 15 have been identified which encode identical mitochondrial creatine kinase proteins. [provided by RefSeq, Jul 2008]

NADK2 Gene

NAD kinase 2, mitochondrial

This gene encodes a mitochondrial kinase that catalyzes the phosphorylation of NAD to yield NADP. Mutations in this gene result in 2,4-dienoyl-CoA reductase deficiency. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2014]

CA5B Gene

carbonic anhydrase VB, mitochondrial

Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide. They participate in a variety of biological processes, including respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show extensive diversity in tissue distribution and in their subcellular localization. CA VB is localized in the mitochondria and shows the highest sequence similarity to the other mitochondrial CA, CA VA. It has a wider tissue distribution than CA VA, which is restricted to the liver. The differences in tissue distribution suggest that the two mitochondrial carbonic anhydrases evolved to assume different physiologic roles. [provided by RefSeq, Jul 2008]

CA5A Gene

carbonic anhydrase VA, mitochondrial

Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide. They participate in a variety of biological processes, including respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show extensive diversity in tissue distribution and in their subcellular localization. CA VA is localized in the mitochondria and expressed primarily in the liver. It may play an important role in ureagenesis and gluconeogenesis. CA5A gene maps to chromosome 16q24.3 and an unprocessed pseudogene has been assigned to 16p12-p11.2. [provided by RefSeq, Jul 2008]

SLC25A5P2 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 2

SLC25A5P4 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 4

SLC25A5P7 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 7

LOC100421620 Gene

polymerase (RNA) mitochondrial (DNA directed) pseudogene

MARS2 Gene

methionyl-tRNA synthetase 2, mitochondrial

This gene produces a mitochondrial methionyl-tRNA synthetase protein that is encoded by the nuclear genome and imported to the mitochondrion. This protein likely functions as a monomer and is predicted to localize to the mitochondrial matrix. Mutations in this gene are associated with the autosomal recessive neurodegenerative disease spastic ataxia-3 (SPAX3). [provided by RefSeq, Apr 2014]

LOC100128523 Gene

mitochondrial carrier 2 pseudogene

MRPS31P2 Gene

mitochondrial ribosomal protein S31 pseudogene 2

MRPS31P1 Gene

mitochondrial ribosomal protein S31 pseudogene 1

MRPS31P5 Gene

mitochondrial ribosomal protein S31 pseudogene 5

IARS2P1 Gene

isoleucyl-tRNA synthetase 2, mitochondrial pseudogene 1

SOD2P1 Gene

superoxide dismutase 2, mitochondrial pseudogene 1

NMTRQ-TTG8-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 8-1

LOC100420251 Gene

mitochondrial fission factor pseudogene

MRPS10P1 Gene

mitochondrial ribosomal protein S10 pseudogene 1

MRPS10P2 Gene

mitochondrial ribosomal protein S10 pseudogene 2

MRPS10P5 Gene

mitochondrial ribosomal protein S10 pseudogene 5

GFM1 Gene

G elongation factor, mitochondrial 1

Eukaryotes contain two protein translational systems, one in the cytoplasm and one in the mitochondria. Mitochondrial translation is crucial for maintaining mitochondrial function and mutations in this system lead to a breakdown in the respiratory chain-oxidative phosphorylation system and to impaired maintenance of mitochondrial DNA. This gene encodes one of the mitochondrial translation elongation factors. Its role in the regulation of normal mitochondrial function and in different disease states attributed to mitochondrial dysfunction is not known. [provided by RefSeq, Jul 2008]

GFM2 Gene

G elongation factor, mitochondrial 2

Eukaryotes contain two protein translational systems, one in the cytoplasm and one in the mitochondria. Mitochondrial translation is crucial for maintaining mitochondrial function and mutations in this system lead to a breakdown in the respiratory chain-oxidative phosphorylation system and to impaired maintenance of mitochondrial DNA. This gene encodes one of the mitochondrial translation elongation factors, which is a GTPase that plays a role at the termination of mitochondrial translation by mediating the disassembly of ribosomes from messenger RNA . Its role in the regulation of normal mitochondrial function and in disease states attributed to mitochondrial dysfunction is not known. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2013]

TEFM Gene

transcription elongation factor, mitochondrial

LOC100132621 Gene

mitochondrial fission regulator 2 pseudogene

NMTRQ-TTG2-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 2-1

MRPL10 Gene

mitochondrial ribosomal protein L10

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Sequence analysis identified three transcript variants that encode two different isoforms. A pseudogene corresponding to this gene is found on chromosome 5q. [provided by RefSeq, Nov 2010]

MRPL11 Gene

mitochondrial ribosomal protein L11

This nuclear gene encodes a 39S subunit component of the mitochondial ribosome. Alternative splicing results in multiple transcript variants. Pseudogenes for this gene are found on chromosomes 5 and 12. [provided by RefSeq, May 2014]

MRPL12 Gene

mitochondrial ribosomal protein L12

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein which forms homodimers. In prokaryotic ribosomes, two L7/L12 dimers and one L10 protein form the L8 protein complex. [provided by RefSeq, Jul 2008]

MRPL13 Gene

mitochondrial ribosomal protein L13

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL14 Gene

mitochondrial ribosomal protein L14

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. A pseudogene corresponding to this gene is found at 17p13.3. [provided by RefSeq, Jul 2008]

MRPL15 Gene

mitochondrial ribosomal protein L15

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the EcoL15 ribosomal protein family. A pseudogene corresponding to this gene is found on chromosome 15q. [provided by RefSeq, Jul 2008]

MRPL16 Gene

mitochondrial ribosomal protein L16

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL17 Gene

mitochondrial ribosomal protein L17

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL18 Gene

mitochondrial ribosomal protein L18

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the L18P ribosomal protein family. Three polymorphic sites exist in this gene, one of which is three nt in length which causes an extra aa near the N-terminus. [provided by RefSeq, Jul 2008]

MRPL19 Gene

mitochondrial ribosomal protein L19

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

LOC729057 Gene

translocase of outer mitochondrial membrane 40 homolog (yeast) pseudogene

LOC388955 Gene

PRELI domain-containing protein 1, mitochondrial pseudogene

TIMM8BP1 Gene

translocase of inner mitochondrial membrane 8B pseudogene 1

IMMP2L Gene

IMP2 inner mitochondrial membrane peptidase-like (S. cerevisiae)

This gene encodes a protein involved in processing the signal peptide sequences used to direct mitochondrial proteins to the mitochondria. The encoded protein resides in the mitochondria and is one of the necessary proteins for the catalytic activity of the mitochondrial inner membrane peptidase (IMP) complex. Two variants that encode the same protein have been described for this gene. [provided by RefSeq, Sep 2011]

SOD2 Gene

superoxide dismutase 2, mitochondrial

This gene is a member of the iron/manganese superoxide dismutase family. It encodes a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. This protein binds to the superoxide byproducts of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen. Mutations in this gene have been associated with idiopathic cardiomyopathy (IDC), premature aging, sporadic motor neuron disease, and cancer. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

CARS2 Gene

cysteinyl-tRNA synthetase 2, mitochondrial (putative)

This gene encodes a putative member of the class I family of aminoacyl-tRNA synthetases. These enzymes play a critical role in protein biosynthesis by charging tRNAs with their cognate amino acids. This protein is encoded by the nuclear genome but is likely to be imported to the mitochondrion where it is thought to catalyze the ligation of cysteine to tRNA molecules. A splice-site mutation in this gene has been associated with a novel progressive myoclonic epilepsy disease with similar symptoms to MERRF syndrome. [provided by RefSeq, Mar 2015]

HSCB Gene

HscB mitochondrial iron-sulfur cluster co-chaperone

MCCD1 Gene

mitochondrial coiled-coil domain 1

MRPS36P4 Gene

mitochondrial ribosomal protein S36 pseudogene 4

MRPS36P6 Gene

mitochondrial ribosomal protein S36 pseudogene 6

MRPS36P3 Gene

mitochondrial ribosomal protein S36 pseudogene 3

MRPS36P2 Gene

mitochondrial ribosomal protein S36 pseudogene 2

PMPCAP1 Gene

peptidase (mitochondrial processing) alpha pseudogene 1

VARS2 Gene

valyl-tRNA synthetase 2, mitochondrial

This gene encodes a mitochondrial aminoacyl-tRNA synthetase, which catalyzes the attachment of valine to tRNA(Val) for mitochondrial translation. Mutations in this gene cause combined oxidative phosphorylation deficiency-20, and are also associated with early-onset mitochondrial encephalopathies. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Aug 2014]

SLC25A3P3 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 pseudogene

SLC25A3P1 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 pseudogene 1

MRPL11P3 Gene

mitochondrial ribosomal protein L11 pseudogene 3

MRPL11P2 Gene

mitochondrial ribosomal protein L11 pseudogene 2

MRPL45P1 Gene

mitochondrial ribosomal protein L45 pseudogene 1

MRPL45P2 Gene

mitochondrial ribosomal protein L45 pseudogene 2

LOC101929583 Gene

monofunctional C1-tetrahydrofolate synthase, mitochondrial-like

LOC100289118 Gene

mitochondrial carrier 2 pseudogene

MRPS16 Gene

mitochondrial ribosomal protein S16

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S16P family. The encoded protein is one of the most highly conserved ribosomal proteins between mammalian and yeast mitochondria. Three pseudogenes (located at 8q21.3, 20q13.32, 22q12-q13.1) for this gene have been described. [provided by RefSeq, Jul 2008]

