Name

LOC100421483 Gene

transforming growth factor, beta receptor 1 pseudogene

TGFBR2 Gene

transforming growth factor, beta receptor II (70/80kDa)

This gene encodes a member of the Ser/Thr protein kinase family and the TGFB receptor subfamily. The encoded protein is a transmembrane protein that has a protein kinase domain, forms a heterodimeric complex with another receptor protein, and binds TGF-beta. This receptor/ligand complex phosphorylates proteins, which then enter the nucleus and regulate the transcription of a subset of genes related to cell proliferation. Mutations in this gene have been associated with Marfan Syndrome, Loeys-Deitz Aortic Aneurysm Syndrome, and the development of various types of tumors. Alternatively spliced transcript variants encoding different isoforms have been characterized. [provided by RefSeq, Jul 2008]

TGFBR1 Gene

transforming growth factor, beta receptor 1

The protein encoded by this gene forms a heteromeric complex with type II TGF-beta receptors when bound to TGF-beta, transducing the TGF-beta signal from the cell surface to the cytoplasm. The encoded protein is a serine/threonine protein kinase. Mutations in this gene have been associated with Loeys-Dietz aortic aneurysm syndrome (LDAS). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]

TGFBRAP1 Gene

transforming growth factor, beta receptor associated protein 1

TGFBR3 Gene

transforming growth factor, beta receptor III

This locus encodes the transforming growth factor (TGF)-beta type III receptor. The encoded receptor is a membrane proteoglycan that often functions as a co-receptor with other TGF-beta receptor superfamily members. Ectodomain shedding produces soluble TGFBR3, which may inhibit TGFB signaling. Decreased expression of this receptor has been observed in various cancers. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene.[provided by RefSeq, Sep 2010]

TGFBR3L Gene

transforming growth factor, beta receptor III-like

TGFB1I1 Gene

transforming growth factor beta 1 induced transcript 1

This gene encodes a coactivator of the androgen receptor, a transcription factor which is activated by androgen and has a key role in male sexual differentiation. The encoded protein is thought to regulate androgen receptor activity and may have a role to play in the treatment of prostate cancer. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

TGFB1 Gene

transforming growth factor, beta 1

This gene encodes a member of the transforming growth factor beta (TGFB) family of cytokines, which are multifunctional peptides that regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types. Many cells have TGFB receptors, and the protein positively and negatively regulates many other growth factors. The secreted protein is cleaved into a latency-associated peptide (LAP) and a mature TGFB1 peptide, and is found in either a latent form composed of a TGFB1 homodimer, a LAP homodimer, and a latent TGFB1-binding protein, or in an active form composed of a TGFB1 homodimer. The mature peptide may also form heterodimers with other TGFB family members. This gene is frequently upregulated in tumor cells, and mutations in this gene result in Camurati-Engelmann disease.[provided by RefSeq, Oct 2009]

TGFB2 Gene

transforming growth factor, beta 2

This gene encodes a member of the transforming growth factor beta (TGFB) family of cytokines, which are multifunctional peptides that regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types by transducing their signal through combinations of transmembrane type I and type II receptors (TGFBR1 and TGFBR2) and their downstream effectors, the SMAD proteins. Disruption of the TGFB/SMAD pathway has been implicated in a variety of human cancers. The encoded protein is secreted and has suppressive effects of interleukin-2 dependent T-cell growth. Translocation t(1;7)(q41;p21) between this gene and HDAC9 is associated with Peters' anomaly, a congenital defect of the anterior chamber of the eye. The knockout mice lacking this gene show perinatal mortality and a wide range of developmental, including cardiac, defects. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Sep 2010]

TGFB3 Gene

transforming growth factor, beta 3

This gene encodes a member of the TGF-beta family of proteins. The encoded protein is secreted and is involved in embryogenesis and cell differentiation. Defects in this gene are a cause of familial arrhythmogenic right ventricular dysplasia 1. [provided by RefSeq, Mar 2009]

TGFBI Gene

transforming growth factor, beta-induced, 68kDa

This gene encodes an RGD-containing protein that binds to type I, II and IV collagens. The RGD motif is found in many extracellular matrix proteins modulating cell adhesion and serves as a ligand recognition sequence for several integrins. This protein plays a role in cell-collagen interactions and may be involved in endochondrial bone formation in cartilage. The protein is induced by transforming growth factor-beta and acts to inhibit cell adhesion. Mutations in this gene are associated with multiple types of corneal dystrophy. [provided by RefSeq, Jul 2008]

TBRG1 Gene

transforming growth factor beta regulator 1

TBRG4 Gene

transforming growth factor beta regulator 4

LTBP4 Gene

latent transforming growth factor beta binding protein 4

The protein encoded by this gene binds transforming growth factor beta (TGFB) as it is secreted and targeted to the extracellular matrix. TGFB is biologically latent after secretion and insertion into the extracellular matrix, and sheds TGFB and other proteins upon activation. Defects in this gene may be a cause of cutis laxa and severe pulmonary, gastrointestinal, and urinary abnormalities. Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, May 2010]

LTBP3 Gene

latent transforming growth factor beta binding protein 3

The protein encoded by this gene forms a complex with transforming growth factor beta (TGF-beta) proteins and may be involved in their subcellular localization. Activation of this complex requires removal of the encoded binding protein. This protein also may play a structural role in the extracellular matrix. Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jan 2010]

LTBP2 Gene

latent transforming growth factor beta binding protein 2

The protein encoded by this gene belongs to the family of latent transforming growth factor (TGF)-beta binding proteins (LTBP), which are extracellular matrix proteins with multi-domain structure. This protein is the largest member of the LTBP family possessing unique regions and with most similarity to the fibrillins. It has thus been suggested that it may have multiple functions: as a member of the TGF-beta latent complex, as a structural component of microfibrils, and a role in cell adhesion. [provided by RefSeq, Jul 2008]

LTBP1 Gene

latent transforming growth factor beta binding protein 1

The protein encoded by this gene belongs to the family of latent TGF-beta binding proteins (LTBPs). The secretion and activation of TGF-betas is regulated by their association with latency-associated proteins and with latent TGF-beta binding proteins. The product of this gene targets latent complexes of transforming growth factor beta to the extracellular matrix, where the latent cytokine is subsequently activated by several different mechanisms. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

TGFA Gene

transforming growth factor, alpha

This gene encodes a growth factor that is a ligand for the epidermal growth factor receptor, which activates a signaling pathway for cell proliferation, differentiation and development. This protein may act as either a transmembrane-bound ligand or a soluble ligand. This gene has been associated with many types of cancers, and it may also be involved in some cases of cleft lip/palate. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

FIGF Gene

c-fos induced growth factor (vascular endothelial growth factor D)

The protein encoded by this gene is a member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family and is active in angiogenesis, lymphangiogenesis, and endothelial cell growth. This secreted protein undergoes a complex proteolytic maturation, generating multiple processed forms which bind and activate VEGFR-2 and VEGFR-3 receptors. This protein is structurally and functionally similar to vascular endothelial growth factor C. Read-through transcription has been observed between this locus and the upstream PIR (GeneID 8544) locus. [provided by RefSeq, Feb 2011]

PDGFRB Gene

platelet-derived growth factor receptor, beta polypeptide

This gene encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. These growth factors are mitogens for cells of mesenchymal origin. The identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer or a heterodimer, composed of both platelet-derived growth factor receptor alpha and beta polypeptides. This gene is flanked on chromosome 5 by the genes for granulocyte-macrophage colony-stimulating factor and macrophage-colony stimulating factor receptor; all three genes may be implicated in the 5-q syndrome. A translocation between chromosomes 5 and 12, that fuses this gene to that of the translocation, ETV6, leukemia gene, results in chronic myeloproliferative disorder with eosinophilia. [provided by RefSeq, Jul 2008]

NGF Gene

nerve growth factor (beta polypeptide)

This gene is a member of the NGF-beta family and encodes a secreted protein which homodimerizes and is incorporated into a larger complex. This protein has nerve growth stimulating activity and the complex is involved in the regulation of growth and the differentiation of sympathetic and certain sensory neurons. Mutations in this gene have been associated with hereditary sensory and autonomic neuropathy, type 5 (HSAN5), and dysregulation of this gene's expression is associated with allergic rhinitis. [provided by RefSeq, Jul 2008]

PDGFB Gene

platelet-derived growth factor beta polypeptide

The protein encoded by this gene is a member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for cells of mesenchymal origin and are characterized by a motif of eight cysteines. This gene product can exist either as a homodimer (PDGF-BB) or as a heterodimer with the platelet-derived growth factor alpha polypeptide (PDGF-AB), where the dimers are connected by disulfide bonds. Mutations in this gene are associated with meningioma. Reciprocal translocations between chromosomes 22 and 17, at sites where this gene and that for collagen type 1, alpha 1 are located, are associated with a particular type of skin tumor called dermatofibrosarcoma protuberans resulting from unregulated expression of growth factor. Two alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Feb 2013]

HGF Gene

hepatocyte growth factor (hepapoietin A; scatter factor)

Hepatocyte growth factor regulates cell growth, cell motility, and morphogenesis by activating a tyrosine kinase signaling cascade after binding to the proto-oncogenic c-Met receptor. Hepatocyte growth factor is secreted by mesenchymal cells and acts as a multi-functional cytokine on cells of mainly epithelial origin. Its ability to stimulate mitogenesis, cell motility, and matrix invasion gives it a central role in angiogenesis, tumorogenesis, and tissue regeneration. It is secreted as a single inactive polypeptide and is cleaved by serine proteases into a 69-kDa alpha-chain and 34-kDa beta-chain. A disulfide bond between the alpha and beta chains produces the active, heterodimeric molecule. The protein belongs to the plasminogen subfamily of S1 peptidases but has no detectable protease activity. Alternative splicing of this gene produces multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

IGF2R Gene

insulin-like growth factor 2 receptor

This gene encodes a receptor for both insulin-like growth factor 2 and mannose 6-phosphate, although the binding sites for either are located on different segments of the receptor. This receptor functions in the intracellular trafficking of lysosomal enzymes, the activation of transforming growth factor beta, and the degradation of insulin-like growth factor 2. While the related mouse gene shows exclusive expression from the maternal allele, imprinting of the human gene appears to be polymorphic, with only a minority of individuals showing expression from the maternal allele. [provided by RefSeq, Apr 2013]

OGFR Gene

opioid growth factor receptor

The protein encoded by this gene is a receptor for opioid growth factor (OGF), also known as [Met(5)]-enkephalin. OGF is a negative regulator of cell proliferation and tissue organization in a variety of processes. The encoded unbound receptor for OGF has been localized to the outer nuclear envelope, where it binds OGF and is translocated into the nucleus. The coding sequence of this gene contains a polymorphic region of 60 nt tandem imperfect repeat units. Several transcripts containing between zero and eight repeat units have been reported. [provided by RefSeq, Jul 2008]

NGFRAP1 Gene

nerve growth factor receptor (TNFRSF16) associated protein 1

EPS15L1 Gene

epidermal growth factor receptor pathway substrate 15-like 1

FGFR3P5 Gene

fibroblast growth factor receptor 3 pseudogene 5

GRB10 Gene

growth factor receptor-bound protein 10

The product of this gene belongs to a small family of adapter proteins that are known to interact with a number of receptor tyrosine kinases and signaling molecules. This gene encodes a growth factor receptor-binding protein that interacts with insulin receptors and insulin-like growth-factor receptors. Overexpression of some isoforms of the encoded protein inhibits tyrosine kinase activity and results in growth suppression. This gene is imprinted in a highly isoform- and tissue-specific manner, with expression observed from the paternal allele in the brain, and from the maternal allele in the placental trophoblasts. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Oct 2010]

GRB14 Gene

growth factor receptor-bound protein 14

The product of this gene belongs to a small family of adapter proteins that are known to interact with a number of receptor tyrosine kinases and signaling molecules. This gene encodes a growth factor receptor-binding protein that interacts with insulin receptors and insulin-like growth-factor receptors. This protein likely has an inhibitory effect on receptor tyrosine kinase signaling and, in particular, on insulin receptor signaling. This gene may play a role in signaling pathways that regulate growth and metabolism. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

OGFRL1 Gene

opioid growth factor receptor-like 1

LOC100420339 Gene

opioid growth factor receptor pseudogene

NGFR Gene

nerve growth factor receptor

Nerve growth factor receptor contains an extracellular domain containing four 40-amino acid repeats with 6 cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain. [provided by RefSeq, Jul 2008]

FRS3 Gene

fibroblast growth factor receptor substrate 3

This gene encodes a substrate for the fibroblast growth factor receptor. The encoded protein is found in the peripheral plasma membrane and links fibroblast growth factor receptor stimulation to activators of Ras. The encoded protein down-regulates extracellular regulated kinase 2 through direct binding. [provided by RefSeq, Jul 2013]

FRS2 Gene

fibroblast growth factor receptor substrate 2

PDGFRA Gene

platelet-derived growth factor receptor, alpha polypeptide

This gene encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. These growth factors are mitogens for cells of mesenchymal origin. The identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer or a heterodimer, composed of both platelet-derived growth factor receptor alpha and beta polypeptides. Studies suggest that this gene plays a role in organ development, wound healing, and tumor progression. Mutations in this gene have been associated with idiopathic hypereosinophilic syndrome, somatic and familial gastrointestinal stromal tumors, and a variety of other cancers. [provided by RefSeq, Mar 2012]

PDGFRL Gene

platelet-derived growth factor receptor-like

This gene encodes a protein with significant sequence similarity to the ligand binding domain of platelet-derived growth factor receptor beta. Mutations in this gene, or deletion of a chromosomal segment containing this gene, are associated with sporadic hepatocellular carcinomas, colorectal cancers, and non-small cell lung cancers. This suggests this gene product may function as a tumor suppressor. [provided by RefSeq, Jul 2008]

EPS15 Gene

epidermal growth factor receptor pathway substrate 15

This gene encodes a protein that is part of the EGFR pathway. The protein is present at clatherin-coated pits and is involved in receptor-mediated endocytosis of EGF. Notably, this gene is rearranged with the HRX/ALL/MLL gene in acute myelogeneous leukemias. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, May 2009]

EPS8 Gene

epidermal growth factor receptor pathway substrate 8

This gene encodes a member of the EPS8 family. This protein contains one PH domain and one SH3 domain. It functions as part of the EGFR pathway, though its exact role has not been determined. Highly similar proteins in other organisms are involved in the transduction of signals from Ras to Rac and growth factor-mediated actin remodeling. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

FGFR4 Gene

fibroblast growth factor receptor 4

The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein would consist of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. The genomic organization of this gene, compared to members 1-3, encompasses 18 exons rather than 19 or 20. Although alternative splicing has been observed, there is no evidence that the C-terminal half of the IgIII domain of this protein varies between three alternate forms, as indicated for members 1-3. This particular family member preferentially binds acidic fibroblast growth factor and, although its specific function is unknown, it is overexpressed in gynecological tumor samples, suggesting a role in breast and ovarian tumorigenesis. [provided by RefSeq, Jul 2008]

FGFR2 Gene

fibroblast growth factor receptor 2

The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member is a high-affinity receptor for acidic, basic and/or keratinocyte growth factor, depending on the isoform. Mutations in this gene are associated with Crouzon syndrome, Pfeiffer syndrome, Craniosynostosis, Apert syndrome, Jackson-Weiss syndrome, Beare-Stevenson cutis gyrata syndrome, Saethre-Chotzen syndrome, and syndromic craniosynostosis. Multiple alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]

FGFR3 Gene

fibroblast growth factor receptor 3

This gene encodes a member of the fibroblast growth factor receptor (FGFR) family, with its amino acid sequence being highly conserved between members and among divergent species. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein would consist of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds acidic and basic fibroblast growth hormone and plays a role in bone development and maintenance. Mutations in this gene lead to craniosynostosis and multiple types of skeletal dysplasia. Three alternatively spliced transcript variants that encode different protein isoforms have been described. [provided by RefSeq, Jul 2009]

FGFR1 Gene

fibroblast growth factor receptor 1

The protein encoded by this gene is a member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds both acidic and basic fibroblast growth factors and is involved in limb induction. Mutations in this gene have been associated with Pfeiffer syndrome, Jackson-Weiss syndrome, Antley-Bixler syndrome, osteoglophonic dysplasia, and autosomal dominant Kallmann syndrome 2. Chromosomal aberrations involving this gene are associated with stem cell myeloproliferative disorder and stem cell leukemia lymphoma syndrome. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized. [provided by RefSeq, Jul 2008]

FGFR3P6 Gene

fibroblast growth factor receptor 3 pseudogene 6

FGFR3P4 Gene

fibroblast growth factor receptor 3 pseudogene 4

FGFR3P3 Gene

fibroblast growth factor receptor 3 pseudogene 3

FGFR3P2 Gene

fibroblast growth factor receptor 3 pseudogene 2

FGFR3P1 Gene

fibroblast growth factor receptor 3 pseudogene 1

EGFR Gene

epidermal growth factor receptor

The protein encoded by this gene is a transmembrane glycoprotein that is a member of the protein kinase superfamily. This protein is a receptor for members of the epidermal growth factor family. EGFR is a cell surface protein that binds to epidermal growth factor. Binding of the protein to a ligand induces receptor dimerization and tyrosine autophosphorylation and leads to cell proliferation. Mutations in this gene are associated with lung cancer. Multiple alternatively spliced transcript variants that encode different protein isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

FGFRL1 Gene

fibroblast growth factor receptor-like 1

The protein encoded by this gene is a member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein would consist of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. A marked difference between this gene product and the other family members is its lack of a cytoplasmic tyrosine kinase domain. The result is a transmembrane receptor that could interact with other family members and potentially inhibit signaling. Multiple alternatively spliced transcript variants encoding the same isoform have been found for this gene. [provided by RefSeq, Jul 2008]

EPS15P1 Gene

epidermal growth factor receptor pathway substrate 15 pseudogene 1

GRB2 Gene

growth factor receptor-bound protein 2

The protein encoded by this gene binds the epidermal growth factor receptor and contains one SH2 domain and two SH3 domains. Its two SH3 domains direct complex formation with proline-rich regions of other proteins, and its SH2 domain binds tyrosine phosphorylated sequences. This gene is similar to the Sem5 gene of C.elegans, which is involved in the signal transduction pathway. Two alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GRB7 Gene

growth factor receptor-bound protein 7

The product of this gene belongs to a small family of adapter proteins that are known to interact with a number of receptor tyrosine kinases and signaling molecules. This gene encodes a growth factor receptor-binding protein that interacts with epidermal growth factor receptor (EGFR) and ephrin receptors. The protein plays a role in the integrin signaling pathway and cell migration by binding with focal adhesion kinase (FAK). Several transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jun 2011]

OGFRP1 Gene

opioid growth factor receptor pseudogene 1

IGF1R Gene

insulin-like growth factor 1 receptor

This receptor binds insulin-like growth factor with a high affinity. It has tyrosine kinase activity. The insulin-like growth factor I receptor plays a critical role in transformation events. Cleavage of the precursor generates alpha and beta subunits. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, May 2014]

PTTG1IP Gene

pituitary tumor-transforming 1 interacting protein

This gene encodes a single-pass type I integral membrane protein, which binds to pituitary tumor-transforming 1 protein (PTTG1), and facilitates translocation of PTTG1 into the nucleus. Coexpression of this protein and PTTG1 induces transcriptional activation of basic fibroblast growth factor. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Nov 2013]

SHC1P2 Gene

SHC (Src homology 2 domain containing) transforming protein 1 pseudogene 2

SHC1P1 Gene

SHC (Src homology 2 domain containing) transforming protein 1 pseudogene 1

MCF2 Gene

MCF.2 cell line derived transforming sequence

The oncogenic protein encoded by this gene is a guanine nucleotide exchange factor (GEF) that exerts control over some members of the Rho family of small GTPases. Several transcript variants encoding different isoforms have been found for this gene. These isoforms exhibit different expression patterns and varying levels of GEF activity.[provided by RefSeq, Jan 2010]

PTTG4P Gene

pituitary tumor-transforming 4 pseudogene

TACC1P1 Gene

transforming, acidic coiled-coil containing protein 1 pseudogene 1

NET1 Gene

neuroepithelial cell transforming 1

This gene is part of the family of Rho guanine nucleotide exchange factors. Members of this family activate Rho proteins by catalyzing the exchange of GDP for GTP. The protein encoded by this gene interacts with RhoA within the cell nucleus and may play a role in repairing DNA damage after ionizing radiation. Pseudogenes of this gene are located on the long arms of chromosomes 1, 7 and 18. Alternative splicing results in multiple transcript variants that encode different protein isoforms. [provided by RefSeq, Jul 2012]

PTTG3P Gene

pituitary tumor-transforming 3, pseudogene

SHD Gene

Src homology 2 domain containing transforming protein D

TACC1 Gene

transforming, acidic coiled-coil containing protein 1

This locus may represent a breast cancer candidate gene. It is located close to FGFR1 on a region of chromosome 8 that is amplified in some breast cancers. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2009]

TACC2 Gene

transforming, acidic coiled-coil containing protein 2

Transforming acidic coiled-coil proteins are a conserved family of centrosome- and microtubule-interacting proteins that are implicated in cancer. This gene encodes a protein that concentrates at centrosomes throughout the cell cycle. This gene lies within a chromosomal region associated with tumorigenesis. Expression of this gene is induced by erythropoietin and is thought to affect the progression of breast tumors. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

TACC3 Gene

transforming, acidic coiled-coil containing protein 3

This gene encodes a member of the transforming acidic colied-coil protein family. The encoded protein is a motor spindle protein that may play a role in stabilization of the mitotic spindle. This protein may also play a role in growth a differentiation of certain cancer cells. [provided by RefSeq, Nov 2011]

SHC2 Gene

SHC (Src homology 2 domain containing) transforming protein 2

ECT2 Gene

epithelial cell transforming 2

The protein encoded by this gene is a guanine nucleotide exchange factor and transforming protein that is related to Rho-specific exchange factors and yeast cell cycle regulators. The expression of this gene is elevated with the onset of DNA synthesis and remains elevated during G2 and M phases. In situ hybridization analysis showed that expression is at a high level in cells undergoing mitosis in regenerating liver. Thus, this protein is expressed in a cell cycle-dependent manner during liver regeneration, and is thought to have an important role in the regulation of cytokinesis. Several transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Apr 2012]

MCF2L Gene

MCF.2 cell line derived transforming sequence-like

LOC100967224 Gene

neuroepithelial cell transforming 1 pseudogene

LOC100967223 Gene

neuroepithelial cell transforming 1 pseudogene

SHC1 Gene

SHC (Src homology 2 domain containing) transforming protein 1

This gene encodes three main isoforms that differ in activities and subcellular location. While all three are adapter proteins in signal transduction pathways, the longest (p66Shc) may be involved in regulating life span and the effects of reactive oxygen species. The other two isoforms, p52Shc and p46Shc, link activated receptor tyrosine kinases to the Ras pathway by recruitment of the GRB2/SOS complex. p66Shc is not involved in Ras activation. Unlike the other two isoforms, p46Shc is targeted to the mitochondrial matrix. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2011]

SHC3 Gene

SHC (Src homology 2 domain containing) transforming protein 3

ECT2L Gene

epithelial cell transforming 2 like

PTTG1 Gene

pituitary tumor-transforming 1

The encoded protein is a homolog of yeast securin proteins, which prevent separins from promoting sister chromatid separation. It is an anaphase-promoting complex (APC) substrate that associates with a separin until activation of the APC. The gene product has transforming activity in vitro and tumorigenic activity in vivo, and the gene is highly expressed in various tumors. The gene product contains 2 PXXP motifs, which are required for its transforming and tumorigenic activities, as well as for its stimulation of basic fibroblast growth factor expression. It also contains a destruction box (D box) that is required for its degradation by the APC. The acidic C-terminal region of the encoded protein can act as a transactivation domain. The gene product is mainly a cytosolic protein, although it partially localizes in the nucleus. Three transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2013]

PTTG2 Gene

pituitary tumor-transforming 2

LOC100422241 Gene

transforming, acidic coiled-coil containing protein 3 pseudogene

LOC100420949 Gene

neuroepithelial cell transforming 1 pseudogene

LOC100127954 Gene

pituitary tumor-transforming 1 pseudogene

MCF2L2 Gene

MCF.2 cell line derived transforming sequence-like 2

LOC100422274 Gene

transforming, acidic coiled-coil containing protein 3 pseudogene

GADD45B Gene

growth arrest and DNA-damage-inducible, beta

This gene is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The genes in this group respond to environmental stresses by mediating activation of the p38/JNK pathway. This activation is mediated via their proteins binding and activating MTK1/MEKK4 kinase, which is an upstream activator of both p38 and JNK MAPKs. The function of these genes or their protein products is involved in the regulation of growth and apoptosis. These genes are regulated by different mechanisms, but they are often coordinately expressed and can function cooperatively in inhibiting cell growth. [provided by RefSeq, Jul 2008]

TFAP2B Gene

transcription factor AP-2 beta (activating enhancer binding protein 2 beta)

This gene encodes a member of the AP-2 family of transcription factors. AP-2 proteins form homo- or hetero-dimers with other AP-2 family members and bind specific DNA sequences. They are thought to stimulate cell proliferation and suppress terminal differentiation of specific cell types during embryonic development. Specific AP-2 family members differ in their expression patterns and binding affinity for different promoters. This protein functions as both a transcriptional activator and repressor. Mutations in this gene result in autosomal dominant Char syndrome, suggesting that this gene functions in the differentiation of neural crest cell derivatives. [provided by RefSeq, Jul 2008]

MYDGF Gene

myeloid-derived growth factor

The protein encoded by this gene was previously thought to support proliferation of lymphoid cells and was considered an interleukin. However, this activity has not been reproducible and the function of this protein is currently unknown. [provided by RefSeq, Jul 2008]

TDGF1 Gene

teratocarcinoma-derived growth factor 1

This gene encodes an epidermal growth factor-related protein that contains a cripto, FRL-1, and cryptic domain. The encoded protein is an extracellular, membrane-bound signaling protein that plays an essential role in embryonic development and tumor growth. Mutations in this gene are associated with forebrain defects. Pseudogenes of this gene are found on chromosomes 2, 3, 6, 8, 19 and X. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Mar 2010]

VGF Gene

VGF nerve growth factor inducible

This gene is specifically expressed in a subpopulation of neuroendocrine cells, and is upregulated by nerve growth factor. The structural organization of this gene is similar to that of the rat gene, and both the translated and the untranslated regions show a high degree of sequence similarity to the rat gene. The encoded secretory protein also shares similarities with the secretogranin/chromogranin family, however, its exact function is not known. [provided by RefSeq, Jul 2008]

PDGFC Gene

platelet derived growth factor C

The protein encoded by this gene is a member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for cells of mesenchymal origin and are characterized by a core motif of eight cysteines. This gene product appears to form only homodimers. It differs from the platelet-derived growth factor alpha and beta polypeptides in having an unusual N-terminal domain, the CUB domain. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Sep 2010]

FGF1 Gene

fibroblast growth factor 1 (acidic)

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein functions as a modifier of endothelial cell migration and proliferation, as well as an angiogenic factor. It acts as a mitogen for a variety of mesoderm- and neuroectoderm-derived cells in vitro, thus is thought to be involved in organogenesis. Multiple alternatively spliced variants encoding different isoforms have been described. [provided by RefSeq, Jan 2009]

LOC100113421 Gene

fibroblast growth factor 7 pseudogene

HDGF Gene

hepatoma-derived growth factor

This gene encodes a member of the hepatoma-derived growth factor family. The encoded protein has mitogenic and DNA-binding activity and may play a role in cellular proliferation and differentiation. This gene was thought initially to be located on chromosome X, however, that location has been determined to correspond to a related pseudogene. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

IGF2 Gene

insulin-like growth factor 2

This gene encodes a member of the insulin family of polypeptide growth factors, which are involved in development and growth. It is an imprinted gene, expressed only from the paternal allele, and epigenetic changes at this locus are associated with Wilms tumour, Beckwith-Wiedemann syndrome, rhabdomyosarcoma, and Silver-Russell syndrome. A read-through INS-IGF2 gene exists, whose 5' region overlaps the INS gene and the 3' region overlaps this gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2010]

IGF1 Gene

insulin-like growth factor 1 (somatomedin C)

The protein encoded by this gene is similar to insulin in function and structure and is a member of a family of proteins involved in mediating growth and development. The encoded protein is processed from a precursor, bound by a specific receptor, and secreted. Defects in this gene are a cause of insulin-like growth factor I deficiency. Several transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Mar 2009]

GFER Gene

growth factor, augmenter of liver regeneration

The hepatotrophic factor designated augmenter of liver regeneration (ALR) is thought to be one of the factors responsible for the extraordinary regenerative capacity of mammalian liver. It has also been called hepatic regenerative stimulation substance (HSS). The gene resides on chromosome 16 in the interval containing the locus for polycystic kidney disease (PKD1). The putative gene product is 42% similar to the scERV1 protein of yeast. The yeast scERV1 gene had been found to be essential for oxidative phosphorylation, the maintenance of mitochondrial genomes, and the cell division cycle. The human gene is both the structural and functional homolog of the yeast scERV1 gene. [provided by RefSeq, Jul 2008]

GDF5OS Gene

growth differentiation factor 5 opposite strand

IGFALS Gene

insulin-like growth factor binding protein, acid labile subunit

The protein encoded by this gene is a serum protein that binds insulin-like growth factors, increasing their half-life and their vascular localization. Production of the encoded protein, which contains twenty leucine-rich repeats, is stimulated by growth hormone. Defects in this gene are a cause of acid-labile subunit deficiency, which maifests itself in a delayed and slow puberty. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

HDGFL1 Gene

hepatoma derived growth factor-like 1

NODAL Gene

nodal growth differentiation factor

The protein encoded by this gene is a member of the TGF-beta superfamily. Studies of the mouse counterpart suggested that this gene may be essential for mesoderm formation and subsequent organization of axial structures in early embryonic development. [provided by RefSeq, Jul 2008]

IGFBP2 Gene

insulin-like growth factor binding protein 2, 36kDa

IGFBP3 Gene

insulin-like growth factor binding protein 3

This gene is a member of the insulin-like growth factor binding protein (IGFBP) family and encodes a protein with an IGFBP domain and a thyroglobulin type-I domain. The protein forms a ternary complex with insulin-like growth factor acid-labile subunit (IGFALS) and either insulin-like growth factor (IGF) I or II. In this form, it circulates in the plasma, prolonging the half-life of IGFs and altering their interaction with cell surface receptors. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

IGFBP1 Gene

insulin-like growth factor binding protein 1

This gene is a member of the insulin-like growth factor binding protein (IGFBP) family and encodes a protein with an IGFBP domain and a thyroglobulin type-I domain. The protein binds both insulin-like growth factors (IGFs) I and II and circulates in the plasma. Binding of this protein prolongs the half-life of the IGFs and alters their interaction with cell surface receptors. [provided by RefSeq, Jul 2008]

IGFBP7 Gene

insulin-like growth factor binding protein 7

This gene encodes a member of the insulin-like growth factor (IGF)-binding protein (IGFBP) family. IGFBPs bind IGFs with high affinity, and regulate IGF availability in body fluids and tissues and modulate IGF binding to its receptors. This protein binds IGF-I and IGF-II with relatively low affinity, and belongs to a subfamily of low-affinity IGFBPs. It also stimulates prostacyclin production and cell adhesion. Alternatively spliced transcript variants encoding different isoforms have been described for this gene, and one variant has been associated with retinal arterial macroaneurysm (PMID:21835307). [provided by RefSeq, Dec 2011]

IGFBP4 Gene

insulin-like growth factor binding protein 4

This gene is a member of the insulin-like growth factor binding protein (IGFBP) family and encodes a protein with an IGFBP domain and a thyroglobulin type-I domain. The protein binds both insulin-like growth factors (IGFs) I and II and circulates in the plasma in both glycosylated and non-glycosylated forms. Binding of this protein prolongs the half-life of the IGFs and alters their interaction with cell surface receptors. [provided by RefSeq, Jul 2008]

IGFBP5 Gene

insulin-like growth factor binding protein 5

LOC105369252 Gene

hepatocyte growth factor-like protein

GFI1B Gene

growth factor independent 1B transcription repressor

This gene encodes a zinc-finger containing transcriptional regulator that is primarily expressed in cells of hematopoietic lineage. The encoded protein complexes with numerous other transcriptional regulatory proteins including GATA-1, runt-related transcription factor 1 and histone deacetylases to control expression of genes involved in the development and maturation of erythrocytes and megakaryocytes. Mutations in this gene are the cause of the autosomal dominant platelet disorder, platelet-type bleeding disorder-17. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Aug 2014]

LOC728433 Gene

fibroblast growth factor 7 pseudogene

KGFLP1 Gene

fibroblast growth factor 7 pseudogene

NGFG Gene

Nerve growth factor, gamma subunit

MST1P2 Gene

macrophage stimulating 1 (hepatocyte growth factor-like) pseudogene 2

FGF19 Gene

fibroblast growth factor 19

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes including embryonic development cell growth, morphogenesis, tissue repair, tumor growth and invasion. This growth factor is a high affinity, heparin dependent ligand for FGFR4. Expression of this gene was detected only in fetal but not adult brain tissue. Synergistic interaction of the chick homolog and Wnt-8c has been shown to be required for initiation of inner ear development. [provided by RefSeq, Jul 2008]

FGF18 Gene

fibroblast growth factor 18

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion. It has been shown in vitro that this protein is able to induce neurite outgrowth in PC12 cells. Studies of the similar proteins in mouse and chick suggested that this protein is a pleiotropic growth factor that stimulates proliferation in a number of tissues, most notably the liver and small intestine. Knockout studies of the similar gene in mice implied the role of this protein in regulating proliferation and differentiation of midline cerebellar structures. [provided by RefSeq, Jul 2008]

FGF13 Gene

fibroblast growth factor 13

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion. This gene is located in a region on chromosome X, which is associated with Borjeson-Forssman-Lehmann syndrome (BFLS), making it a possible candidate gene for familial cases of the BFLS, and for other syndromal and nonspecific forms of X-linked mental retardation mapping to this region. Alternative splicing of this gene at the 5' end results in several transcript variants encoding different isoforms with different N-termini. [provided by RefSeq, Nov 2008]

FGF12 Gene

fibroblast growth factor 12

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion. This growth factor lacks the N-terminal signal sequence present in most of the FGF family members, but it contains clusters of basic residues that have been demonstrated to act as a nuclear localization signal. When transfected into mammalian cells, this protein accumulated in the nucleus, but was not secreted. The specific function of this gene has not yet been determined. Two alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

FGF11 Gene

fibroblast growth factor 11

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. The function of this gene has not yet been determined. The expression pattern of the mouse homolog implies a role in nervous system development. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2015]