MRPS15 Gene

mitochondrial ribosomal protein S15

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S15P family. The encoded protein is more than two times the size of its E. coli counterpart, with the 12S rRNA binding sites conserved. Between human and mouse, the encoded protein is the least conserved among small subunit ribosomal proteins. Pseudogenes corresponding to this gene are found on chromosomes 15q and 19q. [provided by RefSeq, Jul 2008]

MRPS14 Gene

mitochondrial ribosomal protein S14

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S14P family. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2010]

MRPS12 Gene

mitochondrial ribosomal protein S12

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S12P family. The encoded protein is a key component of the ribosomal small subunit and controls the decoding fidelity and susceptibility to aminoglycoside antibiotics. The gene for mitochondrial seryl-tRNA synthetase is located upstream and adjacent to this gene, and both genes are possible candidates for the autosomal dominant deafness gene (DFNA4). Splice variants that differ in the 5' UTR have been found for this gene; all three variants encode the same protein. [provided by RefSeq, Jul 2008]

MRPS11 Gene

mitochondrial ribosomal protein S11

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that contains a high level of sequence similarity with ribosomal protein S11P family members. A pseudogene corresponding to this gene is found on chromosome 20. Sequence analysis identified two transcript variants that encode different protein isoforms. [provided by RefSeq, Jul 2008]

MRPS10 Gene

mitochondrial ribosomal protein S10

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S10P family. Pseudogenes corresponding to this gene are found on chromosomes 1q, 3p, and 9p. [provided by RefSeq, Jul 2008]

SLC25A5P8 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 8

SLC25A5P9 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 9

SLC25A5P1 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 1

SLC25A5P3 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 3

LOC100128171 Gene

mitochondrial fission regulator 1 pseudogene

TIMM17BP1 Gene

translocase of inner mitochondrial membrane 17 homolog B (yeast) pseudogene 1

NMTRQ-TTG3-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 3-1

LOC100131471 Gene

presenilins-associated rhomboid-like protein, mitochondrial-like

MTIF3 Gene

mitochondrial translational initiation factor 3

This gene encodes a translation initiation factor that is involved in mitochondrial protein synthesis. Polymorphism in this gene is associated with the onset of Parkinson's disease. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 5. [provided by RefSeq, Oct 2009]

MTIF2 Gene

mitochondrial translational initiation factor 2

During the initiation of protein biosynthesis, initiation factor-2 (IF-2) promotes the binding of the initiator tRNA to the small subunit of the ribosome in a GTP-dependent manner. Prokaryotic IF-2 is a single polypeptide, while eukaryotic cytoplasmic IF-2 (eIF-2) is a trimeric protein. Bovine liver mitochondria contain IF-2(mt), an 85-kD monomeric protein that is equivalent to prokaryotic IF-2. The predicted 727-amino acid human protein contains a 29-amino acid presequence. Human IF-2(mt) shares 32 to 38% amino acid sequence identity with yeast IF-2(mt) and several prokaryotic IF-2s, with the greatest degree of conservation in the G domains of the proteins. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

MTPAP Gene

mitochondrial poly(A) polymerase

The protein encoded by this gene is a member of the DNA polymerase type-B-like family. This enzyme synthesizes the 3' poly(A) tail of mitochondrial transcripts and plays a role in replication-dependent histone mRNA degradation.[provided by RefSeq, Jan 2011]

HMGCS2 Gene

3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial)

The protein encoded by this gene belongs to the HMG-CoA synthase family. It is a mitochondrial enzyme that catalyzes the first reaction of ketogenesis, a metabolic pathway that provides lipid-derived energy for various organs during times of carbohydrate deprivation, such as fasting. Mutations in this gene are associated with HMG-CoA synthase deficiency. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

MMDFS Gene

Multiple mitochondrial dysfunctions syndrome

SLC25A14P1 Gene

solute carrier family 25 (mitochondrial carrier, brain), member 14 pseudogene 1

ACO2 Gene

aconitase 2, mitochondrial

The protein encoded by this gene belongs to the aconitase/IPM isomerase family. It is an enzyme that catalyzes the interconversion of citrate to isocitrate via cis-aconitate in the second step of the TCA cycle. This protein is encoded in the nucleus and functions in the mitochondrion. It was found to be one of the mitochondrial matrix proteins that are preferentially degraded by the serine protease 15(PRSS15), also known as Lon protease, after oxidative modification. [provided by RefSeq, Jul 2008]

MIEF1 Gene

mitochondrial elongation factor 1

MIEF2 Gene

mitochondrial elongation factor 2

This gene encodes an outer mitochondrial membrane protein that functions in the regulation of mitochondrial morphology. It can directly recruit the fission mediator dynamin-related protein 1 (Drp1) to the mitochondrial surface. The gene is located within the Smith-Magenis syndrome region on chromosome 17. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jun 2011]

MCAT Gene

malonyl CoA:ACP acyltransferase (mitochondrial)

The protein encoded by this gene is found exclusively in the mitochondrion, where it catalyzes the transfer of a malonyl group from malonyl-CoA to the mitochondrial acyl carrier protein. The encoded protein may be part of a fatty acid synthase complex that is more like the type II prokaryotic and plastid complexes rather than the type I human cytosolic complex. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Mar 2012]

MRPL42P3 Gene

mitochondrial ribosomal protein L42 pseudogene 3

MRPL42P2 Gene

mitochondrial ribosomal protein L42 pseudogene 2

NMTRQ-TTG12-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 12-1

OXSM Gene

3-oxoacyl-ACP synthase, mitochondrial

This gene encodes a beta-ketoacyl synthetase. The encoded enzyme is required for elongation of fatty acid chains in the mitochondria. Alternatively spliced transcript variants have been described.[provided by RefSeq, Feb 2009]

MRPS18A Gene

mitochondrial ribosomal protein S18A

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely related to each other than they are to the prokaryotic S18 proteins. A pseudogene corresponding to this gene is found on chromosome 3p. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Jul 2010]

MRPS18B Gene

mitochondrial ribosomal protein S18B

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely related to each other than they are to the prokaryotic S18 proteins. Pseudogenes corresponding to this gene are found on chromosomes 1q and 2q. [provided by RefSeq, Jul 2008]

MRPS18C Gene

mitochondrial ribosomal protein S18C

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely related to each other than they are to the prokaryotic S18 proteins. Pseudogenes corresponding to this gene are found on chromosomes 8p, 12p, 15q, and 22q. [provided by RefSeq, Jul 2008]

MRPL14P1 Gene

mitochondrial ribosomal protein L14 pseudogene 1

MRPS7P2 Gene

mitochondrial ribosomal protein S7 pseudogene 2

MRPS7P1 Gene

mitochondrial ribosomal protein S7 pseudogene 1

FIS1 Gene

fission 1 (mitochondrial outer membrane) homolog (S. cerevisiae)

The balance between fission and fusion regulates the morphology of mitochondria. TTC11 is a component of a mitochondrial complex that promotes mitochondrial fission (James et al., 2003 [PubMed 12783892]).[supplied by OMIM, Mar 2008]

LOC260339 Gene

transcription factor A, mitochondrial pseudogene

MTRF1 Gene

mitochondrial translational release factor 1

The protein encoded by this gene was determined by in silico methods to be a mitochondrial protein with similarity to the peptide chain release factors (RFs) discovered in bacteria and yeast. The peptide chain release factors direct the termination of translation in response to the peptide chain termination codons. Initially thought to have a role in the termination of mitochondria protein synthesis, a recent publication found no mitochondrial translation release functionality. Multiple alternatively spliced transcript variants have been suggested by mRNA and EST data; however, their full-length natures are not clear. [provided by RefSeq, Jul 2008]

MTFR1 Gene

mitochondrial fission regulator 1

This gene encodes a mitochondrial protein that is characterized by a poly-proline rich region. A chicken homolog of this protein promotes mitochondrial fission and the mouse homolog protects cells from oxidative stress. A related pseudogene of this gene is found on chromosome X. [provided by RefSeq, Mar 2009]

MTFR2 Gene

mitochondrial fission regulator 2

LOC100128454 Gene

39S ribosomal protein L32, mitochondrial pseudogene

MPV17L Gene

MPV17 mitochondrial membrane protein-like

MPV17L2 Gene

MPV17 mitochondrial membrane protein-like 2

LOC645324 Gene

GrpE-like 1, mitochondrial (E. coli) pseudogene

NMTRS-TGA2-1 Gene

nuclear-encoded mitochondrial transfer RNA-Ser (TGA) 2-1

LOC100736408 Gene

NAD kinase 2, mitochondrial pseudogene

LOC100509370 Gene

39S ribosomal protein L21, mitochondrial pseudogene

LOC101928296 Gene

ATP synthase-coupling factor 6, mitochondrial-like

TOMM40 Gene

translocase of outer mitochondrial membrane 40 homolog (yeast)

TOMM40 is the channel-forming subunit of the translocase of the mitochondrial outer membrane (TOM) complex that is essential for protein import into mitochondria (Humphries et al., 2005 [PubMed 15644312]).[supplied by OMIM, May 2008]

TFB2M Gene

transcription factor B2, mitochondrial

MGME1 Gene

mitochondrial genome maintenance exonuclease 1

MRPL51P2 Gene

mitochondrial ribosomal protein L51 pseudogene 2

MRPL51P1 Gene

mitochondrial ribosomal protein L51 pseudogene 1

TARS2 Gene

threonyl-tRNA synthetase 2, mitochondrial (putative)