FGF10 Gene

fibroblast growth factor 10

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein exhibits mitogenic activity for keratinizing epidermal cells, but essentially no activity for fibroblasts, which is similar to the biological activity of FGF7. Studies of the mouse homolog of suggested that this gene is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of lim bud formation. This gene is also implicated to be a primary factor in the process of wound healing. [provided by RefSeq, Jul 2008]

FGF17 Gene

fibroblast growth factor 17

This gene encodes a member of the fibroblast growth factor (FGF) family. Member of the FGF family possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes including embryonic development cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein is expressed during embryogenesis and in the adult cerebellum and cortex and may be essential for vascular growth and normal brain development. Mutations in this gene are the cause of hypogonadotropic hypogonadism 20 with or without anosmia. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jan 2015]

FGF16 Gene

fibroblast growth factor 16

This gene encodes a member of a family of proteins that are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene is expressed in cardiac cells and is required for proper heart development. Mutation in this gene was also observed in individuals with metacarpal 4-5 fusion. [provided by RefSeq, Mar 2014]

FGF14 Gene

fibroblast growth factor 14

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. A mutation in this gene is associated with autosomal dominant cerebral ataxia. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2008]

PDGFA Gene

platelet-derived growth factor alpha polypeptide

The protein encoded by this gene is a member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for cells of mesenchymal origin and are characterized by a motif of eight cysteines. This gene product can exist either as a homodimer or as a heterodimer with the platelet-derived growth factor beta polypeptide, where the dimers are connected by disulfide bonds. Studies using knockout mice have shown cellular defects in oligodendrocytes, alveolar smooth muscle cells, and Leydig cells in the testis; knockout mice die either as embryos or shortly after birth. Two splice variants have been identified for this gene. [provided by RefSeq, Jul 2008]

PDGFD Gene

platelet derived growth factor D

The protein encoded by this gene is a member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for cells of mesenchymal origin and are characterized by a core motif of eight cysteines, seven of which are found in this factor. This gene product only forms homodimers and, therefore, does not dimerize with the other three family members. It differs from alpha and beta members of this family in having an unusual N-terminal domain, the CUB domain. Two splice variants have been identified for this gene. [provided by RefSeq, Jul 2008]

IGF2BP1 Gene

insulin-like growth factor 2 mRNA binding protein 1

This gene encodes a member of the insulin-like growth factor 2 mRNA-binding protein family. The protein encoded by this gene contains four K homology domains and two RNA recognition motifs. It functions by binding to the mRNAs of certain genes, including insulin-like growth factor 2, beta-actin and beta-transducin repeat-containing protein, and regulating their translation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2009]

IGF2BP2 Gene

insulin-like growth factor 2 mRNA binding protein 2

This gene encodes a member of the IGF-II mRNA-binding protein (IMP) family. The protein encoded by this gene contains four KH domains and two RRM domains. It functions by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. Alternative promoter usage and alternate splicing result in multiple variants encoding different isoforms. [provided by RefSeq, May 2014]

LOC100421364 Gene

fibroblast growth factor binding protein 1 pseudogene

FGF9 Gene

fibroblast growth factor 9

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein was isolated as a secreted factor that exhibits a growth-stimulating effect on cultured glial cells. In nervous system, this protein is produced mainly by neurons and may be important for glial cell development. Expression of the mouse homolog of this gene was found to be dependent on Sonic hedgehog (Shh) signaling. Mice lacking the homolog gene displayed a male-to-female sex reversal phenotype, which suggested a role in testicular embryogenesis. [provided by RefSeq, Jul 2008]

FGF8 Gene

fibroblast growth factor 8 (androgen-induced)

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein is known to be a factor that supports androgen and anchorage independent growth of mammary tumor cells. Overexpression of this gene has been shown to increase tumor growth and angiogensis. The adult expression of this gene is restricted to testes and ovaries. Temporal and spatial pattern of this gene expression suggests its function as an embryonic epithelial factor. Studies of the mouse and chick homologs revealed roles in midbrain and limb development, organogenesis, embryo gastrulation and left-right axis determination. The alternative splicing of this gene results in four transcript variants. [provided by RefSeq, Jul 2008]

FGF7 Gene

fibroblast growth factor 7

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein is a potent epithelial cell-specific growth factor, whose mitogenic activity is predominantly exhibited in keratinocytes but not in fibroblasts and endothelial cells. Studies of mouse and rat homologs of this gene implicated roles in morphogenesis of epithelium, reepithelialization of wounds, hair development and early lung organogenesis. [provided by RefSeq, Jul 2008]

FGF6 Gene

fibroblast growth factor 6

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene displayed oncogenic transforming activity when transfected into mammalian cells. The mouse homolog of this gene exhibits a restricted expression profile predominantly in the myogenic lineage, which suggested a role in muscle regeneration or differentiation. [provided by RefSeq, Jul 2008]

FGF5 Gene

fibroblast growth factor 5

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene was identified as an oncogene, which confers transforming potential when transfected into mammalian cells. Targeted disruption of the homolog of this gene in mouse resulted in the phenotype of abnormally long hair, which suggested a function as an inhibitor of hair elongation. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

FGF4 Gene

fibroblast growth factor 4

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene was identified by its oncogenic transforming activity. This gene and FGF3, another oncogenic growth factor, are located closely on chromosome 11. Co-amplification of both genes was found in various kinds of human tumors. Studies on the mouse homolog suggested a function in bone morphogenesis and limb development through the sonic hedgehog (SHH) signaling pathway. [provided by RefSeq, Jul 2008]

FGF3 Gene

fibroblast growth factor 3

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene was identified by its similarity with mouse fgf3/int-2, a proto-oncogene activated in virally induced mammary tumors in the mouse. Frequent amplification of this gene has been found in human tumors, which may be important for neoplastic transformation and tumor progression. Studies of the similar genes in mouse and chicken suggested the role in inner ear formation. [provided by RefSeq, Jul 2008]

FGF2 Gene

fibroblast growth factor 2 (basic)

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members bind heparin and possess broad mitogenic and angiogenic activities. This protein has been implicated in diverse biological processes, such as limb and nervous system development, wound healing, and tumor growth. The mRNA for this gene contains multiple polyadenylation sites, and is alternatively translated from non-AUG (CUG) and AUG initiation codons, resulting in five different isoforms with distinct properties. The CUG-initiated isoforms are localized in the nucleus and are responsible for the intracrine effect, whereas, the AUG-initiated form is mostly cytosolic and is responsible for the paracrine and autocrine effects of this FGF. [provided by RefSeq, Jul 2008]

VEGFA Gene

vascular endothelial growth factor A

This gene is a member of the PDGF/VEGF growth factor family and encodes a protein that is often found as a disulfide linked homodimer. This protein is a glycosylated mitogen that specifically acts on endothelial cells and has various effects, including mediating increased vascular permeability, inducing angiogenesis, vasculogenesis and endothelial cell growth, promoting cell migration, and inhibiting apoptosis. Elevated levels of this protein is linked to POEMS syndrome, also known as Crow-Fukase syndrome. Mutations in this gene have been associated with proliferative and nonproliferative diabetic retinopathy. Alternatively spliced transcript variants, encoding either freely secreted or cell-associated isoforms, have been characterized. There is also evidence for the use of non-AUG (CUG) translation initiation sites upstream of, and in-frame with the first AUG, leading to additional isoforms. [provided by RefSeq, Jul 2008]

VEGFC Gene

vascular endothelial growth factor C

The protein encoded by this gene is a member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. The encoded protein promotes angiogenesis and endothelial cell growth, and can also affect the permeability of blood vessels. The proprotein is further cleaved into a fully processed form that can bind and activate VEGFR-2 and VEGFR-3 receptors. [provided by RefSeq, Apr 2014]

VEGFB Gene

vascular endothelial growth factor B

This gene encodes a member of the PDGF (platelet-derived growth factor)/VEGF (vascular endothelial growth factor) family. The VEGF family members regulate the formation of blood vessels and are involved in endothelial cell physiology. This member is a ligand for VEGFR-1 (vascular endothelial growth factor receptor 1) and NRP-1 (neuropilin-1). Studies in mice showed that this gene was co-expressed with nuclear-encoded mitochondrial genes and the encoded protein specifically controlled endothelial uptake of fatty acids. Alternatively spliced transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Sep 2011]

HBEGF Gene

heparin-binding EGF-like growth factor

LOC346296 Gene

insulin-like growth factor 2 mRNA binding protein 3 pseudogene

IGFBP6 Gene

insulin-like growth factor binding protein 6

IGF2BP3 Gene

insulin-like growth factor 2 mRNA binding protein 3

The protein encoded by this gene is primarily found in the nucleolus, where it can bind to the 5' UTR of the insulin-like growth factor II leader 3 mRNA and may repress translation of insulin-like growth factor II during late development. The encoded protein contains several KH domains, which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. A pseudogene exists on chromosome 7, and there are putative pseudogenes on other chromosomes. [provided by RefSeq, Jul 2008]

FGF7P2 Gene

fibroblast growth factor 7 pseudogene 2

FGF7P1 Gene

fibroblast growth factor 7 pseudogene 1

GFI1 Gene

growth factor independent 1 transcription repressor

This gene encodes a nuclear zinc finger protein that functions as a transcriptional repressor. This protein plays a role in diverse developmental contexts, including hematopoiesis and oncogenesis. It functions as part of a complex along with other cofactors to control histone modifications that lead to silencing of the target gene promoters. Mutations in this gene cause autosomal dominant severe congenital neutropenia, and also dominant nonimmune chronic idiopathic neutropenia of adults, which are heterogeneous hematopoietic disorders that cause predispositions to leukemias and infections. Multiple alternatively spliced variants, encoding the same protein, have been identified for this gene. [provided by RefSeq, Jul 2008]

LOC727884 Gene

insulin-like growth factor 2 mRNA binding protein 2 pseudogene

LOC653453 Gene

fibroblast growth factor 7 pseudogene

LOC105373985 Gene

multiple epidermal growth factor-like domains protein 6

CTGF Gene

connective tissue growth factor

The protein encoded by this gene is a mitogen that is secreted by vascular endothelial cells. The encoded protein plays a role in chondrocyte proliferation and differentiation, cell adhesion in many cell types, and is related to platelet-derived growth factor. Certain polymorphisms in this gene have been linked with a higher incidence of systemic sclerosis. [provided by RefSeq, Nov 2009]

HGS Gene

hepatocyte growth factor-regulated tyrosine kinase substrate

The protein encoded by this gene regulates endosomal sorting and plays a critical role in the recycling and degradation of membrane receptors. The encoded protein sorts monoubiquitinated membrane proteins into the multivesicular body, targeting these proteins for lysosome-dependent degradation. [provided by RefSeq, Dec 2010]

HDGFP1 Gene

hepatoma-derived growth factor pseudogene 1

LOC102724562 Gene

hepatocyte growth factor-like protein

FGF22 Gene

fibroblast growth factor 22

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. The mouse homolog of this gene was found to be preferentially expressed in the inner root sheath of the hair follicle, which suggested a role in hair development. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

FGF23 Gene

fibroblast growth factor 23

This gene encodes a member of the fibroblast growth factor family of proteins, which possess broad mitogenic and cell survival activities and are involved in a variety of biological processes. The product of this gene regulates phosphate homeostasis and transport in the kidney. The full-length, functional protein may be deactivated via cleavage into N-terminal and C-terminal chains. Mutation of this cleavage site causes autosomal dominant hypophosphatemic rickets (ADHR). Mutations in this gene are also associated with hyperphosphatemic familial tumoral calcinosis (HFTC). [provided by RefSeq, Feb 2013]

FGF20 Gene

fibroblast growth factor 20

The protein encoded by this gene is a member of the fibroblast growth factor family. The fibroblast growth factors possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene product is a secreted neurotrophic factor but lacks a typical signal peptide. It is expressed in normal brain, particularly the cerebellum, and may regulate central nervous system development and function. Homodimerization of this protein was shown to regulate its receptor binding activity and concentration gradient in the extracellular matrix. Genetic variations of this gene have been associated with Parkinson disease susceptibility. [provided by RefSeq, Oct 2009]

FGF21 Gene

fibroblast growth factor 21

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. The function of this growth factor has not yet been determined. [provided by RefSeq, Jul 2008]

LOC645468 Gene

insulin-like growth factor 2 mRNA binding protein 3 pseudogene

LOC105378979 Gene

growth/differentiation factor 3-like

KGFLP2 Gene

keratinocyte growth factor-like protein 2

IGFBPL1 Gene

insulin-like growth factor binding protein-like 1

LOC728195 Gene

fibroblast growth factor 7 pseudogene

GDF15 Gene

growth differentiation factor 15

Bone morphogenetic proteins (e.g., BMP9; MIM 605120) are members of the transforming growth factor-beta (see TGFB1; MIM 190180) superfamily and regulate tissue differentiation and maintenance. They are synthesized as precursor molecules that are processed at a dibasic cleavage site to release C-terminal domains containing a characteristic motif of 7 conserved cysteines in the mature protein.[supplied by OMIM, Oct 2009]

GDF11 Gene

growth differentiation factor 11

The protein encoded by this gene is a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily. This group of proteins is characterized by a polybasic proteolytic processing site which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in mice and Xenopus suggest that this protein is involved in mesodermal formation and neurogenesis during embryonic development. [provided by RefSeq, Jul 2008]

GDF10 Gene

growth differentiation factor 10

The protein encoded by this gene is a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily. This group of proteins is characterized by a polybasic proteolytic processing site which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in mice suggest that the protein encoded by this gene plays a role in skeletal morphogenesis. [provided by RefSeq, Jul 2008]

PGF Gene

placental growth factor

This gene encodes a growth factor found in placenta which is homologous to vascular endothelial growth factor. Alternatively spliced transcripts encoding different isoforms have been found for this gene.[provided by RefSeq, Jun 2011]

HDGFRP2 Gene

hepatoma-derived growth factor-related protein 2

This gene encodes a member of the hepatoma-derived growth factor (HDGF) family. The protein includes an N-terminal PWWP domain that binds to methyl-lysine-containing histones, with specific binding of this protein to tri-methylated lysines 36 and 79 of histone H3, and di- and tri-methylated lysine 20 of histone H4. The protein functions in LEDGF/p75-independent HIV-1 replication by determining HIV-1 integration site selection. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Apr 2014]

HDGFRP3 Gene

hepatoma-derived growth factor, related protein 3

EGF Gene

epidermal growth factor

This gene encodes a member of the epidermal growth factor superfamily. The encoded protein is synthesized as a large precursor molecule that is proteolytically cleaved to generate the 53-amino acid epidermal growth factor peptide. This protein acts a potent mitogenic factor that plays an important role in the growth, proliferation and differentiation of numerous cell types. This protein acts by binding the high affinity cell surface receptor, epidermal growth factor receptor. Defects in this gene are the cause of hypomagnesemia type 4. Dysregulation of this gene has been associated with the growth and progression of certain cancers. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2010]

LOC100421893 Gene

insulin-like growth factor 2 mRNA binding protein 2 pseudogene

TDGF1P7 Gene

teratocarcinoma-derived growth factor 1 pseudogene 7

TDGF1P6 Gene

teratocarcinoma-derived growth factor 1 pseudogene 6

TDGF1P5 Gene

teratocarcinoma-derived growth factor 1 pseudogene 5

TDGF1P4 Gene

teratocarcinoma-derived growth factor 1 pseudogene 4

TDGF1P3 Gene

teratocarcinoma-derived growth factor 1 pseudogene 3

The TDGF3 locus has characteristics of a retrotransposon, including lack of introns and a poly(A) sequence. [provided by RefSeq, Jul 2008]

TDGF1P2 Gene

teratocarcinoma-derived growth factor 1 pseudogene 2

TDGF1P1 Gene

teratocarcinoma-derived growth factor 1 pseudogene 1

FGFBP3 Gene

fibroblast growth factor binding protein 3

FGFBP2 Gene

fibroblast growth factor binding protein 2

This gene encodes a member of the fibroblast growth factor binding protein family. The encoded protein is a serum protein that is selectively secreted by cytotoxic lymphocytes and may be involved in cytotoxic lymphocyte-mediated immunity. An increase in the amount of gene product may be associated with atopic asthma and mild extrinsic asthma.[provided by RefSeq Staff, Oct 2008]

FGFBP1 Gene

fibroblast growth factor binding protein 1

This gene encodes a secreted fibroblast growth factor carrier protein. The encoded protein plays a critical role in cell proliferation, differentiation and migration by binding to fibroblast growth factors and potentiating their biological effects on target cells. The encoded protein may also play a role in tumor growth as an angiogenic switch molecule, and expression of this gene has been associated with several types of cancer including pancreatic and colorectal adenocarcinoma. A pseudogene of this gene is also located on the short arm of chromosome 4. [provided by RefSeq, Nov 2011]

GDF9 Gene

growth differentiation factor 9

This gene encodes a member of the transforming growth factor-beta superfamily. The encoded preproprotein is processed into a secreted factor that is required for ovarian folliculogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

GDF3 Gene

growth differentiation factor 3

The protein encoded by this gene is a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily. This group of proteins is characterized by a polybasic proteolytic processing site which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. [provided by RefSeq, Jul 2008]

GDF2 Gene

growth differentiation factor 2

The protein encoded by this gene is a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily. This group of proteins is characterized by a polybasic proteolytic processing site which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in rodents suggest that this protein plays a role in the adult liver and in differentiation of cholinergic central nervous system neurons. Mutations in this gene are associated with hereditary hemorrhagic telangiectasia. [provided by RefSeq, Jan 2014]

GDF1 Gene

growth differentiation factor 1

This gene encodes a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily. This group of proteins is characterized by a polybasic proteolytic processing site that is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in rodents suggest that this protein is involved in the establishment of left-right asymmetry in early embryogenesis and in neural development in later embryogenesis. This protein is transcribed from a bicistronic mRNA that also encodes the longevity assurance gene. Mutations in this gene are associated with several congenital cardiovascular malformations. [provided by RefSeq, Mar 2014]

GDF7 Gene

growth differentiation factor 7

This gene encodes a member of the bone morphogenetic protein (BMP) family. BMPs belong to the transforming growth factor-beta superfamily of secreted signalling molecules that regulate diverse processes in growth, repair and embryonic development. In mouse, this gene functions as an inductive signal from the roof plate required for the specification of neuronal identity in the dorsal spinal cord. [provided by RefSeq, Jul 2008]

GDF6 Gene

growth differentiation factor 6

This gene encodes a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily of secreted signaling molecules. It is required for normal formation of some bones and joints in the limbs, skull, and axial skeleton. Mutations in this gene result in colobomata, which are congenital abnormalities in ocular development, and in Klippel-Feil syndrome (KFS), which is a congenital disorder of spinal segmentation. [provided by RefSeq, Jul 2008]

GDF5 Gene

growth differentiation factor 5

The protein encoded by this gene is a member of the bone morphogenetic protein (BMP) family and the TGF-beta superfamily. This group of proteins is characterized by a polybasic proteolytic processing site which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Mutations in this gene are associated with acromesomelic dysplasia, Hunter-Thompson type; brachydactyly, type C; and chondrodysplasia, Grebe type. These associations confirm that the gene product plays a role in skeletal development. [provided by RefSeq, Jul 2008]

FIBP Gene

fibroblast growth factor (acidic) intracellular binding protein

Acidic fibroblast growth factor is mitogenic for a variety of different cell types and acts by stimulating mitogenesis or inducing morphological changes and differentiation. The FIBP protein is an intracellular protein that binds selectively to acidic fibroblast growth factor (aFGF). It is postulated that FIBP may be involved in the mitogenic action of aFGF. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

MDK Gene

midkine (neurite growth-promoting factor 2)

This gene encodes a member of a small family of secreted growth factors that binds heparin and responds to retinoic acid. The encoded protein promotes cell growth, migration, and angiogenesis, in particular during tumorigenesis. This gene has been targeted as a therapeutic for a variety of different disorders. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Jul 2012]

ITGB1 Gene

integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)

Integrins are heterodimeric proteins made up of alpha and beta subunits. At least 18 alpha and 8 beta subunits have been described in mammals. Integrin family members are membrane receptors involved in cell adhesion and recognition in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic diffusion of tumor cells. This gene encodes a beta subunit. Multiple alternatively spliced transcript variants which encode different protein isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SSR2 Gene

signal sequence receptor, beta (translocon-associated protein beta)

The signal sequence receptor (SSR) is a glycosylated endoplasmic reticulum (ER) membrane receptor associated with protein translocation across the ER membrane. The SSR consists of 2 subunits, a 34-kD glycoprotein (alpha-SSR or SSR1) and a 22-kD glycoprotein (beta-SSR or SSR2). The human beta-signal sequence receptor gene (SSR2) maps to chromosome bands 1q21-q23. [provided by RefSeq, Jul 2008]

PILRB Gene

paired immunoglobin-like type 2 receptor beta

The paired immunoglobin-like type 2 receptors consist of highly related activating and inhibitory receptors that are involved in the regulation of many aspects of the immune system. The paired immunoglobulin-like receptor genes are located in a tandem head-to-tail orientation on chromosome 7. This gene encodes the activating member of the receptor pair and contains a truncated cytoplasmic tail relative to its inhibitory counterpart (PILRA), that has a long cytoplasmic tail with immunoreceptor tyrosine-based inhibitory (ITIM) motifs. This gene is thought to have arisen from a duplication of the inhibitory PILRA gene and evolved to acquire its activating function. [provided by RefSeq, Jun 2013]

GHR Gene

growth hormone receptor

This gene encodes a member of the type I cytokine receptor family, which is a transmembrane receptor for growth hormone. Binding of growth hormone to the receptor leads to receptor dimerization and the activation of an intra- and intercellular signal transduction pathway leading to growth. Mutations in this gene have been associated with Laron syndrome, also known as the growth hormone insensitivity syndrome (GHIS), a disorder characterized by short stature. In humans and rabbits, but not rodents, growth hormone binding protein (GHBP) is generated by proteolytic cleavage of the extracellular ligand-binding domain from the mature growth hormone receptor protein. Multiple alternatively spliced transcript variants have been found for this gene.[provided by RefSeq, Jun 2011]

GHSR Gene

growth hormone secretagogue receptor

This gene encodes a member of the G-protein coupled receptor family. The encoded protein may play a role in energy homeostasis and regulation of body weight. Two identified transcript variants are expressed in several tissues and are evolutionary conserved in fish and swine. One transcript, 1a, excises an intron and encodes the functional protein; this protein is the receptor for the Ghrelin ligand and defines a neuroendocrine pathway for growth hormone release. The second transcript (1b) retains the intron and does not function as a receptor for Ghrelin; however, it may function to attenuate activity of isoform 1a. Mutations in this gene are associated with autosomal idiopathic short stature.[provided by RefSeq, Apr 2010]

GHRHR Gene

growth hormone releasing hormone receptor

This gene encodes a receptor for growth hormone-releasing hormone. Binding of this hormone to the receptor leads to synthesis and release of growth hormone. Mutations in this gene have been associated with isolated growth hormone deficiency (IGHD), also known as Dwarfism of Sindh, a disorder characterized by short stature. [provided by RefSeq, Jun 2010]

CSF2RB Gene

colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)

The protein encoded by this gene is the common beta chain of the high affinity receptor for IL-3, IL-5 and CSF. Defects in this gene have been reported to be associated with protein alveolar proteinosis (PAP). [provided by RefSeq, Jul 2008]

CSF2RBP1 Gene

colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) pseudogene 1

GPR37 Gene

G protein-coupled receptor 37 (endothelin receptor type B-like)

This gene is a member of the G protein-coupled receptor family. The encoded protein contains seven transmembrane domains and is found in cell and endoplasmic reticulum membranes. G protein-coupled receptors are involved in translating outside signals into G protein mediated intracellular effects. This gene product interacts with Parkin and is involved in juvenile Parkinson disease. [provided by RefSeq, Oct 2012]

MGAT3 Gene

mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase

There are believed to be over 100 different glycosyltransferases involved in the synthesis of protein-bound and lipid-bound oligosaccharides. The enzyme encoded by this gene transfers a GlcNAc residue to the beta-linked mannose of the trimannosyl core of N-linked oligosaccharides and produces a bisecting GlcNAc. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

COPB2 Gene

coatomer protein complex, subunit beta 2 (beta prime)

The Golgi coatomer complex (see MIM 601924) constitutes the coat of nonclathrin-coated vesicles and is essential for Golgi budding and vesicular trafficking. It consists of 7 protein subunits, including COPB2.[supplied by OMIM, Jul 2002]

DBH Gene

dopamine beta-hydroxylase (dopamine beta-monooxygenase)

The protein encoded by this gene is an oxidoreductase belonging to the copper type II, ascorbate-dependent monooxygenase family. It is present in the synaptic vesicles of postganglionic sympathetic neurons and converts dopamine to norepinephrine. It exists in both soluble and membrane-bound forms, depending on the absence or presence, respectively, of a signal peptide. [provided by RefSeq, Jul 2008]

PRKAR2B Gene

protein kinase, cAMP-dependent, regulatory, type II, beta

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding protein 1 (CREB1) in activated T cells. Knockout studies in mice suggest that this subunit may play an important role in regulating energy balance and adiposity. The studies also suggest that this subunit may mediate the gene induction and cataleptic behavior induced by haloperidol. [provided by RefSeq, Jul 2008]

PSMB9 Gene

proteasome (prosome, macropain) subunit, beta type, 9

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 1 (proteasome beta 6 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. [provided by RefSeq, Mar 2010]

PSMB8 Gene

proteasome (prosome, macropain) subunit, beta type, 8

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 3 (proteasome beta 5 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. Two alternative transcripts encoding two isoforms have been identified; both isoforms are processed to yield the same mature subunit. [provided by RefSeq, Jul 2008]

PSMB7 Gene

proteasome (prosome, macropain) subunit, beta type, 7

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. The encoded protein is a member of the proteasome B-type family, also known as the T1B family, and is a 20S core beta subunit in the proteasome. Expression of this catalytic subunit is downregulated by gamma interferon, and proteolytic processing is required to generate a mature subunit. A pseudogene of this gene is located on the long arm of chromosome 14. [provided by RefSeq, Jul 2012]

PSMB6 Gene

proteasome (prosome, macropain) subunit, beta type, 6

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. The encoded protein is a member of the proteasome B-type family, also known as the T1B family, and is a 20S core beta subunit in the proteasome. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

PSMB5 Gene

proteasome (prosome, macropain) subunit, beta type, 5

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit in the proteasome. This catalytic subunit is not present in the immunoproteasome and is replaced by catalytic subunit 3i (proteasome beta 8 subunit). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2009]

PSMB4 Gene

proteasome (prosome, macropain) subunit, beta type, 4

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. [provided by RefSeq, Jul 2008]

PSMB3 Gene

proteasome (prosome, macropain) subunit, beta type, 3

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. The 26 S proteasome may be involved in trinucleotide repeat expansion, a phenomenon which is associated with many hereditary neurological diseases. Pseudogenes have been identified on chromosomes 2 and 12. Alternative splicing results in multiple transcript variants [provided by RefSeq, Sep 2013]

PSMB2 Gene

proteasome (prosome, macropain) subunit, beta type, 2

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Dec 2010]

PSMB1 Gene

proteasome (prosome, macropain) subunit, beta type, 1

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is tightly linked to the TBP (TATA-binding protein) gene in human and in mouse, and is transcribed in the opposite orientation in both species. [provided by RefSeq, Jul 2008]

PSMB3P Gene

proteasome (prosome, macropain) subunit, beta type, 3 pseudogene

SCN1B Gene

sodium channel, voltage gated, type I beta subunit

Voltage-gated sodium channels are heteromeric proteins that function in the generation and propagation of action potentials in muscle and neuronal cells. They are composed of one alpha and two beta subunits, where the alpha subunit provides channel activity and the beta-1 subunit modulates the kinetics of channel inactivation. This gene encodes a sodium channel beta-1 subunit. Mutations in this gene result in generalized epilepsy with febrile seizures plus, Brugada syndrome 5, and defects in cardiac conduction. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

PGGT1BP1 Gene

protein geranylgeranyltransferase type I, beta subunit pseudogene 1

PIP4K2B Gene

phosphatidylinositol-5-phosphate 4-kinase, type II, beta

The protein encoded by this gene catalyzes the phosphorylation of phosphatidylinositol-5-phosphate on the fourth hydroxyl of the myo-inositol ring to form phosphatidylinositol-5,4-bisphosphate. This gene is a member of the phosphatidylinositol-5-phosphate 4-kinase family. The encoded protein sequence does not show similarity to other kinases, but the protein does exhibit kinase activity. Additionally, the encoded protein interacts with p55 TNF receptor. [provided by RefSeq, Jul 2008]

PSMB11 Gene

proteasome (prosome, macropain) subunit, beta type, 11

Proteasomes generate peptides that are presented by major histocompatibility complex (MHC) I molecules to other cells of the immune system. Proteolysis is conducted by 20S proteasomes, complexes of 28 subunits arranged as a cylinder in 4 heteroheptameric rings: alpha-1 to -7, beta-1 to -7, beta-1 to -7, and alpha-1 to -7. The catalytic subunits are beta-1 (PSMB6; MIM 600307), beta-2 (PSMB7; MIM 604030), and beta-5 (PSMB5; MIM 600306). Three additional subunits, beta-1i (PSMB9; MIM 177045), beta-2i (PSMB10; MIM 176847), and beta-5i (PSMB8; MIM 177046), are induced by gamma-interferon (IFNG; MIM 147570) and are preferentially incorporated into proteasomes to make immunoproteasomes. PSMB11, or beta-5t, is a catalytic subunit expressed exclusively in cortical thymic epithelial cells (Murata et al., 2007 [PubMed 17540904]).[supplied by OMIM, Mar 2008]

PSMB10 Gene

proteasome (prosome, macropain) subunit, beta type, 10

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Proteolytic processing is required to generate a mature subunit. Expression of this gene is induced by gamma interferon, and this gene product replaces catalytic subunit 2 (proteasome beta 7 subunit) in the immunoproteasome. [provided by RefSeq, Jul 2008]

SCN3B Gene

sodium channel, voltage gated, type III beta subunit

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel beta subunit gene family, and influences the inactivation kinetics of the sodium channel. Two alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

PIK3C2B Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 beta

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. The PI3-kinase activity of this protein is sensitive to low nanomolar levels of the inhibitor wortmanin. The C2 domain of this protein was shown to bind phospholipids but not Ca2+, which suggests that this enzyme may function in a calcium-independent manner. [provided by RefSeq, Jul 2008]

PRKAR1B Gene

protein kinase, cAMP-dependent, regulatory, type I, beta

Cyclic AMP-dependent protein kinase A (PKA) is an essential enzyme in the signaling pathway of the second messenger cAMP. Through phosphorylation of target proteins, PKA controls many biochemical events in the cell including regulation of metabolism, ion transport, and gene transcription. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits and dissociates from the regulatory subunits upon binding of cAMP.[supplied by OMIM, Jun 2009]

LOC100422398 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

PGGT1B Gene

protein geranylgeranyltransferase type I, beta subunit

Protein geranylgeranyltransferase type I (GGTase-I) transfers a geranylgeranyl group to the cysteine residue of candidate proteins containing a C-terminal CAAX motif in which 'A' is an aliphatic amino acid and 'X' is leucine (summarized by Zhang et al., 1994 [PubMed 8106351]). The enzyme is composed of a 48-kD alpha subunit (FNTA; MIM 134635) and a 43-kD beta subunit, encoded by the PGGT1B gene. The FNTA gene encodes the alpha subunit for both GGTase-I and the related enzyme farnesyltransferase.[supplied by OMIM, Mar 2010]

LOC100422275 Gene

proteasome (prosome, macropain) subunit, beta type, 5 pseudogene

LOC100130731 Gene

proteasome (prosome, macropain) subunit, beta type, 1 pseudogene

PGGT1BP2 Gene

protein geranylgeranyltransferase type I, beta subunit pseudogene 2

LOC100422399 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

BSND Gene

barttin CLCNK-type chloride channel accessory beta subunit

This gene encodes an essential beta subunit for CLC chloride channels. These heteromeric channels localize to basolateral membranes of renal tubules and of potassium-secreting epithelia of the inner ear. Mutations in this gene have been associated with Bartter syndrome with sensorineural deafness. [provided by RefSeq, Jul 2008]

SCN2B Gene

sodium channel, voltage gated, type II beta subunit

LOC100271842 Gene

phosphatidylinositol 4-kinase type 2 beta pseudogene

PI4K2B Gene

phosphatidylinositol 4-kinase type 2 beta

Phosphatidylinositol 4-kinases (PI4Ks) phosphorylate phosphatidylinositol to generate phosphatidylinositol 4-phosphate (PIP), an immediate precursor of several important signaling and scaffolding molecules. PIP itself may also have direct functional and structural roles. PI4K2B is a primarily cytosolic PI4K that is recruited to membranes, where it stimulates phosphatidylinositol 4,5-bisphosphate synthesis (Wei et al., 2002 [PubMed 12324459]).[supplied by OMIM, Jun 2008]

PSMB3P2 Gene

proteasome (prosome, macropain) subunit, beta type, 3 pseudogene 2

SCN4B Gene

sodium channel, voltage gated, type IV beta subunit

The protein encoded by this gene is one of several sodium channel beta subunits. These subunits interact with voltage-gated alpha subunits to change sodium channel kinetics. The encoded transmembrane protein forms interchain disulfide bonds with SCN2A. Defects in this gene are a cause of long QT syndrome type 10 (LQT10). Three protein-coding and one non-coding transcript variant have been found for this gene.[provided by RefSeq, Mar 2009]

PIP5K1B Gene

phosphatidylinositol-4-phosphate 5-kinase, type I, beta

BSNDP2 Gene

barttin CLCNK-type chloride channel accessory beta subunit pseudogene 2

RBCK1 Gene

RanBP-type and C3HC4-type zinc finger containing 1

The protein encoded by this gene is similar to mouse UIP28/UbcM4 interacting protein. Alternative splicing has been observed at this locus, resulting in distinct isoforms. [provided by RefSeq, Jul 2008]

SEMA5B Gene

sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B

This gene encodes a member of the semaphorin protein family which regulates axon growth during development of the nervous system. The encoded protein has a characteristic Sema domain near the N-terminus, through which semaphorins bind to plexin, and five thrombospondin type 1 repeats in the C-terminal region of the protein. The protein product may be cleaved and exist as a secreted molecule (PMID: 19463192). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

SEMA5A Gene

sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A

This gene belongs to the semaphorin gene family that encodes membrane proteins containing a semaphorin domain and several thrombospondin type-1 repeats. Members of this family are involved in axonal guidance during neural development. This gene has been implicated as an autism susceptibility gene.[provided by RefSeq, Jan 2010]