This gene encodes a member of the class-II aminoacyl-tRNA synthetase family. The encoded protein is a mitochondrial aminoacyl-tRNA synthetase. Alternative splicing results in multiple transcript variants. A related pseudogene has been identified on chromosome 4. [provided by RefSeq, Dec 2012]

LOC343508 Gene

aconitase 2, mitochondrial pseudogene

MRPS23P1 Gene

mitochondrial ribosomal protein S23 pseudogene 1

NMTRQ-TTG6-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 6-1

ME2P1 Gene

malic enzyme 2, NAD(+)-dependent, mitochondrial pseudogene 1

LOC105369446 Gene

mitochondrial import receptor subunit TOM20 homolog pseudogene

MRPS18AP1 Gene

mitochondrial ribosomal protein S18A pseudogene 1

MRPL39 Gene

mitochondrial ribosomal protein L39

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Two transcript variants encoding distinct isoforms have been described. A pseudogene corresponding to this gene is found on chromosome 5q. [provided by RefSeq, Jul 2008]

LOC102724738 Gene

tricarboxylate transport protein, mitochondrial pseudogene

NMTRQ-TTG13-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 13-1

MRPL43 Gene

mitochondrial ribosomal protein L43

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. This gene and the gene for a semaphorin class 4 protein (SEMA4G) overlap at map location 10q24.31 and are transcribed in opposite directions. Sequence analysis identified multiple transcript variants encoding at least four different protein isoforms. [provided by RefSeq, Jul 2008]

MRPL42 Gene

mitochondrial ribosomal protein L42

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a protein identified as belonging to both the 28S and the 39S subunits. Alternative splicing results in multiple transcript variants. Pseudogenes corresponding to this gene are found on chromosomes 4q, 6p, 6q, 7p, and 15q. [provided by RefSeq, May 2011]

MRPL40 Gene

mitochondrial ribosomal protein L40

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Deletions in this gene may contribute to the etiology of velo-cardio-facial syndrome and DiGeorge syndrome. [provided by RefSeq, Jul 2008]

MRPL47 Gene

mitochondrial ribosomal protein L47

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. This gene is immediately adjacent to the gene for BAF complex 53 kDa subunit protein a (BAF53a), in a tail-to-tail orientation. Two transcript variants encoding different protein isoforms have been identified. [provided by RefSeq, Jul 2008]

MRPL46 Gene

mitochondrial ribosomal protein L46

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL44 Gene

mitochondrial ribosomal protein L44

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL49 Gene

mitochondrial ribosomal protein L49

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. Pseudogenes corresponding to this gene are found on chromosomes 5q and 8p. [provided by RefSeq, May 2011]

MRPL48 Gene

mitochondrial ribosomal protein L48

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. A pseudogene corresponding to this gene is found on chromosome 6p. [provided by RefSeq, Jul 2008]

MPC1L Gene

mitochondrial pyruvate carrier 1-like

MRPS28 Gene

mitochondrial ribosomal protein S28

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that has been called mitochondrial ribosomal protein S35 in the literature. [provided by RefSeq, Jul 2008]

MRPS26 Gene

mitochondrial ribosomal protein S26

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. This gene lies adjacent to and downstream of the gonadotropin-releasing hormone precursor gene. [provided by RefSeq, Jul 2008]

MRPS27 Gene

mitochondrial ribosomal protein S27

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that may be a functional partner of the death associated protein 3 (DAP3). Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Nov 2013]

MRPS24 Gene

mitochondrial ribosomal protein S24

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. A pseudogene corresponding to this gene is found on chromosome 11. Read-through transcription exists between this gene and the upstream upregulator of cell proliferation (URGCP) gene. [provided by RefSeq, Mar 2011]

MRPS25 Gene

mitochondrial ribosomal protein S25

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. A pseudogene corresponding to this gene is found on chromosome 4. [provided by RefSeq, Jul 2008]

MRPS22 Gene

mitochondrial ribosomal protein S22

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that does not seem to have a counterpart in prokaryotic and fungal-mitochondrial ribosomes. This gene lies telomeric of and is transcribed in the opposite direction from the forkhead box L2 gene. A pseudogene corresponding to this gene is found on chromosome Xq. [provided by RefSeq, Jul 2008]

MRPS23 Gene

mitochondrial ribosomal protein S23

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. A pseudogene corresponding to this gene is found on chromosome 7p. [provided by RefSeq, Jul 2008]

MRPS21 Gene

mitochondrial ribosomal protein S21

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S21P family. Pseudogenes corresponding to this gene are found on chromosomes 1p, 1q, 9p, 10p, 10q, 16q, and 17q. Available sequence data analyses identified splice variants that differ in the 5' UTR; both transcripts encode the same protein. [provided by RefSeq, Jul 2008]

NMTRV-TAC1-1 Gene

nuclear-encoded mitochondrial transfer RNA-Val (TAC) 1-1

ME3 Gene

malic enzyme 3, NADP(+)-dependent, mitochondrial

Malic enzyme catalyzes the oxidative decarboxylation of malate to pyruvate using either NAD+ or NADP+ as a cofactor. Mammalian tissues contain 3 distinct isoforms of malic enzyme: a cytosolic NADP(+)-dependent isoform, a mitochondrial NADP(+)-dependent isoform, and a mitochondrial NAD(+)-dependent isoform. This gene encodes a mitochondrial NADP(+)-dependent isoform. Multiple alternatively spliced transcript variants have been found for this gene, but the biological validity of some variants has not been determined. [provided by RefSeq, Jul 2008]

ME2 Gene

malic enzyme 2, NAD(+)-dependent, mitochondrial

This gene encodes a mitochondrial NAD-dependent malic enzyme, a homotetrameric protein, that catalyzes the oxidative decarboxylation of malate to pyruvate. It had previously been weakly linked to a syndrome known as Friedreich ataxia that has since been shown to be the result of mutation in a completely different gene. Certain single-nucleotide polymorphism haplotypes of this gene have been shown to increase the risk for idiopathic generalized epilepsy. Alternatively spliced transcript variants encoding different isoforms found for this gene. [provided by RefSeq, Dec 2009]

CLPX Gene

caseinolytic mitochondrial matrix peptidase chaperone subunit

CLPP Gene

caseinolytic mitochondrial matrix peptidase proteolytic subunit

The protein encoded by this gene belongs to the peptidase family S14 and hydrolyzes proteins into small peptides in the presence of ATP and magnesium. The protein is transported into mitochondrial matrix and is associated with the inner mitochondrial membrane. [provided by RefSeq, Jul 2008]

CLPB Gene

ClpB homolog, mitochondrial AAA ATPase chaperonin

This gene belongs to the ATP-ases associated with diverse cellular activities (AAA+) superfamily. Members of this superfamily form ring-shaped homo-hexamers and have highly conserved ATPase domains that are involved in various processes including DNA replication, protein degradation and reactivation of misfolded proteins. All members of this family hydrolyze ATP through their AAA+ domains and use the energy generated through ATP hydrolysis to exert mechanical force on their substrates. In addition to an AAA+ domain, the protein encoded by this gene contains a C-terminal D2 domain, which is characteristic of the AAA+ subfamily of Caseinolytic peptidases to which this protein belongs. It cooperates with Hsp70 in the disaggregation of protein aggregates. Allelic variants of this gene are associated with 3-methylglutaconic aciduria, which causes cataracts and neutropenia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2015]

NMTRL-TAA4-1 Gene

nuclear-encoded mitochondrial transfer RNA-Leu (TAA) 4-1

RMRP Gene

RNA component of mitochondrial RNA processing endoribonuclease

This gene encodes the RNA component of mitochondrial RNA processing endoribonuclease, which cleaves mitochondrial RNA at a priming site of mitochondrial DNA replication. This RNA also interacts with the telomerase reverse transcriptase catalytic subunit to form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase activity and produces double-stranded RNAs that can be processed into small interfering RNA. Mutations in this gene are associated with cartilage-hair hypoplasia.[provided by RefSeq, Mar 2010]

LOC100996643 Gene

monofunctional C1-tetrahydrofolate synthase, mitochondrial-like

LOC100421472 Gene

mitochondrial fission regulator 2 pseudogene

DIABLO Gene

diablo, IAP-binding mitochondrial protein

This gene encodes an inhibitor of apoptosis protein (IAP)-binding protein. The encoded mitochondrial protein enters the cytosol when cells undergo apoptosis, and allows activation of caspases by binding to inhibitor of apoptosis proteins. Overexpression of the encoded protein sensitizes tumor cells to apoptosis. A mutation in this gene is associated with young-adult onset of nonsyndromic deafness-64. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, May 2013]

MTO1 Gene

mitochondrial tRNA translation optimization 1

This gene encodes a mitochondrial protein thought to be involved in mitochondrial tRNA modification. The encoded protein may also play a role in the expression of the non-syndromic and aminoglycoside-induced deafness phenotypes associated with a specific mutation in the mitochondrial 12S rRNA gene. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

NMTRL-TAA5-1 Gene

nuclear-encoded mitochondrial transfer RNA-Leu (TAA) 5-1

NMTRQ-TTG7-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 7-1

MPV17 Gene

MpV17 mitochondrial inner membrane protein

This gene encodes a mitochondrial inner membrane protein that is implicated in the metabolism of reactive oxygen species. Mutations in this gene have been associated with the hepatocerebral form of mitochondrial DNA depletion syndrome (MDDS). [provided by RefSeq, Jul 2008]

GPAM Gene

glycerol-3-phosphate acyltransferase, mitochondrial

This gene encodes a mitochondrial enzyme which prefers saturated fatty acids as its substrate for the synthesis of glycerolipids. This metabolic pathway's first step is catalyzed by the encoded enzyme. Two forms for this enzyme exist, one in the mitochondria and one in the endoplasmic reticulum. Two alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Oct 2011]

LOC102724580 Gene

monofunctional C1-tetrahydrofolate synthase, mitochondrial-like

TFAMP2 Gene

transcription factor A, mitochondrial pseudogene 2

TFAMP1 Gene

transcription factor A, mitochondrial pseudogene 1

MECR Gene

mitochondrial trans-2-enoyl-CoA reductase

LOC102724828 Gene

39S ribosomal protein L23, mitochondrial-like

LOC101929091 Gene

enoyl-CoA hydratase domain-containing protein 2, mitochondrial pseudogene

MTG2 Gene

mitochondrial ribosome-associated GTPase 2

Small G proteins, such as GTPBP5, act as molecular switches that play crucial roles in the regulation of fundamental cellular processes such as protein synthesis, nuclear transport, membrane trafficking, and signal transduction (Hirano et al., 2006 [PubMed 17054726]).[supplied by OMIM, Mar 2008]

MTG1 Gene

mitochondrial ribosome-associated GTPase 1

MRPS6P2 Gene

mitochondrial ribosomal protein S6 pseudogene 2

MRPS6P1 Gene

mitochondrial ribosomal protein S6 pseudogene 1

MRPS6P4 Gene

mitochondrial ribosomal protein S6 pseudogene 4

CMPK2 Gene

cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial

This gene encodes one of the enzymes in the nucleotide synthesis salvage pathway that may participate in terminal differentiation of monocytic cells. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

SHMT2 Gene

serine hydroxymethyltransferase 2 (mitochondrial)

This gene encodes the mitochondrial form of a pyridoxal phosphate-dependent enzyme that catalyzes the reversible reaction of serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. The encoded product is primarily responsible for glycine synthesis. The activity of the encoded protein has been suggested to be the primary source of intracellular glycine. The gene which encodes the cytosolic form of this enzyme is located on chromosome 17. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

TARS2P1 Gene

threonyl-tRNA synthetase 2, mitochondrial pseudogene

TIMM10B Gene

translocase of inner mitochondrial membrane 10 homolog B (yeast)

FXC1, or TIMM10B, belongs to a family of evolutionarily conserved proteins that are organized in heterooligomeric complexes in the mitochondrial intermembrane space. These proteins mediate the import and insertion of hydrophobic membrane proteins into the mitochondrial inner membrane.[supplied by OMIM, Apr 2004]

MSTO1 Gene

misato 1, mitochondrial distribution and morphology regulator

TFAM Gene

transcription factor A, mitochondrial

This gene encodes a key mitochondrial transcription factor containing two high mobility group motifs. The encoded protein also functions in mitochondrial DNA replication and repair. Sequence polymorphisms in this gene are associated with Alzheimer's and Parkinson's diseases. There are pseudogenes for this gene on chromosomes 6, 7, and 11. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

ERAL1 Gene

Era-like 12S mitochondrial rRNA chaperone 1

ALDH2 Gene

aldehyde dehydrogenase 2 family (mitochondrial)

This protein belongs to the aldehyde dehydrogenase family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. Two major liver isoforms of aldehyde dehydrogenase, cytosolic and mitochondrial, can be distinguished by their electrophoretic mobilities, kinetic properties, and subcellular localizations. Most Caucasians have two major isozymes, while approximately 50% of Orientals have the cytosolic isozyme but not the mitochondrial isozyme. A remarkably higher frequency of acute alcohol intoxication among Orientals than among Caucasians could be related to the absence of a catalytically active form of the mitochondrial isozyme. The increased exposure to acetaldehyde in individuals with the catalytically inactive form may also confer greater susceptibility to many types of cancer. This gene encodes a mitochondrial isoform, which has a low Km for acetaldehydes, and is localized in mitochondrial matrix. Alternative splicing results in multiple transcript variants encoding distinct isoforms.[provided by RefSeq, Mar 2011]

LOC642355 Gene

nucleoside diphosphate kinase, mitochondrial-like

MRPS11P1 Gene

mitochondrial ribosomal protein S11 pseudogene 1

HARS2 Gene

histidyl-tRNA synthetase 2, mitochondrial

Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. The protein encoded by this gene is an enzyme belonging to the class II family of aminoacyl-tRNA synthetases. Functioning in the synthesis of histidyl-transfer RNA, the enzyme plays an accessory role in the regulation of protein biosynthesis. The gene is located in a head-to-head orientation with HARS on chromosome five, where the homologous genes likely share a bidirectional promoter. Mutations in this gene are associated with the pathogenesis of Perrault syndrome, which involves ovarian dysgenesis and sensorineural hearing loss. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jul 2013]

TOMM40L Gene

translocase of outer mitochondrial membrane 40 homolog (yeast)-like

LONP1 Gene

lon peptidase 1, mitochondrial

This gene encodes a mitochondrial matrix protein that belongs to the Lon family of ATP-dependent proteases. This protein mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides in the mitochondrial matrix. It may also have a chaperone function in the assembly of inner membrane protein complexes, and participate in the regulation of mitochondrial gene expression and maintenance of the integrity of the mitochondrial genome. Decreased expression of this gene has been noted in a patient with hereditary spastic paraplegia (PMID:18378094). Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Feb 2013]

FTMT Gene

ferritin mitochondrial

TIMM50 Gene

translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae)

MAVS Gene

mitochondrial antiviral signaling protein

This gene encodes an intermediary protein necessary in the virus-triggered beta interferon signaling pathways. It is required for activation of transcription factors which regulate expression of beta interferon and contributes to antiviral immunity. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

TK2 Gene

thymidine kinase 2, mitochondrial

This gene encodes a deoxyribonucleoside kinase that specifically phosphorylates thymidine, deoxycytidine, and deoxyuridine. The encoded enzyme localizes to the mitochondria and is required for mitochondrial DNA synthesis. Mutations in this gene are associated with a myopathic form of mitochondrial DNA depletion syndrome. Alternate splicing results in multiple transcript variants encoding distinct isoforms, some of which lack transit peptide, so are not localized to mitochondria. [provided by RefSeq, Dec 2012]

LOC100996384 Gene

aconitate hydratase, mitochondrial pseudogene

LOC101060049 Gene

ornithine aminotransferase, mitochondrial-like

MINOS1P4 Gene

mitochondrial inner membrane organizing system 1 pseudogene 4

LOC133332 Gene

mitochondrial ribosomal protein S5 pseudogene

TOMM6 Gene

translocase of outer mitochondrial membrane 6 homolog (yeast)

TOMM7 Gene

translocase of outer mitochondrial membrane 7 homolog (yeast)

This gene encodes a subunit of the translocase of the outer mitochondrial membrane. The encoded protein regulates the assembly and stability of the translocase complex. [provided by RefSeq, Oct 2012]

TOMM5 Gene

translocase of outer mitochondrial membrane 5 homolog (yeast)

LOC100422685 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 6 pseudogene

WARS2 Gene

tryptophanyl tRNA synthetase 2, mitochondrial

Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Two forms of tryptophanyl-tRNA synthetase exist, a cytoplasmic form, named WARS, and a mitochondrial form, named WARS2. This gene encodes the mitochondrial tryptophanyl-tRNA synthetase. Two alternative transcripts encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

SLC25A22 Gene

solute carrier family 25 (mitochondrial carrier: glutamate), member 22

This gene encodes a mitochondrial glutamate carrier. Mutations in this gene are associated with early infantile epileptic encephalopathy. Multiple alternatively spliced variants, encoding the same protein, have been identified.[provided by RefSeq, Jul 2010]

SLC25A23 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 23

SLC25A21 Gene

solute carrier family 25 (mitochondrial oxoadipate carrier), member 21

SLC25A21 is a homolog of the S. cerevisiae ODC proteins, mitochondrial carriers that transport C5-C7 oxodicarboxylates across inner mitochondrial membranes. One of the species transported by ODC is 2-oxoadipate, a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine in mammals. Within mitochondria, 2-oxoadipate is converted into acetyl-CoA.[supplied by OMIM, Apr 2004]

SLC25A24 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24

This gene encodes a carrier protein that transports ATP-Mg exchanging it for phosphate. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2012]

SLC25A25 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 25

The protein encoded by this gene belongs to the family of calcium-binding mitochondrial carriers, with a characteristic mitochondrial carrier domain at the C-terminus. These proteins are found in the inner membranes of mitochondria, and function as transport proteins. They shuttle metabolites, nucleotides and cofactors through the mitochondrial membrane and thereby connect and/or regulate cytoplasm and matrix functions. This protein may function as an ATP-Mg/Pi carrier that mediates the transport of Mg-ATP in exchange for phosphate, and likely responsible for the net uptake or efflux of adenine nucleotides into or from the mitochondria. Alternatively spliced transcript variants encoding different isoforms with a common C-terminus but variable N-termini have been described for this gene. [provided by RefSeq, Jul 2012]