LOC100422730 Gene

sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A pseudogene

GHITM Gene

growth hormone inducible transmembrane protein

GAS2L1 Gene

growth arrest-specific 2 like 1

This gene encodes a member of the growth arrest-specific 2 protein family. This protein binds components of the cytoskeleton and may be involved in mediating interactions between microtubules and microfilaments. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 9. [provided by RefSeq, Jul 2013]

GAS2L3 Gene

growth arrest-specific 2 like 3

GAS2L2 Gene

growth arrest-specific 2 like 2

The protein encoded by this gene appears to crosslink microtubules and microfilaments and may be part of the cytoskeleton. This gene is mainly expressed in skeletal muscle. [provided by RefSeq, Jul 2011]

GADD45A Gene

growth arrest and DNA-damage-inducible, alpha

This gene is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The protein encoded by this gene responds to environmental stresses by mediating activation of the p38/JNK pathway via MTK1/MEKK4 kinase. The DNA damage-induced transcription of this gene is mediated by both p53-dependent and -independent mechanisms. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.[provided by RefSeq, Dec 2010]

GADD45G Gene

growth arrest and DNA-damage-inducible, gamma

This gene is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The protein encoded by this gene responds to environmental stresses by mediating activation of the p38/JNK pathway via MTK1/MEKK4 kinase. The GADD45G is highly expressed in placenta. [provided by RefSeq, Jul 2008]

EGR2 Gene

early growth response 2

The protein encoded by this gene is a transcription factor with three tandem C2H2-type zinc fingers. Defects in this gene are associated with Charcot-Marie-Tooth disease type 1D (CMT1D), Charcot-Marie-Tooth disease type 4E (CMT4E), and with Dejerine-Sottas syndrome (DSS). Multiple transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Oct 2008]

EGR3 Gene

early growth response 3

This gene encodes a transcriptional regulator that belongs to the EGR family of C2H2-type zinc-finger proteins. It is an immediate-early growth response gene which is induced by mitogenic stimulation. The protein encoded by this gene participates in the transcriptional regulation of genes in controling biological rhythm. It may also play a role in a wide variety of processes including muscle development, lymphocyte development, endothelial cell growth and migration, and neuronal development. Alternative splicing results in multiple transcript variants encoding distinct isoforms.[provided by RefSeq, Dec 2010]

EGR1 Gene

early growth response 1

The protein encoded by this gene belongs to the EGR family of C2H2-type zinc-finger proteins. It is a nuclear protein and functions as a transcriptional regulator. The products of target genes it activates are required for differentitation and mitogenesis. Studies suggest this is a cancer suppressor gene. [provided by RefSeq, Dec 2014]

EGR4 Gene

early growth response 4

NEGR1 Gene

neuronal growth regulator 1

GRTP1 Gene

growth hormone regulated TBC protein 1

CGRRF1 Gene

cell growth regulator with ring finger domain 1

GREB1L Gene

growth regulation by estrogen in breast cancer-like

GH1 Gene

growth hormone 1

The protein encoded by this gene is a member of the somatotropin/prolactin family of hormones which play an important role in growth control. The gene, along with four other related genes, is located at the growth hormone locus on chromosome 17 where they are interspersed in the same transcriptional orientation; an arrangement which is thought to have evolved by a series of gene duplications. The five genes share a remarkably high degree of sequence identity. Alternative splicing generates additional isoforms of each of the five growth hormones, leading to further diversity and potential for specialization. This particular family member is expressed in the pituitary but not in placental tissue as is the case for the other four genes in the growth hormone locus. Mutations in or deletions of the gene lead to growth hormone deficiency and short stature. [provided by RefSeq, Jul 2008]

GH2 Gene

growth hormone 2

The protein encoded by this gene is a member of the somatotropin/prolactin family of hormones which play an important role in growth control. The gene, along with four other related genes, is located at the growth hormone locus on chromosome 17 where they are interspersed in the same transcriptional orientation; an arrangement which is thought to have evolved by a series of gene duplications. The five genes share a remarkably high degree of sequence identity. Alternative splicing generates additional isoforms of each of the five growth hormones, leading to further diversity and potential for specialization. As in the case of its pituitary counterpart, growth hormone 1, the predominant isoform of this particular family member shows similar somatogenic activity, with reduced lactogenic activity. Mutations in this gene lead to placental growth hormone/lactogen deficiency. [provided by RefSeq, Jul 2008]

GAS2L1P1 Gene

growth arrest-specific 2 like 1 pseudogene 1

NAMA Gene

non-protein coding RNA, associated with MAP kinase pathway and growth arrest

GHRH Gene

growth hormone releasing hormone

The protein encoded by this gene belongs to the glucagon family and is a preproprotein that is produced in the hypothalamus. The preproprotein is cleaved to form a 44 aa factor, also called somatocrinin, that acts to stimulate growth hormone release from the pituitary. Variant receptors for somatocrinin have been found in several types of tumors, and antagonists of these receptors can inhibit the growth of the tumors. Defects in this gene are a cause of dwarfism, while hypersecretion of the encoded protein is a cause of gigantism. [provided by RefSeq, Jul 2008]

AGMX2 Gene

agammaglobulinemia, X-linked 2 (with growth hormone deficiency)

GADD45GIP1 Gene

growth arrest and DNA-damage-inducible, gamma interacting protein 1

This gene encodes a nuclear-localized protein that may be induced by p53 and regulates the cell cycle by inhibiting G1 to S phase progression. The encoded protein may interact with other cell cycle regulators. [provided by RefSeq, Aug 2012]

GAP43 Gene

growth associated protein 43

The protein encoded by this gene has been termed a 'growth' or 'plasticity' protein because it is expressed at high levels in neuronal growth cones during development and axonal regeneration. This protein is considered a crucial component of an effective regenerative response in the nervous system. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GADD45AP1 Gene

growth arrest and DNA-damage-inducible, alpha pseudogene 1

CXCL1 Gene

chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)

This antimicrobial gene encodes a member of the CXC subfamily of chemokines. The encoded protein is a secreted growth factor that signals through the G-protein coupled receptor, CXC receptor 2. This protein plays a role in inflammation and as a chemoattractant for neutrophils. Aberrant expression of this protein is associated with the growth and progression of certain tumors. A naturally occurring processed form of this protein has increased chemotactic activity. Alternate splicing results in coding and non-coding variants of this gene. A pseudogene of this gene is found on chromosome 4. [provided by RefSeq, Sep 2014]

USMG5 Gene

up-regulated during skeletal muscle growth 5 homolog (mouse)

OSGIN2 Gene

oxidative stress induced growth inhibitor family member 2

OSGIN1 Gene

oxidative stress induced growth inhibitor 1

This gene encodes an oxidative stress response protein that regulates cell death. Expression of the gene is regulated by p53 and is induced by DNA damage. The protein regulates apoptosis by inducing cytochrome c release from mitochondria. It also appears to be a key regulator of both inflammatory and anti-inflammatory molecules. The loss of this protein correlates with uncontrolled cell growth and tumor formation. Naturally occurring read-through transcription exists between this gene and the neighboring upstream malonyl-CoA decarboxylase (MLYCD) gene, but the read-through transcripts are unlikely to produce a protein product. [provided by RefSeq, Aug 2011]

HAGLR Gene

HOXD antisense growth-associated long non-coding RNA

GAS8 Gene

growth arrest-specific 8

This gene includes 11 exons spanning 25 kb and maps to a region of chromosome 16 that is sometimes deleted in breast and prostrate cancer. The second intron contains an apparently intronless gene, C16orf3, that is transcribed in the opposite orientation. This gene is a putative tumor suppressor gene. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2013]

GAS1 Gene

growth arrest-specific 1

Growth arrest-specific 1 plays a role in growth suppression. GAS1 blocks entry to S phase and prevents cycling of normal and transformed cells. Gas1 is a putative tumor suppressor gene. [provided by RefSeq, Jul 2008]

GAS2 Gene

growth arrest-specific 2

The protein encoded by this gene is a caspase-3 substrate that plays a role in regulating microfilament and cell shape changes during apoptosis. It can also modulate cell susceptibility to p53-dependent apoptosis by inhibiting calpain activity. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jan 2009]

GAS5 Gene

growth arrest-specific 5 (non-protein coding)

This gene produces a spliced long non-coding RNA and is a member of the 5' terminal oligo-pyrimidine class of genes. It is a small nucleolar RNA host gene, containing multiple C/D box snoRNA genes in its introns. Part of the secondary RNA structure of the encoded transcript mimics glucocorticoid response element (GRE) which means it can bind to the DNA binding domain of the glucocorticoid receptor (nuclear receptor subfamily 3, group C, member 1). This action blocks the glucocorticoid receptor from being activated and thereby stops it from regulating the transcription of its target genes. This transcript is also thought to regulate the transcriptional activity of other receptors, such as androgen, progesterone and mineralocorticoid receptors, that can bind to its GRE mimic region. Multiple functions have been associated with this transcript, including cellular growth arrest and apoptosis. It has also been identified as a potential tumor suppressor, with its down-regulation associated with cancer in multiple different tissues. [provided by RefSeq, Mar 2015]

GAS7 Gene

growth arrest-specific 7

Growth arrest-specific 7 is expressed primarily in terminally differentiated brain cells and predominantly in mature cerebellar Purkinje neurons. GAS7 plays a putative role in neuronal development. Several transcript variants encoding proteins which vary in the N-terminus have been described. [provided by RefSeq, Jul 2008]

GAS6 Gene

growth arrest-specific 6

This gene encodes a gamma-carboxyglutamic acid (Gla)-containing protein thought to be involved in the stimulation of cell proliferation. This gene is frequently overexpressed in many cancers and has been implicated as an adverse prognostic marker. Elevated protein levels are additionally associated with a variety of disease states, including venous thromboembolic disease, systemic lupus erythematosus, chronic renal failure, and preeclampsia. [provided by RefSeq, Aug 2014]

INGX Gene

inhibitor of growth family, X-linked, pseudogene

ING4 Gene

inhibitor of growth family, member 4

This gene encodes a tumor suppressor protein that contains a PHD-finger, which is a common motif in proteins involved in chromatin remodeling. This protein can bind TP53 and EP300/p300, a component of the histone acetyl transferase complex, suggesting its involvement in the TP53-dependent regulatory pathway. Multiple alternatively spliced transcript variants have been observed that encode distinct proteins. [provided by RefSeq, Jul 2008]

ING5 Gene

inhibitor of growth family, member 5

The protein encoded by this gene is similar to ING1, a tumor suppressor protein that can interact with TP53, inhibit cell growth, and induce apoptosis. This protein contains a PHD-finger, which is a common motif in proteins involved in chromatin remodeling. This protein can bind TP53 and EP300/p300, a component of the histone acetyl transferase complex, suggesting its involvement in TP53-dependent regulatory pathway. [provided by RefSeq, Jul 2008]

ING1 Gene

inhibitor of growth family, member 1

This gene encodes a tumor suppressor protein that can induce cell growth arrest and apoptosis. The encoded protein is a nuclear protein that physically interacts with the tumor suppressor protein TP53 and is a component of the p53 signaling pathway. Reduced expression and rearrangement of this gene have been detected in various cancers. Multiple alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

ING2 Gene

inhibitor of growth family, member 2

This gene is a member of the inhibitor of growth (ING) family. Members of the ING family associate with and modulate the activity of histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes and function in DNA repair and apoptosis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

ING3 Gene

inhibitor of growth family, member 3

The protein encoded by this gene is similar to ING1, a tumor suppressor protein that can interact with TP53, inhibit cell growth, and induce apoptosis. This protein contains a PHD-finger, which is a common motif in proteins involved in chromatin remodeling. This gene can activate p53 trans-activated promoters, including promoters of p21/waf1 and bax. Overexpression of this gene has been shown to inhibit cell growth and induce apoptosis. Allelic loss and reduced expression of this gene were detected in head and neck cancers. Two alternatively spliced transcript variants encoding different isoforms have been observed. [provided by RefSeq, Jul 2008]

GAS2L1P2 Gene

growth arrest-specific 2 like 1 pseudogene 2

RERG Gene

RAS-like, estrogen-regulated, growth inhibitor

RERG, a member of the RAS superfamily of GTPases, inhibits cell proliferation and tumor formation (Finlin et al., 2001 [PubMed 11533059]).[supplied by OMIM, Mar 2009]

CGREF1 Gene

cell growth regulator with EF-hand domain 1

GREB1 Gene

growth regulation by estrogen in breast cancer 1

This gene is an estrogen-responsive gene that is an early response gene in the estrogen receptor-regulated pathway. It is thought to play an important role in hormone-responsive tissues and cancer. Three alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GCY Gene

growth control, Y chromosome influenced

HR Gene

hair growth associated

This gene encodes a protein that is involved in hair growth. This protein functions as a transcriptional corepressor of multiple nuclear receptors, including thyroid hormone receptor, the retinoic acid receptor-related orphan receptors and the vitamin D receptors, and it interacts with histone deacetylases. The translation of this protein is modulated by a regulatory open reading frame (ORF) that exists upstream of the primary ORF. Mutations in this upstream ORF cause Marie Unna hereditary hypotrichosis (MUHH), an autosomal dominant form of genetic hair loss. Mutations in this gene also cause autosomal recessive congenital alopecia and atrichia with papular lesions, other diseases resulting in hair loss. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2014]

UCMA Gene

upper zone of growth plate and cartilage matrix associated

LMX1B Gene

LIM homeobox transcription factor 1, beta

This gene encodes a member of LIM-homeodomain family of proteins containing two N-terminal zinc-binding LIM domains, 1 homeodomain, and a C-terminal glutamine-rich domain. It functions as a transcription factor, and is essential for the normal development of dorsal limb structures, the glomerular basement membrane, the anterior segment of the eye, and dopaminergic and serotonergic neurons. Mutations in this gene are associated with nail-patella syndrome. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]

EEF1B2P4 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 4

EEF1B2P7 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 7

NFYB Gene

nuclear transcription factor Y, beta

The protein encoded by this gene is one subunit of a trimeric complex, forming a highly conserved transcription factor that binds with high specificity to CCAAT motifs in the promoter regions in a variety of genes. This gene product, subunit B, forms a tight dimer with the C subunit, a prerequisite for subunit A association. The resulting trimer binds to DNA with high specificity and affinity. Subunits B and C each contain a histone-like motif. Observation of the histone nature of these subunits is supported by two types of evidence; protein sequence alignments and experiments with mutants. [provided by RefSeq, Jul 2008]

NFKBIB Gene

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta

The protein encoded by this gene belongs to the NF-kappa-B inhibitor family, which inhibit NF-kappa-B by complexing with, and trapping it in the cytoplasm. Phosphorylation of serine residues on these proteins by kinases marks them for destruction via the ubiquitination pathway, thereby allowing activation of the NF-kappa-B, which translocates to the nucleus to function as a transcription factor. Alternatively spliced transcript variants have been found for this gene.[provided by RefSeq, Jul 2011]

ATF6B Gene

activating transcription factor 6 beta

The protein encoded by this gene is a transcription factor in the unfolded protein response (UPR) pathway during ER stress. Either as a homodimer or as a heterodimer with ATF6-alpha, the encoded protein binds to the ER stress response element, interacting with nuclear transcription factor Y to activate UPR target genes. The protein is normally found in the membrane of the endoplasmic reticulum; however, under ER stress, the N-terminal cytoplasmic domain is cleaved from the rest of the protein and translocates to the nucleus. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2008]

GMFBP1 Gene

glia maturation factor, beta pseudogene 1

LOC100420944 Gene

nuclear transcription factor Y, beta pseudogene

EIF2S2P1 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 1

EIF2S2P3 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 3

EIF2S2P2 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 2

EIF2S2P5 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 5

EIF2S2P4 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 4

EIF2S2P7 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 7

EIF2S2P6 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 6

DFFB Gene

DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase)

Apoptosis is a cell death process that removes toxic and/or useless cells during mammalian development. The apoptotic process is accompanied by shrinkage and fragmentation of the cells and nuclei and degradation of the chromosomal DNA into nucleosomal units. DNA fragmentation factor (DFF) is a heterodimeric protein of 40-kD (DFFB) and 45-kD (DFFA) subunits. DFFA is the substrate for caspase-3 and triggers DNA fragmentation during apoptosis. DFF becomes activated when DFFA is cleaved by caspase-3. The cleaved fragments of DFFA dissociate from DFFB, the active component of DFF. DFFB has been found to trigger both DNA fragmentation and chromatin condensation during apoptosis. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene but the biological validity of some of these variants has not been determined. [provided by RefSeq, Sep 2013]

GABPB2 Gene

GA binding protein transcription factor, beta subunit 2

GABPB1 Gene

GA binding protein transcription factor, beta subunit 1

This gene encodes the GA-binding protein transcription factor, beta subunit. This protein forms a tetrameric complex with the alpha subunit, and stimulates transcription of target genes. The encoded protein may be involved in activation of cytochrome oxidase expression and nuclear control of mitochondrial function. The crystal structure of a similar protein in mouse has been resolved as a ternary protein complex. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

PEX11B Gene

peroxisomal biogenesis factor 11 beta

The protein encoded by this gene facilitates peroxisomal proliferation and interacts with PEX19. The encoded protein is found in the peroxisomal membrane. Several transcript variants, some protein-coding and some not protein-coding, have been found for this gene. [provided by RefSeq, Dec 2012]