SLC25A28 Gene

solute carrier family 25 (mitochondrial iron transporter), member 28

SLC25A29 Gene

solute carrier family 25 (mitochondrial carnitine/acylcarnitine carrier), member 29

This gene encodes a nuclear-encoded mitochondrial protein that is a member of the large family of solute carrier family 25 (SLC25) mitochondrial transporters. The members of this superfamily are involved in numerous metabolic pathways and cell functions. This gene product was previously reported to be a mitochondrial carnitine-acylcarnitine-like (CACL) translocase (PMID:128829710) or an ornithine transporter (designated ORNT3, PMID:19287344), however, a recent study characterized the main role of this protein as a mitochondrial transporter of basic amino acids, with a preference for arginine and lysine (PMID:24652292). Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Apr 2014]

MCCD1P1 Gene

mitochondrial coiled-coil domain 1 pseudogene 1

GPD2 Gene

glycerol-3-phosphate dehydrogenase 2 (mitochondrial)

The protein encoded by this gene localizes to the inner mitochondrial membrane and catalyzes the conversion of glycerol-3-phosphate to dihydroxyacetone phosphate, using FAD as a cofactor. Along with GDP1, the encoded protein constitutes the glycerol phosphate shuttle, which reoxidizes NADH formed during glycolysis. Two transcript variants encoding the same protein have been found for this gene.[provided by RefSeq, Jan 2010]

MICU3 Gene

mitochondrial calcium uptake family, member 3

MICU2 Gene

mitochondrial calcium uptake 2

MICU1 Gene

mitochondrial calcium uptake 1

This gene encodes an essential regulator of mitochondrial Ca2+ uptake under basal conditions. The encoded protein interacts with the mitochondrial calcium uniporter, a mitochondrial inner membrane Ca2+ channel, and is essential in preventing mitochondrial Ca2+ overload, which can cause excessive production of reactive oxygen species and cell stress. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Mar 2013]

NMTRS-TGA1-1 Gene

nuclear-encoded mitochondrial transfer RNA-Ser (TGA) 1-1

LOC102724023 Gene

ES1 protein homolog, mitochondrial

SLC25A15P1 Gene

solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 pseudogene 1

SLC25A15P2 Gene

solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 pseudogene 2

SLC25A15P3 Gene

solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 pseudogene 3

SLC25A15P5 Gene

solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 pseudogene 5

GRPEL2P2 Gene

GrpE-like 2, mitochondrial (E. coli) pseudogene 2

LOC392452 Gene

mitochondrial fission factor pseudogene

FARS2 Gene

phenylalanyl-tRNA synthetase 2, mitochondrial

Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. This gene encodes a phenylalanine-tRNA synthetase (PheRS) localized to the mitochondrion which consists of a single polypeptide chain, unlike the (alpha-beta)2 structure of the prokaryotic and eukaryotic cytoplasmic forms of PheRS. Structure analysis and catalytic properties indicate mitochondrial PheRSs may constitute a class of PheRS distinct from the enzymes found in prokaryotes and in the eukaryotic cytoplasm. [provided by RefSeq, Jul 2008]

TOMM20 Gene

translocase of outer mitochondrial membrane 20 homolog (yeast)

TOMM22 Gene

translocase of outer mitochondrial membrane 22 homolog (yeast)

The protein encoded by this gene is an integral membrane protein of the mitochondrial outer membrane. The encoded protein interacts with TOMM20 and TOMM40, and forms a complex with several other proteins to import cytosolic preproteins into the mitochondrion. [provided by RefSeq, Jul 2008]

NMTRQ-TTG11-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 11-1

SLC25A6P3 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 6 pseudogene 3

MRPL37P1 Gene

mitochondrial ribosomal protein L37 pseudogene 1

DFNM2 Gene

deafness (mitochondrial) modifier 2

AARS2 Gene

alanyl-tRNA synthetase 2, mitochondrial

The protein encoded by this gene belongs to the class-II aminoacyl-tRNA synthetase family. Aminoacyl-tRNA synthetases play critical roles in mRNA translation by charging tRNAs with their cognate amino acids. The encoded protein is a mitochondrial enzyme that specifically aminoacylates alanyl-tRNA. Mutations in this gene are a cause of combined oxidative phosphorylation deficiency 8. [provided by RefSeq, Dec 2011]

MRRF Gene

mitochondrial ribosome recycling factor

IMMP1LP1 Gene

IMP1 inner mitochondrial membrane peptidase-like (S. cerevisiae) pseudogene 1

LOC105379443 Gene

monofunctional C1-tetrahydrofolate synthase, mitochondrial-like

MRPS33P1 Gene

mitochondrial ribosomal protein S33 pseudogene 1

MRPS33P2 Gene

mitochondrial ribosomal protein S33 pseudogene 2

MRPS33P3 Gene

mitochondrial ribosomal protein S33 pseudogene 3

MRPS33P4 Gene

mitochondrial ribosomal protein S33 pseudogene 4

GPAT2 Gene

glycerol-3-phosphate acyltransferase 2, mitochondrial

MRPL57P10 Gene

mitochondrial ribosomal protein L57 pseudogene 10

LOC100420057 Gene

aconitase 2, mitochondrial pseudogene

MRPL15P1 Gene

mitochondrial ribosomal protein L15 pseudogene 1

MRPL2P1 Gene

mitochondrial ribosomal protein L2 pseudogene 1

NMTRL-TAA3-1 Gene

nuclear-encoded mitochondrial transfer RNA-Leu (TAA) 3-1

MRPL50P2 Gene

mitochondrial ribosomal protein L50 pseudogene 2

MRPL50P3 Gene

mitochondrial ribosomal protein L50 pseudogene 3

MRPL50P1 Gene

mitochondrial ribosomal protein L50 pseudogene 1

MRPL50P4 Gene

mitochondrial ribosomal protein L50 pseudogene 4

MRPL32P1 Gene

mitochondrial ribosomal protein L32 pseudogene 1

LOC653924 Gene

glycerol-3-phosphate acyltransferase 2, mitochondrial pseudogene

MRPL24 Gene

mitochondrial ribosomal protein L24

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein which is more than twice the size of its E.coli counterpart (EcoL24). Sequence analysis identified two transcript variants that encode the same protein. [provided by RefSeq, Jul 2008]

MRPL27 Gene

mitochondrial ribosomal protein L27

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL21 Gene

mitochondrial ribosomal protein L21

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Multiple transcript variants encoding different isoforms were identified through sequence analysis although some may be subject to nonsense-mediated decay (NMD). [provided by RefSeq, Jul 2008]

MRPL20 Gene

mitochondrial ribosomal protein L20

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. A pseudogene corresponding to this gene is found on chromosome 21q. [provided by RefSeq, Jul 2008]

MRPL23 Gene

mitochondrial ribosomal protein L23

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. The gene is biallelically expressed, despite its location within a region of imprinted genes on chromosome 11. [provided by RefSeq, Jul 2008]

MRPL22 Gene

mitochondrial ribosomal protein L22

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the L22 ribosomal protein family. A pseudogene corresponding to this gene is found on chromosome 4q. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

MRPL28 Gene

mitochondrial ribosomal protein L28

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein, a part of which was originally isolated by its ability to recognize tyrosinase in an HLA-A24-restricted fashion. [provided by RefSeq, Jul 2008]

LOC100288560 Gene

mitochondrial ribosomal protein S18C pseudogene

POLRMT Gene

polymerase (RNA) mitochondrial (DNA directed)

This gene encodes a mitochondrial DNA-directed RNA polymerase. The gene product is responsible for mitochondrial gene expression as well as for providing RNA primers for initiation of replication of the mitochondrial genome. Although this polypeptide has the same function as the three nuclear DNA-directed RNA polymerases, it is more closely related to RNA polymerases of phage and mitochondrial polymerases of lower eukaryotes. [provided by RefSeq, Jul 2008]

GRPEL1 Gene

GrpE-like 1, mitochondrial (E. coli)

GRPEL2 Gene

GrpE-like 2, mitochondrial (E. coli)

NMTRQ-TTG10-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 10-1

LOC440514 Gene

citrate synthase, mitochondrial-like

TCAIM Gene

T cell activation inhibitor, mitochondrial

TSFM Gene

Ts translation elongation factor, mitochondrial

This gene encodes a mitochondrial translation elongation factor. The encoded protein is an enzyme that catalyzes the exchange of guanine nucleotides on the translation elongation factor Tu during the elongation step of mitchondrial protein translation. Mutations in this gene are associated with combined oxidative phosphorylation deficiency-3 syndrome. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Mar 2010]

MRPS34 Gene

mitochondrial ribosomal protein S34

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

TIMM8A Gene

translocase of inner mitochondrial membrane 8 homolog A (yeast)

This translocase is involved in the import and insertion of hydrophobic membrane proteins from the cytoplasm into the mitochondrial inner membrane. The gene is mutated in Mohr-Tranebjaerg syndrome/Deafness Dystonia Syndrome (MTS/DDS) and it is postulated that MTS/DDS is a mitochondrial disease caused by a defective mitochondrial protein import system. Defects in this gene also cause Jensen syndrome; an X-linked disease with opticoacoustic nerve atrophy and muscle weakness. This protein, along with TIMM13, forms a 70 kDa heterohexamer. Alternative splicing results in multiple transcript variants encoding distinct isoforms.[provided by RefSeq, Mar 2009]