LOC440973 Gene

nuclear transcription factor Y, beta pseudogene

EEF1B2 Gene

eukaryotic translation elongation factor 1 beta 2

This gene encodes a translation elongation factor. The protein is a guanine nucleotide exchange factor involved in the transfer of aminoacylated tRNAs to the ribosome. Alternative splicing results in three transcript variants which differ only in the 5' UTR. [provided by RefSeq, Jul 2008]

EIF2S2 Gene

eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa

Eukaryotic translation initiation factor 2 (EIF-2) functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA and binding to a 40S ribosomal subunit. EIF-2 is composed of three subunits, alpha, beta, and gamma, with the protein encoded by this gene representing the beta subunit. The beta subunit catalyzes the exchange of GDP for GTP, which recycles the EIF-2 complex for another round of initiation. [provided by RefSeq, Jul 2008]

LOC100422440 Gene

general transcription factor IIE, polypeptide 2, beta 34kDa pseudogene

DFFBP1 Gene

DNA fragmentation factor, 40kDa, beta polypeptide pseudogene 1

NAPB Gene

N-ethylmaleimide-sensitive factor attachment protein, beta

GMFB Gene

glia maturation factor, beta

EIF2B2 Gene

eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa

This gene encodes the beta subunit of eukaryotic initiation factor-2B (EIF2B). EIF2B is involved in protein synthesis and exchanges GDP and GTP for its activation and deactivation. [provided by RefSeq, Aug 2011]

GTF3C2 Gene

general transcription factor IIIC, polypeptide 2, beta 110kDa

EEF1B2P8 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 8

EEF1B2P1 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 1

EEF1B2P3 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 3

EEF1B2P2 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 2

EEF1B2P5 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 5

EEF1B2P6 Gene

eukaryotic translation elongation factor 1 beta 2 pseudogene 6

CBFB Gene

core-binding factor, beta subunit

The protein encoded by this gene is the beta subunit of a heterodimeric core-binding transcription factor belonging to the PEBP2/CBF transcription factor family which master-regulates a host of genes specific to hematopoiesis (e.g., RUNX1) and osteogenesis (e.g., RUNX2). The beta subunit is a non-DNA binding regulatory subunit; it allosterically enhances DNA binding by alpha subunit as the complex binds to the core site of various enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers and GM-CSF promoters. Alternative splicing generates two mRNA variants, each encoding a distinct carboxyl terminus. In some cases, a pericentric inversion of chromosome 16 [inv(16)(p13q22)] produces a chimeric transcript consisting of the N terminus of core-binding factor beta in a fusion with the C-terminal portion of the smooth muscle myosin heavy chain 11. This chromosomal rearrangement is associated with acute myeloid leukemia of the M4Eo subtype. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GTF2E2 Gene

general transcription factor IIE, polypeptide 2, beta 34kDa

SPIRE1 Gene

spire-type actin nucleation factor 1

Spire proteins, such as SPIRE1, are highly conserved between species. They belong to the family of Wiskott-Aldrich homology region-2 (WH2) proteins, which are involved in actin organization (Kerkhoff et al., 2001 [PubMed 11747823]).[supplied by OMIM, Mar 2008]

SPIRE2 Gene

spire-type actin nucleation factor 2

SVEP1 Gene

sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1

TRBJ2-4 Gene

T cell receptor beta joining 2-4

TRBJ2-5 Gene

T cell receptor beta joining 2-5

TRBJ2-6 Gene

T cell receptor beta joining 2-6

TRBJ2-7 Gene

T cell receptor beta joining 2-7

TRBJ2-1 Gene

T cell receptor beta joining 2-1

TRBJ2-2 Gene

T cell receptor beta joining 2-2

TRBJ2-3 Gene

T cell receptor beta joining 2-3

TRBV20-1 Gene

T cell receptor beta variable 20-1

TRBV6-8 Gene

T cell receptor beta variable 6-8

TRBV6-9 Gene

T cell receptor beta variable 6-9

TRBV6-5 Gene

T cell receptor beta variable 6-5

TRBV6-6 Gene

T cell receptor beta variable 6-6

TRBV6-7 Gene

T cell receptor beta variable 6-7 (non-functional)

TRBV6-2 Gene

T cell receptor beta variable 6-2 (gene/pseudogene)

TRBV6-3 Gene

T cell receptor beta variable 6-3

THRB Gene

thyroid hormone receptor, beta

The protein encoded by this gene is a nuclear hormone receptor for triiodothyronine. It is one of the several receptors for thyroid hormone, and has been shown to mediate the biological activities of thyroid hormone. Knockout studies in mice suggest that the different receptors, while having certain extent of redundancy, may mediate different functions of thyroid hormone. Mutations in this gene are known to be a cause of generalized thyroid hormone resistance (GTHR), a syndrome characterized by goiter and high levels of circulating thyroid hormone (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH). Several alternatively spliced transcript variants encoding the same protein have been observed for this gene. [provided by RefSeq, Jul 2008]

TRBC1 Gene

T cell receptor beta constant 1

TRBC2 Gene

T cell receptor beta constant 2

TRBV21-1 Gene

T cell receptor beta variable 21-1 (pseudogene)

TRBV23OR9-2 Gene

T cell receptor beta variable 23/OR9-2 (non-functional)

TRBV30 Gene

T cell receptor beta variable 30 (gene/pseudogene)

GLRB Gene

glycine receptor, beta

This gene encodes the beta subunit of the glycine receptor, which is a pentamer composed of alpha and beta subunits. The receptor functions as a neurotransmitter-gated ion channel, which produces hyperpolarization via increased chloride conductance due to the binding of glycine to the receptor. Mutations in this gene cause startle disease, also known as hereditary hyperekplexia or congenital stiff-person syndrome, a disease characterized by muscular rigidity. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

ITGB2 Gene

integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)

This gene encodes an integrin beta chain, which combines with multiple different alpha chains to form different integrin heterodimers. Integrins are integral cell-surface proteins that participate in cell adhesion as well as cell-surface mediated signalling. The encoded protein plays an important role in immune response and defects in this gene cause leukocyte adhesion deficiency. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

TRBV3-1 Gene

T cell receptor beta variable 3-1

TRBV7-9 Gene

T cell receptor beta variable 7-9

TRBV7-8 Gene

T cell receptor beta variable 7-8

TRBV7-1 Gene

T cell receptor beta variable 7-1 (non-functional)

TRBV7-3 Gene

T cell receptor beta variable 7-3

TRBV7-2 Gene

T cell receptor beta variable 7-2

TRBV7-5 Gene

T cell receptor beta variable 7-5 (pseudogene)

TRBV7-4 Gene

T cell receptor beta variable 7-4 (gene/pseudogene)

TRBV7-7 Gene

T cell receptor beta variable 7-7

TRBV7-6 Gene

T cell receptor beta variable 7-6

IL20RB Gene

interleukin 20 receptor beta

IL20RB and IL20RA (MIM 605620) form a heterodimeric receptor for interleukin-20 (IL20; MIM 605619) (Blumberg et al., 2001 [PubMed 11163236]).[supplied by OMIM, Feb 2009]

TRBV21OR9-2 Gene

T cell receptor beta variable 21/OR9-2 (pseudogene)

RARB Gene

retinoic acid receptor, beta

This gene encodes retinoic acid receptor beta, a member of the thyroid-steroid hormone receptor superfamily of nuclear transcriptional regulators. This receptor localizes to the cytoplasm and to subnuclear compartments. It binds retinoic acid, the biologically active form of vitamin A which mediates cellular signalling in embryonic morphogenesis, cell growth and differentiation. It is thought that this protein limits growth of many cell types by regulating gene expression. The gene was first identified in a hepatocellular carcinoma where it flanks a hepatitis B virus integration site. Alternate promoter usage and differential splicing result in multiple transcript variants. [provided by RefSeq, Mar 2014]

TRBD1 Gene

T cell receptor beta diversity 1

GABRB1 Gene

gamma-aminobutyric acid (GABA) A receptor, beta 1

The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes GABA A receptor, beta 1 subunit. It is mapped to chromosome 4p12 in a cluster comprised of genes encoding alpha 4, alpha 2 and gamma 1 subunits of the GABA A receptor. Alteration of this gene is implicated in the pathogenetics of schizophrenia. [provided by RefSeq, Jul 2008]

GABRB3 Gene

gamma-aminobutyric acid (GABA) A receptor, beta 3

This gene encodes a member of the ligand-gated ionic channel family. The encoded protein is one the subunits of a multi-subunit chloride channel that serves as the receptor for gamma-aminobutyric acid, a major inhibitory neurotransmitter of the mammalian nervous system. This gene is located on the long arm of chromosome 15 in a cluster with two other genes encoding related subunits of the family. This gene may be associated with the pathogenesis of several disorders including Angelman syndrome, Prader-Willi syndrome, nonsyndromic orofacial clefts, epilepsy and autism. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2013]

TRBJ2-2P Gene

T cell receptor beta joining 2-2P (non-functional)

TRBV11-3 Gene

T cell receptor beta variable 11-3

TRBV11-1 Gene

T cell receptor beta variable 11-1

ADRBK1 Gene

adrenergic, beta, receptor kinase 1

The product of this gene phosphorylates the beta-2-adrenergic receptor and appears to mediate agonist-specific desensitization observed at high agonist concentrations. This protein is an ubiquitous cytosolic enzyme that specifically phosphorylates the activated form of the beta-adrenergic and related G-protein-coupled receptors. Abnormal coupling of beta-adrenergic receptor to G protein is involved in the pathogenesis of the failing heart. [provided by RefSeq, Jul 2008]

ADRBK2 Gene

adrenergic, beta, receptor kinase 2

The beta-adrenergic receptor kinase specifically phosphorylates the agonist-occupied form of the beta-adrenergic and related G protein-coupled receptors. Overall, the beta adrenergic receptor kinase 2 has 85% amino acid similarity with beta adrenergic receptor kinase 1, with the protein kinase catalytic domain having 95% similarity. These data suggest the existence of a family of receptor kinases which may serve broadly to regulate receptor function. [provided by RefSeq, Jul 2008]

TRBV24-1 Gene

T cell receptor beta variable 24-1

TRBV10-2 Gene

T cell receptor beta variable 10-2

TRBV10-3 Gene

T cell receptor beta variable 10-3

TRBV10-1 Gene

T cell receptor beta variable 10-1(gene/pseudogene)

TRBV25-1 Gene

T cell receptor beta variable 25-1

TRBV17 Gene

T cell receptor beta variable 17 (non-functional)

TRBV16 Gene

T cell receptor beta variable 16 (gene/pseudogene)

TRBV15 Gene

T cell receptor beta variable 15

TRBV14 Gene

T cell receptor beta variable 14

TRBV13 Gene

T cell receptor beta variable 13

TRBV19 Gene

T cell receptor beta variable 19

TRBV18 Gene

T cell receptor beta variable 18

TRBVAOR9-2 Gene

T cell receptor beta variable A/OR9-2 (pseudogene)

IL10RB Gene

interleukin 10 receptor, beta

The protein encoded by this gene belongs to the cytokine receptor family. It is an accessory chain essential for the active interleukin 10 receptor complex. Coexpression of this and IL10RA proteins has been shown to be required for IL10-induced signal transduction. This gene and three other interferon receptor genes, IFAR2, IFNAR1, and IFNGR2, form a class II cytokine receptor gene cluster located in a small region on chromosome 21. [provided by RefSeq, Jul 2008]

TRBV6-4 Gene

T cell receptor beta variable 6-4

TRBV6-1 Gene

T cell receptor beta variable 6-1

LTBR Gene

lymphotoxin beta receptor (TNFR superfamily, member 3)

This gene encodes a member of the tumor necrosis factor receptor superfamily. The major ligands of this receptor include lymphotoxin alpha/beta and tumor necrosis factor ligand superfamily member 14. The encoded protein plays a role in signalling during the development of lymphoid and other organs, lipid metabolism, immune response, and programmed cell death. Activity of this receptor has also been linked to carcinogenesis. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Aug 2012]

TRBV28 Gene

T cell receptor beta variable 28

TRBV26 Gene

T cell receptor beta variable 26 (pseudogene)

RXRB Gene

retinoid X receptor, beta

This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). The encoded protein forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. This gene lies within the major histocompatibility complex (MHC) class II region on chromosome 6. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

CHRNB1 Gene

cholinergic receptor, nicotinic, beta 1 (muscle)

The muscle acetylcholine receptor is composed of five subunits: two alpha subunits and one beta, one gamma, and one delta subunit. This gene encodes the beta subunit of the acetylcholine receptor. The acetylcholine receptor changes conformation upon acetylcholine binding leading to the opening of an ion-conducting channel across the plasma membrane. Mutations in this gene are associated with slow-channel congenital myasthenic syndrome. [provided by RefSeq, Jul 2008]

CHRNB3 Gene

cholinergic receptor, nicotinic, beta 3 (neuronal)

The nicotinic acetylcholine receptors (nAChRs) are members of a superfamily of ligand-gated ion channels that mediate fast signal transmission at synapses. The nAChRs are (hetero)pentamers composed of homologous subunits. The subunits that make up the muscle and neuronal forms of nAChRs are encoded by separate genes and have different primary structure. There are several subtypes of neuronal nAChRs that vary based on which homologous subunits are arranged around the central channel. They are classified as alpha-subunits if, like muscle alpha-1 (MIM 100690), they have a pair of adjacent cysteines as part of the presumed acetylcholine binding site. Subunits lacking these cysteine residues are classified as beta-subunits (Groot Kormelink and Luyten, 1997 [PubMed 9009220]). Elliott et al. (1996) [PubMed 8906617] stated that the proposed structure for each subunit is a conserved N-terminal extracellular domain followed by 3 conserved transmembrane domains, a variable cytoplasmic loop, a fourth conserved transmembrane domain, and a short C-terminal extracellular region.[supplied by OMIM, Apr 2010]

CHRNB2 Gene

cholinergic receptor, nicotinic, beta 2 (neuronal)

Neuronal acetylcholine receptors are homo- or heteropentameric complexes composed of homologous alpha and beta subunits. They belong to a superfamily of ligand-gated ion channels which allow the flow of sodium and potassium across the plasma membrane in response to ligands such as acetylcholine and nicotine. This gene encodes one of several beta subunits. Mutations in this gene are associated with autosomal dominant nocturnal frontal lobe epilepsy. [provided by RefSeq, Jul 2008]

CHRNB4 Gene

cholinergic receptor, nicotinic, beta 4 (neuronal)

IL2RB Gene

interleukin 2 receptor, beta

The interleukin 2 receptor, which is involved in T cell-mediated immune responses, is present in 3 forms with respect to ability to bind interleukin 2. The low affinity form is a monomer of the alpha subunit and is not involved in signal transduction. The intermediate affinity form consists of an alpha/beta subunit heterodimer, while the high affinity form consists of an alpha/beta/gamma subunit heterotrimer. Both the intermediate and high affinity forms of the receptor are involved in receptor-mediated endocytosis and transduction of mitogenic signals from interleukin 2. The protein encoded by this gene represents the beta subunit and is a type I membrane protein. [provided by RefSeq, Jul 2008]

TRBV20OR9-2 Gene

T cell receptor beta variable 20/OR9-2 (non-functional)

TRBV25OR9-2 Gene

T cell receptor beta variable 25/OR9-2 (pseudogene)

TRBV22OR9-2 Gene

T cell receptor beta variable 22/OR9-2 (pseudogene)

TRBV22-1 Gene

T cell receptor beta variable 22-1 (pseudogene)

ESRRB Gene

estrogen-related receptor beta

This gene encodes a protein with similarity to the estrogen receptor. Its function is unknown; however, a similar protein in mouse plays an essential role in placental development. [provided by RefSeq, Jul 2008]

TRBV11-2 Gene

T cell receptor beta variable 11-2

TRBV4-2 Gene

T cell receptor beta variable 4-2

TRBV4-3 Gene

T cell receptor beta variable 4-3

TRBV4-1 Gene

T cell receptor beta variable 4-1

TRBV5-7 Gene

T cell receptor beta variable 5-7 (non-functional)

TRBV5-6 Gene

T cell receptor beta variable 5-6

TRBV5-5 Gene

T cell receptor beta variable 5-5

TRBV5-4 Gene

T cell receptor beta variable 5-4

TRBV5-3 Gene

T cell receptor beta variable 5-3 (non-functional)

TRBV5-2 Gene

T cell receptor beta variable 5-2 (pseudogene)

TRBV5-1 Gene

T cell receptor beta variable 5-1

TRBV5-8 Gene

T cell receptor beta variable 5-8

IFNAR2 Gene

interferon (alpha, beta and omega) receptor 2

The protein encoded by this gene is a type I membrane protein that forms one of the two chains of a receptor for interferons alpha and beta. Binding and activation of the receptor stimulates Janus protein kinases, which in turn phosphorylate several proteins, including STAT1 and STAT2. Multiple transcript variants encoding at least two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

IFNAR1 Gene

interferon (alpha, beta and omega) receptor 1

The protein encoded by this gene is a type I membrane protein that forms one of the two chains of a receptor for interferons alpha and beta. Binding and activation of the receptor stimulates Janus protein kinases, which in turn phosphorylate several proteins, including STAT1 and STAT2. The encoded protein also functions as an antiviral factor. [provided by RefSeq, Jul 2008]

PPARGC1B Gene

peroxisome proliferator-activated receptor gamma, coactivator 1 beta

The protein encoded by this gene stimulates the activity of several transcription factors and nuclear receptors, including estrogen receptor alpha, nuclear respiratory factor 1, and glucocorticoid receptor. The encoded protein may be involved in fat oxidation, non-oxidative glucose metabolism, and the regulation of energy expenditure. This protein is downregulated in prediabetic and type 2 diabetes mellitus patients. Certain allelic variations in this gene increase the risk of the development of obesity. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]

TRBD2 Gene

T cell receptor beta diversity 2

TRBV8-2 Gene

T cell receptor beta variable 8-2 (pseudogene)

TRBV8-1 Gene

T cell receptor beta variable 8-1 (pseudogene)

TRBV26OR9-2 Gene

T cell receptor beta variable 26/OR9-2 (pseudogene)

TRB Gene

T cell receptor beta locus

T cell receptors recognize foreign antigens which have been processed as small peptides and bound to major histocompatibility complex (MHC) molecules at the surface of antigen presenting cells (APC). Each T cell receptor is a dimer consisting of one alpha and one beta chain or one delta and one gamma chain. In a single cell, the T cell receptor loci are rearranged and expressed in the order delta, gamma, beta, and alpha. If both delta and gamma rearrangements produce functional chains, the cell expresses delta and gamma. If not, the cell proceeds to rearrange the beta and alpha loci. This region represents the germline organization of the T cell receptor beta locus. The beta locus includes V (variable), J (joining), diversity (D), and C (constant) segments. During T cell development, the beta chain is synthesized by a recombination event at the DNA level joining a D segment with a J segment; a V segment is then joined to the D-J gene. The C segment is later joined by splicing at the RNA level. Recombination of many different V segments with several J segments provides a wide range of antigen recognition. Additional diversity is attained by junctional diversity, resulting from the random additional of nucleotides by terminal deoxynucleotidyltransferase. Several V segments and one J segment of the beta locus are known to be incapable of encoding a protein and are considered pseudogenes. The beta locus also includes eight trypsinogen genes, three of which encode functional proteins and five of which are pseudogenes. Chromosomal abnormalities involving the T-cell receptor beta locus have been associated with T-cell lymphomas. [provided by RefSeq, Jul 2008]

TRBJ1-6 Gene

T cell receptor beta joining 1-6

TRBJ1-5 Gene

T cell receptor beta joining 1-5

TRBJ1-4 Gene

T cell receptor beta joining 1-4

TRBJ1-3 Gene

T cell receptor beta joining 1-3

TRBJ1-2 Gene

T cell receptor beta joining 1-2

TRBJ1-1 Gene

T cell receptor beta joining 1-1

TRBV23-1 Gene

T cell receptor beta variable 23-1 (non-functional)

IL12RB1 Gene

interleukin 12 receptor, beta 1

The protein encoded by this gene is a type I transmembrane protein that belongs to the hemopoietin receptor superfamily. This protein binds to interleukine 12 (IL12) with a low affinity, and is thought to be a part of IL12 receptor complex. This protein forms a disulfide-linked oligomer, which is required for its IL12 binding activity. The coexpression of this and IL12RB2 proteins was shown to lead to the formation of high-affinity IL12 binding sites and reconstitution of IL12 dependent signaling. Mutations in this gene impair the development of interleukin-17-producing T lymphocytes and result in increased susceptibility to mycobacterial and Salmonella infections. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

IL12RB2 Gene

interleukin 12 receptor, beta 2

The protein encoded by this gene is a type I transmembrane protein identified as a subunit of the interleukin 12 receptor complex. The coexpression of this and IL12RB1 proteins was shown to lead to the formation of high-affinity IL12 binding sites and reconstitution of IL12 dependent signaling. The expression of this gene is up-regulated by interferon gamma in Th1 cells, and plays a role in Th1 cell differentiation. The up-regulation of this gene is found to be associated with a number of infectious diseases, such as Crohn's disease and leprosy, which is thought to contribute to the inflammatory response and host defense. Several transcript variants encoding different isoforms and non-protein coding transcripts have been found for this gene. [provided by RefSeq, Apr 2012]

GABRB2 Gene

gamma-aminobutyric acid (GABA) A receptor, beta 2

The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes GABA A receptor, beta 2 subunit. It is mapped to chromosome 5q34 in a cluster comprised of genes encoding alpha 1 and gamma 2 subunits of the GABA A receptor. Alternative splicing of this gene generates 2 transcript variants, differing by a 114 bp insertion. [provided by RefSeq, Jul 2008]

TBL1XR1 Gene

transducin (beta)-like 1 X-linked receptor 1

The protein encoded by this gene has sequence similarity with members of the WD40 repeat-containing protein family. The WD40 group is a large family of proteins, which appear to have a regulatory function. It is believed that the WD40 repeats mediate protein-protein interactions and members of the family are involved in signal transduction, RNA processing, gene regulation, vesicular trafficking, cytoskeletal assembly and may play a role in the control of cytotypic differentiation. [provided by RefSeq, Jul 2008]

TRBV27 Gene

T cell receptor beta variable 27

TRBV3-2 Gene

T cell receptor beta variable 3-2 (pseudogene)

ESR2 Gene

estrogen receptor 2 (ER beta)

This gene encodes a member of the family of estrogen receptors and superfamily of nuclear receptor transcription factors. The gene product contains an N-terminal DNA binding domain and C-terminal ligand binding domain and is localized to the nucleus, cytoplasm, and mitochondria. Upon binding to 17beta-estradiol or related ligands, the encoded protein forms homo- or hetero-dimers that interact with specific DNA sequences to activate transcription. Some isoforms dominantly inhibit the activity of other estrogen receptor family members. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been fully characterized. [provided by RefSeq, Jul 2008]

TRBV12-4 Gene

T cell receptor beta variable 12-4

TRBV12-5 Gene

T cell receptor beta variable 12-5

TRBV12-1 Gene

T cell receptor beta variable 12-1 (pseudogene)

TRBV12-2 Gene

T cell receptor beta variable 12-2 (pseudogene)

TRBV12-3 Gene

T cell receptor beta variable 12-3

TRBV9 Gene

T cell receptor beta variable 9

TRBV2 Gene

T cell receptor beta variable 2

TRBV1 Gene

T cell receptor beta variable 1 (pseudogene)

TRBVC Gene

T cell receptor beta variable C

TRBVB Gene

T cell receptor beta variable B (pseudogene)

TRBVA Gene

T cell receptor beta variable A (pseudogene)

TRBV29OR9-2 Gene

T cell receptor beta variable 29/OR9-2 (non-functional)

TRBV24OR9-2 Gene

T cell receptor beta variable 24/OR9-2 (pseudogene)

TRBV29-1 Gene

T cell receptor beta variable 29-1

LOC100421513 Gene

transducin (beta)-like 1 X-linked receptor 1 pseudogene

PTPN18 Gene

protein tyrosine phosphatase, non-receptor type 18 (brain-derived)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, the mitotic cycle, and oncogenic transformation. This PTP contains a PEST motif, which often serves as a protein-protein interaction domain, and may be related to protein intracellular half-live. This protein can differentially dephosphorylate autophosphorylated tyrosine kinases that are overexpressed in tumor tissues, and it appears to regulate HER2, a member of the epidermal growth factor receptor family of receptor tyrosine kinases. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2008]

PTPN13 Gene

protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP is a large intracellular protein. It has a catalytic PTP domain at its C-terminus and two major structural domains: a region with five PDZ domains and a FERM domain that binds to plasma membrane and cytoskeletal elements. This PTP was found to interact with, and dephosphorylate, Fas receptor and IkappaBalpha through the PDZ domains. This suggests it has a role in Fas mediated programmed cell death. This PTP was also shown to interact with GTPase-activating protein, and thus may function as a regulator of Rho signaling pathways. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported. [provided by RefSeq, Oct 2008]

PTPN12 Gene

protein tyrosine phosphatase, non-receptor type 12

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains a C-terminal PEST motif, which serves as a protein-protein interaction domain, and may regulate protein intracellular half-life. This PTP was found to bind and dephosphorylate the product of the oncogene c-ABL and thus may play a role in oncogenesis. This PTP was also shown to interact with, and dephosphorylate, various products related to cytoskeletal structure and cell adhesion, such as p130 (Cas), CAKbeta/PTK2B, PSTPIP1, and paxillin. This suggests it has a regulatory role in controlling cell shape and mobility. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Oct 2008]

PTPN11 Gene

protein tyrosine phosphatase, non-receptor type 11

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2012]

PTPN14 Gene

protein tyrosine phosphatase, non-receptor type 14

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal noncatalytic domain similar to that of band 4.1 superfamily cytoskeleton-associated proteins, which suggested the membrane or cytoskeleton localization of this protein. It appears to regulate lymphatic development in mammals, and a loss of function mutation has been found in a kindred with a lymphedema-choanal atresia. [provided by RefSeq, Sep 2010]

LOC105369264 Gene

tyrosine-protein phosphatase non-receptor type 20

PPFIA4 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 4

PPFIA4, or liprin-alpha-4, belongs to the liprin-alpha gene family. See liprin-alpha-1 (LIP1, or PPFIA1; MIM 611054) for background on liprins.[supplied by OMIM, Mar 2008]

LOC105379539 Gene

tyrosine-protein phosphatase non-receptor type 23-like

GNRHR2P1 Gene

gonadotropin-releasing hormone (type 2) receptor 2 pseudogene 1

TAS2R63P Gene

taste receptor, type 2, member 63, pseudogene

PTPN22 Gene

protein tyrosine phosphatase, non-receptor type 22 (lymphoid)

This gene encodes of member of the non-receptor class 4 subfamily of the protein-tyrosine phosphatase family. The encoded protein is a lymphoid-specific intracellular phosphatase that associates with the molecular adapter protein CBL and may be involved in regulating CBL function in the T-cell receptor signaling pathway. Mutations in this gene may be associated with a range of autoimmune disorders including Type 1 Diabetes, rheumatoid arthritis, systemic lupus erythematosus and Graves' disease. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Mar 2009]

PTPN23 Gene

protein tyrosine phosphatase, non-receptor type 23

PTPN20 Gene

protein tyrosine phosphatase, non-receptor type 20

The product of this gene belongs to the family of classical tyrosine-specific protein tyrosine phosphatases. Many protein tyrosine phosphatases have been shown to regulate fundamental cellular processes. The encoded protein appears to be targeted to sites of actin polymerization. A pseudogene of this gene has been defined on chromosome 10. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

PTPN21 Gene

protein tyrosine phosphatase, non-receptor type 21

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal domain, similar to cytoskeletal- associated proteins including band 4.1, ezrin, merlin, and radixin. This PTP was shown to specially interact with BMX/ETK, a member of Tec tyrosine kinase family characterized by a multimodular structures including PH, SH3, and SH2 domains. The interaction of this PTP with BMX kinase was found to increase the activation of STAT3, but not STAT2 kinase. Studies of the similar gene in mice suggested the possible roles of this PTP in liver regeneration and spermatogenesis. [provided by RefSeq, Jul 2008]

COL1AR Gene

collagen, type I, alpha, receptor

TAS2R20 Gene

taste receptor, type 2, member 20

TAS2R22 Gene

taste receptor, type 2, member 22

LOC100422713 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1 pseudogene

LOC100422710 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1 pseudogene

LOC442113 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

ACVR1 Gene

activin A receptor, type I

Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I ( I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. This gene encodes activin A type I receptor which signals a particular transcriptional response in concert with activin type II receptors. Mutations in this gene are associated with fibrodysplasia ossificans progressive. [provided by RefSeq, Jul 2008]

TAS2R50 Gene

taste receptor, type 2, member 50

TAS2R50 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). See also TAS2R10 (MIM 604791).[supplied by OMIM, Mar 2008]

PTPRCAP Gene

protein tyrosine phosphatase, receptor type, C-associated protein

The protein encoded by this gene was identified as a transmembrane phosphoprotein specifically associated with tyrosine phosphatase PTPRC/CD45, a key regulator of T- and B-lymphocyte activation. The interaction with PTPRC may be required for the stable expression of this protein. [provided by RefSeq, Jul 2008]

TAS2R64P Gene

taste receptor, type 2, member 64, pseudogene

EDNRA Gene

endothelin receptor type A

This gene encodes the receptor for endothelin-1, a peptide that plays a role in potent and long-lasting vasoconstriction. This receptor associates with guanine-nucleotide-binding (G) proteins, and this coupling activates a phosphatidylinositol-calcium second messenger system. Polymorphisms in this gene have been linked to migraine headache resistance. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

EDNRB Gene

endothelin receptor type B

The protein encoded by this gene is a G protein-coupled receptor which activates a phosphatidylinositol-calcium second messenger system. Its ligand, endothelin, consists of a family of three potent vasoactive peptides: ET1, ET2, and ET3. Studies suggest that the multigenic disorder, Hirschsprung disease type 2, is due to mutations in the endothelin receptor type B gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2011]

PTPRZ2 Gene

protein tyrosine phosphatase, receptor-type, Z polypeptide 2

PTPRZ1 Gene

protein tyrosine phosphatase, receptor-type, Z polypeptide 1

This gene encodes a member of the receptor protein tyrosine phosphatase family. Expression of this gene is restricted to the central nervous system (CNS), and it may be involved in the regulation of specific developmental processes in the CNS. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, May 2011]

ACVR2A Gene

activin A receptor, type IIA

This gene encodes a receptor that mediates the functions of activins, which are members of the transforming growth factor-beta (TGF-beta) superfamily involved in diverse biological processes. The encoded protein is a transmembrane serine-threonine kinase receptor which mediates signaling by forming heterodimeric complexes with various combinations of type I and type II receptors and ligands in a cell-specific manner. The encoded type II receptor is primarily involved in ligand-binding and includes an extracellular ligand-binding domain, a transmembrane domain and a cytoplasmic serine-threonine kinase domain. This gene may be associated with susceptibility to preeclampsia, a pregnancy-related disease which can result in maternal and fetal morbidity and mortality. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jun 2013]

ACVR2B Gene

activin A receptor, type IIB

Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I (I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. Type II receptors are considered to be constitutively active kinases. This gene encodes activin A type IIB receptor, which displays a 3- to 4-fold higher affinity for the ligand than activin A type II receptor. [provided by RefSeq, Jul 2008]

PTPN3 Gene

protein tyrosine phosphatase, non-receptor type 3

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. P97, a cell cycle regulator involved in a variety of membrane related functions, has been shown to be a substrate of this PTP. This PTP was also found to interact with, and be regulated by adaptor protein 14-3-3 beta. Several alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2009]

LOC100422495 Gene

protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) pseudogene

LOC105379861 Gene

neuropeptide Y receptor type 4

PTPN2P2 Gene

protein tyrosine phosphatase, non-receptor type 2 pseudogene 2

LOC442263 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

CELSR3 Gene

cadherin, EGF LAG seven-pass G-type receptor 3

This gene belongs to the flamingo subfamily, which is included in the cadherin superfamily. The flamingo cadherins consist of nonclassic-type cadherins that do not interact with catenins. They are plasma membrane proteins containing seven epidermal growth factor-like repeats, nine cadherin domains and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic feature of their subfamily. The encoded protein may be involved in the regulation of contact-dependent neurite growth and may play a role in tumor formation. [provided by RefSeq, Jun 2013]

CELSR2 Gene

cadherin, EGF LAG seven-pass G-type receptor 2

The protein encoded by this gene is a member of the flamingo subfamily, part of the cadherin superfamily. The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. It is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. The specific function of this particular member has not been determined. [provided by RefSeq, Jul 2008]

CELSR1 Gene

cadherin, EGF LAG seven-pass G-type receptor 1

The protein encoded by this gene is a member of the flamingo subfamily, part of the cadherin superfamily. The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. It is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. This particular member is a developmentally regulated, neural-specific gene which plays an unspecified role in early embryogenesis. [provided by RefSeq, Jul 2008]

PTPN9 Gene

protein tyrosine phosphatase, non-receptor type 9

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal domain that shares a significant similarity with yeast SEC14, which is a protein that has phosphatidylinositol transfer activity and is required for protein secretion through the Golgi complex in yeast. This PTP was found to be activated by polyphosphoinositide, and is thought to be involved in signaling events regulating phagocytosis. [provided by RefSeq, Jul 2008]

PTPN2 Gene

protein tyrosine phosphatase, non-receptor type 2

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Epidermal growth factor receptor and the adaptor protein Shc were reported to be substrates of this PTP, which suggested the roles in growth factor mediated cell signaling. Multiple alternatively spliced transcript variants encoding different isoforms have been found. Two highly related but distinctly processed pseudogenes that localize to chromosomes 1 and 13, respectively, have been reported. [provided by RefSeq, May 2011]

PTPN1 Gene

protein tyrosine phosphatase, non-receptor type 1

The protein encoded by this gene is the founding member of the protein tyrosine phosphatase (PTP) family, which was isolated and identified based on its enzymatic activity and amino acid sequence. PTPs catalyze the hydrolysis of the phosphate monoesters specifically on tyrosine residues. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP has been shown to act as a negative regulator of insulin signaling by dephosphorylating the phosphotryosine residues of insulin receptor kinase. This PTP was also reported to dephosphorylate epidermal growth factor receptor kinase, as well as JAK2 and TYK2 kinases, which implicated the role of this PTP in cell growth control, and cell response to interferon stimulation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2013]

PTPN7 Gene

protein tyrosine phosphatase, non-receptor type 7

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This gene is preferentially expressed in a variety of hematopoietic cells, and is an early response gene in lymphokine stimulated cells. The non-catalytic N-terminus of this PTP can interact with MAP kinases and suppress the MAP kinase activities. This PTP was shown to be involved in the regulation of T cell antigen receptor (TCR) signaling, which was thought to function through dephosphorylating the molecules related to MAP kinase pathway. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Dec 2010]