TIMM8B Gene

translocase of inner mitochondrial membrane 8 homolog B (yeast)

This gene encodes a member of a well-conserved family of proteins with similarity to yeast Tim mitochondrial import proteins. This gene is encoded by a nuclear gene and is transported into the intermembrane space of the mitochondrion. When formed into complexes, these proteins guide membrane-spanning proteins across the mitochondrial intermembrane space before they are added into the mitochondrial inner membrane. This gene is adjacent to succinate dehydrogenase, subunit D (SDHD), in which mutations have been found in affected members of families with hereditary paraganglioma.[provided by RefSeq, Aug 2009]

NT5M Gene

5',3'-nucleotidase, mitochondrial

This gene encodes a 5' nucleotidase that localizes to the mitochondrial matrix. This enzyme dephosphorylates the 5'- and 2'(3')-phosphates of uracil and thymine deoxyribonucleotides. The gene is located within the Smith-Magenis syndrome region on chromosome 17. [provided by RefSeq, Jul 2008]

XPNPEP3 Gene

X-prolyl aminopeptidase 3, mitochondrial

The protein encoded by this gene belongs to the family of X-pro-aminopeptidases that utilize a metal cofactor, and remove the N-terminal amino acid from peptides with a proline residue in the penultimate position. This protein has been shown to localize to the mitochondria of renal cells, and have a role in ciliary function. Mutations in this gene are associated with nephronophthisis-like nephropathy-1. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene, however, expression of some of these isoforms in vivo is not known.[provided by RefSeq, Mar 2011]

LOC727980 Gene

translocase of outer mitochondrial membrane 40 homolog (yeast) pseudogene

TIMMDC1 Gene

translocase of inner mitochondrial membrane domain containing 1

SARS2 Gene

seryl-tRNA synthetase 2, mitochondrial

This gene encodes the mitochondrial seryl-tRNA synthethase precursor, a member of the class II tRNA synthetase family. The mature enzyme catalyzes the ligation of Serine to tRNA(Ser) and participates in the biosynthesis of selenocysteinyl-tRNA(sec) in mitochondria. The enzyme contains an N-terminal tRNA binding domain and a core catalytic domain. It functions in a homodimeric form, which is stabilized by tRNA binding. This gene is regulated by a bidirectional promoter that also controls the expression of mitochondrial ribosomal protein S12. Both genes are within the critical interval for the autosomal dominant deafness locus DFNA4 and might be linked to this disease. Multiple transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Mar 2009]

GTPBP3 Gene

GTP binding protein 3 (mitochondrial)

This locus encodes a GTP-binding protein. The encoded protein is localized to the mitochondria and may play a role in mitochondrial tRNA modification. Polymorphisms at this locus may be associated with severity of aminoglycoside-induced deafness, a disease associated with a mutation in the 12S rRNA. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Sep 2010]

NMTRQ-TTG9-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 9-1

SLC25A1P4 Gene

solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 pseudogene 4

SLC25A1P5 Gene

solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 pseudogene 5

SLC25A1P1 Gene

solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 pseudogene 1

SLC25A1P2 Gene

solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 pseudogene 2

SLC25A1P3 Gene

solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 pseudogene 3

MCU Gene

mitochondrial calcium uniporter

This gene encodes a calcium transporter that localizes to the mitochondrial inner membrane. The encoded protein interacts with mitochondrial calcium uptake 1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2012]

TIMM9 Gene

translocase of inner mitochondrial membrane 9 homolog (yeast)

TIMM9 belongs to a family of evolutionarily conserved proteins that are organized in heterooligomeric complexes in the mitochondrial intermembrane space. These proteins mediate the import and insertion of hydrophobic membrane proteins into the mitochondrial inner membrane.[supplied by OMIM, Apr 2004]

LOC100129577 Gene

mitochondrial carrier 1 pseudogene

MINOS1P3 Gene

mitochondrial inner membrane organizing system 1 pseudogene 3

MINOS1P2 Gene

mitochondrial inner membrane organizing system 1 pseudogene 2

MINOS1P1 Gene

mitochondrial inner membrane organizing system 1 pseudogene 1

LOC642661 Gene

translocase of outer mitochondrial membrane 40 homolog (yeast) pseudogene

LOC100420620 Gene

mitochondrial calcium uniporter regulator 1 pseudogene

NMTRL-TAA6-1 Gene

nuclear-encoded mitochondrial transfer RNA-Leu (TAA) 6-1

MRPS18CP2 Gene

mitochondrial ribosomal protein S18C pseudogene 2

MTIF2P1 Gene

mitochondrial translational initiation factor 2 pseudogene 1

TOMM70A Gene

translocase of outer mitochondrial membrane 70 homolog A (S. cerevisiae)

This gene encodes an import receptor of the outer mitochondrial membrane that is part of the translocase of the outer membrane complex. This protein is involved in the import of mitochondrial precursor proteins. [provided by RefSeq, Oct 2011]

MCCD1P2 Gene

mitochondrial coiled-coil domain 1 pseudogene 2

MRPL36P1 Gene

mitochondrial ribosomal protein L36 pseudogene 1

MRPS15P1 Gene

mitochondrial ribosomal protein S15 pseudogene 1

MRPS15P2 Gene

mitochondrial ribosomal protein S15 pseudogene 2

MTERF2 Gene

mitochondrial transcription termination factor 2

MTERF3 Gene

mitochondrial transcription termination factor 3

MTERF1 Gene

mitochondrial transcription termination factor 1

This gene encodes a mitochondrial transcription termination factor. This protein participates in attenuating transcription from the mitochondrial genome; this attenuation allows higher levels of expression of 16S ribosomal RNA relative to the tRNA gene downstream. The product of this gene has three leucine zipper motifs bracketed by two basic domains that are all required for DNA binding. There is evidence that, for this protein, the zippers participate in intramolecular interactions that establish the three-dimensional structure required for DNA binding. [provided by RefSeq, Jul 2008]

MTERF4 Gene

mitochondrial transcription termination factor 4

TFB1M Gene

transcription factor B1, mitochondrial

The protein encoded by this gene is a dimethyltransferase that methylates the conserved stem loop of mitochondrial 12S rRNA. The encoded protein also is part of the basal mitochondrial transcription complex and is necessary for mitochondrial gene expression. The methylation and transcriptional activities of this protein are independent of one another. Variations in this gene may influence the severity of aminoglycoside-induced deafness (AID).[provided by RefSeq, Aug 2010]

LOC729999 Gene

glycerol-3-phosphate dehydrogenase 2 (mitochondrial) pseudogene

LOC100422473 Gene

translocase of outer mitochondrial membrane 40 homolog (yeast) pseudogene

LOC100129966 Gene

mitochondrial carrier 1 pseudogene

MRM1 Gene

mitochondrial rRNA methyltransferase 1 homolog (S. cerevisiae)

MRPL53P1 Gene

mitochondrial ribosomal protein L53 pseudogene 1

NMTRP-TGG1-1 Gene

nuclear-encoded mitochondrial transfer RNA-Pro (TGG) 1-1

MRPS21P9 Gene

mitochondrial ribosomal protein S21 pseudogene 9

MRPS21P4 Gene

mitochondrial ribosomal protein S21 pseudogene 4

MRPS21P7 Gene

mitochondrial ribosomal protein S21 pseudogene 7

UCP1 Gene

uncoupling protein 1 (mitochondrial, proton carrier)

Mitochondrial uncoupling proteins (UCP) are members of the family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed only in brown adipose tissue, a specialized tissue which functions to produce heat. [provided by RefSeq, Jul 2008]

UCP3 Gene

uncoupling protein 3 (mitochondrial, proton carrier)

Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. The different UCPs have tissue-specific expression; this gene is primarily expressed in skeletal muscle. This gene's protein product is postulated to protect mitochondria against lipid-induced oxidative stress. Expression levels of this gene increase when fatty acid supplies to mitochondria exceed their oxidation capacity and the protein enables the export of fatty acids from mitochondria. UCPs contain the three solcar protein domains typically found in MACPs. Two splice variants have been found for this gene.[provided by RefSeq, Nov 2008]

MSS51 Gene

MSS51 mitochondrial translational activator

MINOS1 Gene

mitochondrial inner membrane organizing system 1

LARS2 Gene

leucyl-tRNA synthetase 2, mitochondrial

This gene encodes a class 1 aminoacyl-tRNA synthetase, mitochondrial leucyl-tRNA synthetase. Each of the twenty aminoacyl-tRNA synthetases catalyzes the aminoacylation of a specific tRNA or tRNA isoaccepting family with the cognate amino acid. [provided by RefSeq, Jul 2008]

LOC729126 Gene

GrpE-like 1, mitochondrial (E. coli) pseudogene

MRPL54 Gene

mitochondrial ribosomal protein L54

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. [provided by RefSeq, Jul 2008]

MRPL55 Gene

mitochondrial ribosomal protein L55

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Multiple transcript variants encoding two different isoforms were identified through sequence analysis. [provided by RefSeq, Jul 2008]

MRPL57 Gene

mitochondrial ribosomal protein L57

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a protein which belongs to an undetermined ribosomal subunit and which seems to be specific to animal mitoribosomes. Pseudogenes corresponding to this gene are found on chromosomes 1p, 1q, 3p, 5q, 8q, 14q, and Y. [provided by RefSeq, Jul 2008]

MRPL50 Gene

mitochondrial ribosomal protein L50

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a putative 39S subunit protein and belongs to the L47P ribosomal protein family. Pseudogenes corresponding to this gene are found on chromosomes 2p, 2q, 5p, and 10q. [provided by RefSeq, Jul 2008]

MRPL51 Gene

mitochondrial ribosomal protein L51

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Pseudogenes corresponding to this gene are found on chromosomes 4p and 21q. [provided by RefSeq, Jul 2008]

MRPL52 Gene

mitochondrial ribosomal protein L52

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein which has no bacterial homolog. Multiple transcript variants encoding different protein isoforms were identified through sequence analysis. [provided by RefSeq, Jul 2008]

MRPL53 Gene

mitochondrial ribosomal protein L53

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. A pseudogene corresponding to this gene is found on chromosome 1p. [provided by RefSeq, Jul 2008]

LOC100129693 Gene

mitochondrial ribosomal protein L19 pseudogene

LOC101060206 Gene

transcription termination factor 1, mitochondrial-like

MRPS16P3 Gene

mitochondrial ribosomal protein S16 pseudogene 3

MRPS16P2 Gene

mitochondrial ribosomal protein S16 pseudogene 2

MRPS16P1 Gene

mitochondrial ribosomal protein S16 pseudogene 1

MRPL40P1 Gene

mitochondrial ribosomal protein L40 pseudogene 1

MFF Gene

mitochondrial fission factor

This is a nuclear gene encoding a protein that functions in mitochondrial and peroxisomal fission. The encoded protein recruits dynamin-1-like protein (DNM1L) to mitochondria. There are multiple pseudogenes for this gene on chromosomes 1, 5, and X. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2013]

MRPL20P1 Gene

mitochondrial ribosomal protein L20 pseudogene 1

MDH2 Gene

malate dehydrogenase 2, NAD (mitochondrial)

Malate dehydrogenase catalyzes the reversible oxidation of malate to oxaloacetate, utilizing the NAD/NADH cofactor system in the citric acid cycle. The protein encoded by this gene is localized to the mitochondria and may play pivotal roles in the malate-aspartate shuttle that operates in the metabolic coordination between cytosol and mitochondria. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2013]

TOMM20L Gene

translocase of outer mitochondrial membrane 20 homolog (yeast)-like

SLC25A3 Gene

solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3

The protein encoded by this gene catalyzes the transport of phosphate into the mitochondrial matrix, either by proton cotransport or in exchange for hydroxyl ions. The protein contains three related segments arranged in tandem which are related to those found in other characterized members of the mitochondrial carrier family. Both the N-terminal and C-terminal regions of this protein protrude toward the cytosol. Multiple alternatively spliced transcript variants have been isolated. [provided by RefSeq, Jul 2008]

TMEM243 Gene

transmembrane protein 243, mitochondrial

LOC100132126 Gene

mitochondrial carrier 2 pseudogene

LOC442155 Gene

transcription factor B2, mitochondrial pseudogene

LOC101060199 Gene

acyl-coenzyme A synthetase ACSM6, mitochondrial-like

NMTRL-TAA2-1 Gene

nuclear-encoded mitochondrial transfer RNA-Leu (TAA) 2-1

LOC100131779 Gene

translocase of outer mitochondrial membrane 6 homolog (yeast) pseudogene

IDH2 Gene

isocitrate dehydrogenase 2 (NADP+), mitochondrial

Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which utilizes NAD(+) as the electron acceptor and the other NADP(+). Five isocitrate dehydrogenases have been reported: three NAD(+)-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP(+)-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP(+)-dependent isozyme is a homodimer. The protein encoded by this gene is the NADP(+)-dependent isocitrate dehydrogenase found in the mitochondria. It plays a role in intermediary metabolism and energy production. This protein may tightly associate or interact with the pyruvate dehydrogenase complex. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

LOC101060442 Gene

calcium-binding mitochondrial carrier protein SCaMC-1-like

SLC25A5P5 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 5

SLC25A5P6 Gene

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 pseudogene 6

LOC646639 Gene

translocase of outer mitochondrial membrane 40 homolog (yeast) pseudogene

MRPL41 Gene

mitochondrial ribosomal protein L41

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the YmL27 ribosomal protein family. [provided by RefSeq, Jul 2008]

MRPL45 Gene

mitochondrial ribosomal protein L45

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Alternative splicing results in multiple transcript variants. Pseudogenes corresponding to this gene are found on chromosomes 2p and 17q. [provided by RefSeq, May 2013]

GLS2 Gene

glutaminase 2 (liver, mitochondrial)

The protein encoded by this gene is a mitochondrial phosphate-activated glutaminase that catalyzes the hydrolysis of glutamine to stoichiometric amounts of glutamate and ammonia. Originally thought to be liver-specific, this protein has been found in other tissues as well. Alternative splicing results in multiple transcript variants that encode different isoforms. [provided by RefSeq, Jul 2013]

LOC648934 Gene

citrate synthase, mitochondrial-like

IMMT Gene

inner membrane protein, mitochondrial

NMTRQ-TTG1-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 1-1

NMTRQ-TTG15-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 15-1

IMMTP1 Gene

inner membrane protein, mitochondrial (mitofilin) pseudogene 1

MRPL48P1 Gene

mitochondrial ribosomal protein L48 pseudogene 1

LOC644203 Gene

glutaryl-CoA dehydrogenase, mitochondrial-like

LOC100420247 Gene

mitochondrial fission factor pseudogene

LOC100506224 Gene

translocase of outer mitochondrial membrane 5 homolog (yeast) pseudogene

SLC25A15P4 Gene

solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 pseudogene 4

GRPEL2P1 Gene

GrpE-like 2, mitochondrial (E. coli) pseudogene 1

GRPEL2P3 Gene

GrpE-like 2, mitochondrial (E. coli) pseudogene 3

TIMM23 Gene

translocase of inner mitochondrial membrane 23 homolog (yeast)

The protein encoded by this gene is part of a complex located in the inner mitochondrial membrane that mediates the transport of transit peptide-containing proteins across the membrane. Multiple transcript variants, one protein-coding and others not protein-coding, have been found for this gene. [provided by RefSeq, Jul 2012]

TIMM22 Gene

translocase of inner mitochondrial membrane 22 homolog (yeast)

TUFM Gene

Tu translation elongation factor, mitochondrial

This gene encodes a protein which participates in protein translation in mitochondria. Mutations in this gene have been associated with combined oxidative phosphorylation deficiency resulting in lactic acidosis and fatal encephalopathy. A pseudogene has been identified on chromosome 17. [provided by RefSeq, Jul 2008]

MTRF1L Gene

mitochondrial translational release factor 1-like

The protein encoded by this gene plays a role in mitochondrial translation termination, and is thought to be a release factor that is involved in the dissociation of the complete protein from the final tRNA, the ribosome, and the cognate mRNA. This protein acts upon UAA and UAG stop codons, but has no in vitro activity against UGA, which encodes tryptophan in human mitochondrion, or, the mitochondrial non-cognate stop codons, AGA and AGG. This protein shares sequence similarity to bacterial release factors. Pseudogenes of this gene are found on chromosomes 4, 8, and 11. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2014]

TIMM17B Gene

translocase of inner mitochondrial membrane 17 homolog B (yeast)

This gene encodes a multipass transmembrane protein that forms an integral component of the mitochondrial translocase TIM23 complex. This complex facilitates the transport of mitochondrial proteins from the cytosol across the mitochondrial inner membrane and into the mitochondrion. There is a pseudogene for this gene on chromosome 12. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

TIMM17A Gene

translocase of inner mitochondrial membrane 17 homolog A (yeast)

TUFMP1 Gene

Tu translation elongation factor, mitochondrial pseudogene 1

LOC100420951 Gene

mitochondrial ribosomal protein L18 pseudogene

LOC100420954 Gene

GrpE-like 1, mitochondrial (E. coli) pseudogene

PMPCB Gene

peptidase (mitochondrial processing) beta

This gene is a member of the peptidase M16 family and encodes a protein with a zinc-binding motif. This protein is located in the mitochondrial matrix and catalyzes the cleavage of the leader peptides of precursor proteins newly imported into the mitochondria, though it only functions as part of a heterodimeric complex. [provided by RefSeq, Jul 2008]

PMPCA Gene

peptidase (mitochondrial processing) alpha

TOP1MT Gene

topoisomerase (DNA) I, mitochondrial

This gene encodes a mitochondrial DNA topoisomerase that plays a role in the modification of DNA topology. The encoded protein is a type IB topoisomerase and catalyzes the transient breaking and rejoining of DNA to relieve tension and DNA supercoiling generated in the mitochondrial genome during replication and transcription. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, May 2012]

UCP2 Gene

uncoupling protein 2 (mitochondrial, proton carrier)

Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. It is thought to play a role in nonshivering thermogenesis, obesity and diabetes. Chromosomal order is 5'-UCP3-UCP2-3'. [provided by RefSeq, Jul 2008]

IMMP1L Gene

IMP1 inner mitochondrial membrane peptidase-like (S. cerevisiae)

The mitochondrial inner membrane peptidase (IMP) complex generates mature, active proteins in the mitochondrial intermembrane space by proteolytically removing the mitochondrial targeting presequence of nuclear-encoded proteins. IMP1 and IMP2 (IMMP2L; MIM 605977) are the catalytic subunits of the IMP complex (Burri et al., 2005 [PubMed 15814844]).[supplied by OMIM, Sep 2008]

MALSU1 Gene

mitochondrial assembly of ribosomal large subunit 1

LOC348210 Gene

mitochondrial ribosomal protein L57 pseudogene

NMTRQ-TTG14-1 Gene

nuclear-encoded mitochondrial transfer RNA-Gln (TTG) 14-1

LOC100422628 Gene

glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2) pseudogene

MRPS17P9 Gene

mitochondrial ribosomal protein S17 pseudogene 9

MRPS17P6 Gene

mitochondrial ribosomal protein S17 pseudogene 6

MRPS17P7 Gene

mitochondrial ribosomal protein S17 pseudogene 7

MRPS17P5 Gene

mitochondrial ribosomal protein S17 pseudogene 5

MRPS17P3 Gene

mitochondrial ribosomal protein S17 pseudogene 3

MRPS17P1 Gene

mitochondrial ribosomal protein S17 pseudogene 1

LOC100129626 Gene

translocase of outer mitochondrial membrane 5 homolog (yeast) pseudogene

SLC25A19 Gene

solute carrier family 25 (mitochondrial thiamine pyrophosphate carrier), member 19

This gene encodes a mitochondrial protein that is a member of the solute carrier family. Although this protein was initially thought to be the mitochondrial deoxynucleotide carrier involved in the uptake of deoxynucleotides into the matrix of the mitochondria, further studies have demonstrated that this protein instead functions as the mitochondrial thiamine pyrophosphate carrier, which transports thiamine pyrophosphates into mitochondria. Mutations in this gene cause microcephaly, Amish type, a metabolic disease that results in severe congenital microcephaly, severe 2-ketoglutaric aciduria, and death within the first year. Multiple alternatively spliced variants, encoding the same protein, have been identified for this gene. [provided by RefSeq, Jul 2008]

SLC25A17 Gene

solute carrier family 25 (mitochondrial carrier; peroxisomal membrane protein, 34kDa), member 17

This gene encodes a peroxisomal membrane protein that belongs to the family of mitochondrial solute carriers. It is expressed in the liver, and is likely involved in transport. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

SLC25A16 Gene

solute carrier family 25 (mitochondrial carrier), member 16

This gene encodes a protein that contains three tandemly repeated mitochondrial carrier protein domains. The encoded protein is localized in the inner membrane and facilitates the rapid transport and exchange of molecules between the cytosol and the mitochondrial matrix space. This gene has a possible role in Graves' disease. [provided by RefSeq, Jul 2008]

SLC25A15 Gene

solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15

This gene is a member of the mitochondrial carrier family. The encoded protein transports ornithine across the inner mitochondrial membrane from the cytosol to the mitochondrial matrix. The protein is an essential component of the urea cycle, and functions in ammonium detoxification and biosynthesis of the amino acid arginine. Mutations in this gene result in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. There is a pseudogene of this locus on the Y chromosome.[provided by RefSeq, May 2009]

SLC25A14 Gene

solute carrier family 25 (mitochondrial carrier, brain), member 14

Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). Uncoupling proteins separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. Uncoupling proteins facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. This gene is widely expressed in many tissues with the greatest abundance in brain and testis. Alternative splicing results in multiple transcript variants. A pseudogene of this gene has been defined on chromosome 4. [provided by RefSeq, Aug 2013]

SLC25A11 Gene

solute carrier family 25 (mitochondrial carrier; oxoglutarate carrier), member 11

The oxoglutarate/malate carrier transports 2-oxoglutarate across the inner membranes of mitochondria in an electroneutral exchange for malate or other dicarboxylic acids (summary by Iacobazzi et al., 1992 [PubMed 1457818]).[supplied by OMIM, Jan 2011]

SLC25A10 Gene

solute carrier family 25 (mitochondrial carrier; dicarboxylate transporter), member 10

This gene encodes a member of a family of proteins that translocate small metabolites across the mitochondrial membrane. The encoded protein exchanges dicarboxylates, such as malate and succinate, for phosphate, sulfate, and other small molecules, thereby providing substrates for metabolic processes including the Krebs cycle and fatty acid synthesis. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Aug 2012]

MRPS18BP1 Gene

mitochondrial ribosomal protein S18B pseudogene 1

MRPS18BP2 Gene

mitochondrial ribosomal protein S18B pseudogene 2

LOC101928195 Gene

monofunctional C1-tetrahydrofolate synthase, mitochondrial-like

MRPL9P1 Gene

mitochondrial ribosomal protein L9 pseudogene 1

MRPS22P1 Gene

mitochondrial ribosomal protein S22 pseudogene 1

MRPL4 Gene

mitochondrial ribosomal protein L4

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein. Sequence analysis identified alternatively spliced variants that encode different protein isoforms. [provided by RefSeq, Jul 2008]

MRPL2 Gene

mitochondrial ribosomal protein L2

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the EcoL2 ribosomal protein family. A pseudogene corresponding to this gene is found on chromosome 12q. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2014]

MRPL3 Gene

mitochondrial ribosomal protein L3

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the L3P ribosomal protein family. A pseudogene corresponding to this gene is found on chromosome 13q. [provided by RefSeq, Jul 2008]

MRPL1 Gene

mitochondrial ribosomal protein L1

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 39S subunit protein that belongs to the L1 ribosomal protein family. [provided by RefSeq, Jul 2008]

MRPL9 Gene

mitochondrial ribosomal protein L9

This is a nuclear gene encoding a protein component of the 39S subunit of the mitochondrial ribosome. Alternative splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 8. [provided by RefSeq, Jul 2014]

MRPS5P3 Gene

mitochondrial ribosomal protein S5 pseudogene 3

MRPS5P4 Gene

mitochondrial ribosomal protein S5 pseudogene 4

MUL1 Gene

mitochondrial E3 ubiquitin protein ligase 1

TOMM34 Gene

translocase of outer mitochondrial membrane 34

The protein encoded by this gene is involved in the import of precursor proteins into mitochondria. The encoded protein has a chaperone-like activity, binding the mature portion of unfolded proteins and aiding their import into mitochondria. This protein, which is found in the cytoplasm and sometimes associated with the outer mitochondrial membrane, has a weak ATPase activity and contains 6 TPR repeats. [provided by RefSeq, Jul 2008]

MIPEPP2 Gene

mitochondrial intermediate peptidase pseudogene 2

PARS2 Gene

prolyl-tRNA synthetase 2, mitochondrial (putative)

This gene encodes a putative member of the class II family of aminoacyl-tRNA synthetases. These enzymes play a critical role in protein biosynthesis by charging tRNAs with their cognate amino acids. This protein is encoded by the nuclear genome but is likely to be imported to the mitochondrion where it is thought to catalyze the ligation of proline to tRNA molecules. Mutations have been found in this gene in some patients with Alpers syndrome. [provided by RefSeq, Mar 2015]

LOC101060098 Gene

deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial-like

TIMM8BP2 Gene

translocase of inner mitochondrial membrane 8B pseudogene 2

SSBP1 Gene

single-stranded DNA binding protein 1, mitochondrial

SSBP1 is a housekeeping gene involved in mitochondrial biogenesis (Tiranti et al., 1995 [PubMed 7789991]). It is also a subunit of a single-stranded DNA (ssDNA)-binding complex involved in the maintenance of genome stability (Huang et al., 2009) [PubMed 19683501].[supplied by OMIM, Feb 2010]

MTFMT Gene

mitochondrial methionyl-tRNA formyltransferase

The protein encoded by this nuclear gene localizes to the mitochondrion, where it catalyzes the formylation of methionyl-tRNA. [provided by RefSeq, Jun 2011]

LOC102724788 Gene

proline dehydrogenase 1, mitochondrial

LOC100420899 Gene

mitochondrial ribosomal protein S25 pseudogene

LOC644924 Gene

glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2) pseudogene

EARS2 Gene

glutamyl-tRNA synthetase 2, mitochondrial

This gene encodes a member of the class I family of aminoacyl-tRNA synthetases. These enzymes play a critical role in protein biosynthesis by charging tRNAs with their cognate amino acids. This protein is encoded by the nuclear genome but is likely to be imported to the mitochondrion where it is thought to catalyze the ligation of glutamate to tRNA molecules. Mutations in this gene have been associated with combined oxidative phosphorylation deficiency 12 (COXPD12). Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2015]

RARS2 Gene

arginyl-tRNA synthetase 2, mitochondrial

The protein encoded by this gene is an arginyl-tRNA synthetase that is found in the mitochondrial matrix. Defects in this gene are a cause of pontocerebellar hypoplasia type 6 (PCH6). [provided by RefSeq, Oct 2008]

MRPL57P7 Gene

mitochondrial ribosomal protein L57 pseudogene 7

MRPL57P6 Gene

mitochondrial ribosomal protein L57 pseudogene 6

MRPL57P1 Gene

mitochondrial ribosomal protein L57 pseudogene 1

MRPL57P3 Gene

mitochondrial ribosomal protein L57 pseudogene 3

MRPL57P2 Gene

mitochondrial ribosomal protein L57 pseudogene 2

MRPL57P9 Gene

mitochondrial ribosomal protein L57 pseudogene 9

MRPL57P8 Gene

mitochondrial ribosomal protein L57 pseudogene 8

TIMM13 Gene

translocase of inner mitochondrial membrane 13 homolog (yeast)