PTPN6 Gene

protein tyrosine phosphatase, non-receptor type 6

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. N-terminal part of this PTP contains two tandem Src homolog (SH2) domains, which act as protein phospho-tyrosine binding domains, and mediate the interaction of this PTP with its substrates. This PTP is expressed primarily in hematopoietic cells, and functions as an important regulator of multiple signaling pathways in hematopoietic cells. This PTP has been shown to interact with, and dephosphorylate a wide spectrum of phospho-proteins involved in hematopoietic cell signaling. Multiple alternatively spliced variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jul 2008]

PTPN5 Gene

protein tyrosine phosphatase, non-receptor type 5 (striatum-enriched)

PTPN4 Gene

protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. This PTP has been shown to interact with glutamate receptor delta 2 and epsilon subunits, and is thought to play a role in signalling downstream of the glutamate receptors through tyrosine dephosphorylation. [provided by RefSeq, Jul 2008]

TAS2R43 Gene

taste receptor, type 2, member 43

TAS2R43 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). For further information on TAS2Rs, see MIM 604791.[supplied by OMIM, Mar 2009]

TAS2R42 Gene

taste receptor, type 2, member 42

TAS2R41 Gene

taste receptor, type 2, member 41

TAS2R40 Gene

taste receptor, type 2, member 40

TAS2R46 Gene

taste receptor, type 2, member 46

TAS2R46 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). For further information on TAS2Rs, see MIM 604791.[supplied by OMIM, Sep 2009]

TAS2R45 Gene

taste receptor, type 2, member 45

LOC344593 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

LOC105375807 Gene

ephrin type-B receptor 6-like

LOC100129526 Gene

protein tyrosine phosphatase, receptor type, D pseudogene

TAS2R62P Gene

taste receptor, type 2, member 62, pseudogene

LOC100420580 Gene

taste receptor, type 2, member 7 pseudogene

LOC100420583 Gene

taste receptor, type 2, member 7 pseudogene

TAS2R12P Gene

taste receptor, type 2, member 12, pseudogene

MRC1 Gene

mannose receptor, C type 1

The recognition of complex carbohydrate structures on glycoproteins is an important part of several biological processes, including cell-cell recognition, serum glycoprotein turnover, and neutralization of pathogens. The protein encoded by this gene is a type I membrane receptor that mediates the endocytosis of glycoproteins by macrophages. The protein has been shown to bind high-mannose structures on the surface of potentially pathogenic viruses, bacteria, and fungi so that they can be neutralized by phagocytic engulfment.[provided by RefSeq, Apr 2011]

TAS2R19 Gene

taste receptor, type 2, member 19

TAS2R14 Gene

taste receptor, type 2, member 14

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R16 Gene

taste receptor, type 2, member 16

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily. These family members are specifically expressed by taste receptor cells of the tongue and palate epithelia. Each of these apparently intronless genes encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes in chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R10 Gene

taste receptor, type 2, member 10

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R13 Gene

taste receptor, type 2, member 13

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

ACVRL1 Gene

activin A receptor type II-like 1

This gene encodes a type I cell-surface receptor for the TGF-beta superfamily of ligands. It shares with other type I receptors a high degree of similarity in serine-threonine kinase subdomains, a glycine- and serine-rich region (called the GS domain) preceding the kinase domain, and a short C-terminal tail. The encoded protein, sometimes termed ALK1, shares similar domain structures with other closely related ALK or activin receptor-like kinase proteins that form a subfamily of receptor serine/threonine kinases. Mutations in this gene are associated with hemorrhagic telangiectasia type 2, also known as Rendu-Osler-Weber syndrome 2. [provided by RefSeq, Jul 2008]

LOC102725179 Gene

tyrosine-protein phosphatase non-receptor type 20-like

LOC391771 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

TAS2R8 Gene

taste receptor, type 2, member 8

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R1 Gene

taste receptor, type 2, member 1

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells of the tongue and palate epithelia. This intronless taste receptor gene encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is mapped to chromosome 5p15, the location of a genetic locus (PROP) that controls the detection of the bitter compound 6-n-propyl-2-thiouracil. [provided by RefSeq, Jul 2008]

PTPN2P1 Gene

protein tyrosine phosphatase, non-receptor type 2 pseudogene 1

TAS2R67P Gene

taste receptor, type 2, member 67 pseudogene

LOC105372478 Gene

taste receptor type 1 member 2-like

ACVR1C Gene

activin A receptor, type IC

ACVR1C is a type I receptor for the TGFB (see MIM 190180) family of signaling molecules. Upon ligand binding, type I receptors phosphorylate cytoplasmic SMAD transcription factors, which then translocate to the nucleus and interact directly with DNA or in complex with other transcription factors (Bondestam et al., 2001 [PubMed 12063393]).[supplied by OMIM, Mar 2008]

ACVR1B Gene

activin A receptor, type IB

This gene encodes an activin A type IB receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I and two type II receptors. This protein is a type I receptor which is essential for signaling. Mutations in this gene are associated with pituitary tumors. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Jun 2010]

PPFIA2 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 2

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. It has been proposed that liprins are multivalent proteins that form complex structures and act as scaffolds for the recruitment and anchoring of LAR family of tyrosine phosphatases. This protein has been shown to bind the calcium/calmodulin-dependent serine protein kinase (MAGUK family) protein (also known as CASK) and proposed to regulate higher-order brain functions in mammals. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

PPFIA3 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 3

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. Liprin family protein has been shown to localize phosphatase LAR to cell focal adhesions and may be involved in the molecular organization of presynaptic active zones. [provided by RefSeq, Jul 2008]

PPFIA1 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. This protein binds to the intracellular membrane-distal phosphatase domain of tyrosine phosphatase LAR, and appears to localize LAR to cell focal adhesions. This interaction may regulate the disassembly of focal adhesion and thus help orchestrate cell-matrix interactions. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

TAS2R68P Gene

taste receptor, type 2, member 68 pseudogene

BMPR1APS1 Gene

bone morphogenetic protein receptor, type IA pseudogene 1

BMPR1APS2 Gene

bone morphogenetic protein receptor, type IA pseudogene 2

TAS2R18P Gene

taste receptor, type 2, member 18, pseudogene

AGTR2 Gene

angiotensin II receptor, type 2

The protein encoded by this gene belongs to the G-protein coupled receptor 1 family, and functions as a receptor for angiotensin II. It is an intergral membrane protein that is highly expressed in fetus, but scantily in adult tissues, except brain, adrenal medulla, and atretic ovary. This receptor has been shown to mediate programmed cell death and this apoptotic function may play an important role in developmental biology and pathophysiology. Mutations in this gene are been associated with X-linked mental retardation. [provided by RefSeq, Jan 2010]

AGTR1 Gene

angiotensin II receptor, type 1

Angiotensin II is a potent vasopressor hormone and a primary regulator of aldosterone secretion. It is an important effector controlling blood pressure and volume in the cardiovascular system. It acts through at least two types of receptors. This gene encodes the type 1 receptor which is thought to mediate the major cardiovascular effects of angiotensin II. This gene may play a role in the generation of reperfusion arrhythmias following restoration of blood flow to ischemic or infarcted myocardium. It was previously thought that a related gene, denoted as AGTR1B, existed; however, it is now believed that there is only one type 1 receptor gene in humans. Multiple alternatively spliced transcript variants have been reported for this gene. [provided by RefSeq, Jul 2012]

ADCYAP1R1 Gene

adenylate cyclase activating polypeptide 1 (pituitary) receptor type I

This gene encodes type I adenylate cyclase activating polypeptide receptor, which is a membrane-associated protein and shares significant homology with members of the glucagon/secretin receptor family. This receptor mediates diverse biological actions of adenylate cyclase activating polypeptide 1 and is positively coupled to adenylate cyclase. Multiple alternatively spliced transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Dec 2010]

CH17-360D5.1 Gene

neuropeptide Y receptor type 4-like

NTRK1 Gene

neurotrophic tyrosine kinase, receptor, type 1

This gene encodes a member of the neurotrophic tyrosine kinase receptor (NTKR) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. The presence of this kinase leads to cell differentiation and may play a role in specifying sensory neuron subtypes. Mutations in this gene have been associated with congenital insensitivity to pain, anhidrosis, self-mutilating behavior, mental retardation and cancer. Alternate transcriptional splice variants of this gene have been found, but only three have been characterized to date. [provided by RefSeq, Jul 2008]

NTRK2 Gene

neurotrophic tyrosine kinase, receptor, type 2

This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation. Mutations in this gene have been associated with obesity and mood disorders. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

NTRK3 Gene

neurotrophic tyrosine kinase, receptor, type 3

This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation and may play a role in the development of proprioceptive neurons that sense body position. Mutations in this gene have been associated with medulloblastomas, secretory breast carcinomas and other cancers. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2011]

PTPRVP Gene

protein tyrosine phosphatase, receptor type, V, pseudogene

TAS2R9 Gene

taste receptor, type 2, member 9

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R7 Gene

taste receptor, type 2, member 7

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R4 Gene

taste receptor, type 2, member 4

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells of the tongue and palate epithelia. These apparently intronless genes encode a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes in chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R5 Gene

taste receptor, type 2, member 5

This gene encodes a bitter taste receptor; bitter taste receptors are members of the G protein-coupled receptor superfamily and are specifically expressed by taste receptor cells of the tongue and palate epithelia. Each of these apparently intronless taste receptor genes encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes on chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R3 Gene

taste receptor, type 2, member 3

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells of the tongue and palate epithelia. These apparently intronless taste receptor genes encode a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes in chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R36 Gene

taste receptor, type 2, member 36

TAS2R37 Gene

taste receptor, type 2, member 37

TAS2R33 Gene

taste receptor, type 2, member 33

TAS2R30 Gene

taste receptor, type 2, member 30

TAS2R31 Gene

taste receptor, type 2, member 31

TAS2R44 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). For further information on TAS2Rs, see MIM 604791.[supplied by OMIM, Mar 2009]

TAS2R38 Gene

taste receptor, type 2, member 38

This gene encodes a seven-transmembrane G protein-coupled receptor that controls the ability to taste glucosinolates, a family of bitter-tasting compounds found in plants of the Brassica sp. Synthetic compounds phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) have been identified as ligands for this receptor and have been used to test the genetic diversity of this gene. Although several allelic forms of this gene have been identified worldwide, there are two predominant common forms (taster and non-taster) found outside of Africa. These alleles differ at three nucleotide positions resulting in amino acid changes in the protein (A49P, A262V, and V296I) with the amino acid combination PAV identifying the taster variant (and AVI identifying the non-taster variant). [provided by RefSeq, Oct 2009]

TAS2R39 Gene

taste receptor, type 2, member 39

PTPRR Gene

protein tyrosine phosphatase, receptor type, R

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single intracellular catalytic domain, and thus represents a receptor-type PTP. Silencing of this gene has been associated with colorectal cancer. Multiple transcript variants encoding different isoforms have been found for this gene. This gene shares a symbol (PTPRQ) with another gene, protein tyrosine phosphatase, receptor type, Q (GeneID 374462), which is also located on chromosome 12. [provided by RefSeq, May 2011]

PTPRU Gene

protein tyrosine phosphatase, receptor type, U

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracellular catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP (MAM) domain, Ig-like and fibronectin type III-like repeats. This PTP was thought to play roles in cell-cell recognition and adhesion. Studies of the similar gene in mice suggested the role of this PTP in early neural development. The expression of this gene was reported to be regulated by phorbol myristate acetate (PMA) or calcium ionophore in Jurkat T lymphoma cells. Alternatively spliced transcript variants have been reported. [provided by RefSeq, Aug 2010]

PTPRT Gene

protein tyrosine phosphatase, receptor type, T

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracellular catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP (MAM) domain, Ig-like and fibronectin type III-like repeats. The protein domain structure and the expression pattern of the mouse counterpart of this PTP suggest its roles in both signal transduction and cellular adhesion in the central nervous system. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRS Gene

protein tyrosine phosphatase, receptor type, S

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular region, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this protein is composed of multiple Ig-like and fibronectin type III-like domains. Studies of the similar gene in mice suggested that this PTP may be involved in cell-cell interaction, primary axonogenesis, and axon guidance during embryogenesis. This PTP has been also implicated in the molecular control of adult nerve repair. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRQ Gene

protein tyrosine phosphatase, receptor type, Q

This locus encodes a member of the type III receptor-like protein-tyrosine phosphatase family. The encoded protein catalyzes the dephosphorylation of phosphotyrosine and phosphatidylinositol and plays roles in cellular proliferation and differentiation. Mutations at this locus have been linked to autosomal recessive deafness. [provided by RefSeq, Mar 2014]

PTPRG Gene

protein tyrosine phosphatase, receptor type, G

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this PTP contains a carbonic anhydrase-like (CAH) domain, which is also found in the extracellular region of PTPRBETA/ZETA. This gene is located in a chromosomal region that is frequently deleted in renal cell carcinoma and lung carcinoma, thus is thought to be a candidate tumor suppressor gene. [provided by RefSeq, Jul 2008]

PTPRF Gene

protein tyrosine phosphatase, receptor type, F

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains three Ig-like domains, and nine non-Ig like domains similar to that of neural-cell adhesion molecule. This PTP was shown to function in the regulation of epithelial cell-cell contacts at adherents junctions, as well as in the control of beta-catenin signaling. An increased expression level of this protein was found in the insulin-responsive tissue of obese, insulin-resistant individuals, and may contribute to the pathogenesis of insulin resistance. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRE Gene

protein tyrosine phosphatase, receptor type, E

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Two alternatively spliced transcript variants of this gene have been reported, one of which encodes a receptor-type PTP that possesses a short extracellular domain, a single transmembrane region, and two tandem intracytoplasmic catalytic domains; Another one encodes a PTP that contains a distinct hydrophilic N-terminus, and thus represents a nonreceptor-type isoform of this PTP. Studies of the similar gene in mice suggested the regulatory roles of this PTP in RAS related signal transduction pathways, cytokines induced SATA signaling, as well as the activation of voltage-gated K+ channels. [provided by RefSeq, Jul 2008]

PTPRD Gene

protein tyrosine phosphatase, receptor type, D

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular region, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this protein is composed of three Ig-like and eight fibronectin type III-like domains. Studies of the similar genes in chicken and fly suggest the role of this PTP is in promoting neurite growth, and regulating neurons axon guidance. Multiple alternatively spliced transcript variants of this gene have been reported. A related pseudogene has been identified on chromosome 5. [provided by RefSeq, Jan 2010]

PTPRC Gene

protein tyrosine phosphatase, receptor type, C

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitosis, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus is classified as a receptor type PTP. This PTP has been shown to be an essential regulator of T- and B-cell antigen receptor signaling. It functions through either direct interaction with components of the antigen receptor complexes, or by activating various Src family kinases required for the antigen receptor signaling. This PTP also suppresses JAK kinases, and thus functions as a regulator of cytokine receptor signaling. Alternatively spliced transcripts variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jun 2012]

PTPRB Gene

protein tyrosine phosphatase, receptor type, B

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and one intracytoplasmic catalytic domain, thus belongs to receptor type PTP. The extracellular region of this PTP is composed of multiple fibronectin type_III repeats, which was shown to interact with neuronal receptor and cell adhesion molecules, such as contactin and tenascin C. This protein was also found to interact with sodium channels, and thus may regulate sodium channels by altering tyrosine phosphorylation status. The functions of the interaction partners of this protein implicate the roles of this PTP in cell adhesion, neurite growth, and neuronal differentiation. Alternate transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2011]

PTPRA Gene

protein tyrosine phosphatase, receptor type, A

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. This PTP has been shown to dephosphorylate and activate Src family tyrosine kinases, and is implicated in the regulation of integrin signaling, cell adhesion and proliferation. Three alternatively spliced variants of this gene, which encode two distinct isoforms, have been reported. [provided by RefSeq, Jul 2008]

PTPRO Gene

protein tyrosine phosphatase, receptor type, O

This gene encodes a member of the R3 subtype family of receptor-type protein tyrosine phosphatases. These proteins are localized to the apical surface of polarized cells and may have tissue-specific functions through activation of Src family kinases. This gene contains two distinct promoters, and alternatively spliced transcript variants encoding multiple isoforms have been observed. The encoded proteins may have multiple isoform-specific and tissue-specific functions, including the regulation of osteoclast production and activity, inhibition of cell proliferation and facilitation of apoptosis. This gene is a candidate tumor suppressor, and decreased expression of this gene has been observed in several types of cancer. [provided by RefSeq, May 2011]

PTPRN Gene

protein tyrosine phosphatase, receptor type, N

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single catalytic domain, and thus represents a receptor-type PTP. This PTP was found to be an autoantigen that is reactive with insulin-dependent diabetes mellitus (IDDM) patient sera, and thus may be a potential target of autoimmunity in diabetes mellitus. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Dec 2010]

PTPRM Gene

protein tyrosine phosphatase, receptor type, M

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP mu (MAM) domain, an Ig-like domain and four fibronectin type III-like repeats. This PTP has been shown to mediate cell-cell aggregation through the interaction with another molecule of this PTP on an adjacent cell. This PTP can interact with scaffolding protein RACK1/GNB2L1, which may be necessary for the downstream signaling in response to cell-cell adhesion. Alternative splicing results in multiple transcripts encoding distinct isoforms. [provided by RefSeq, Jul 2008]

PTPRK Gene

protein tyrosine phosphatase, receptor type, K

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP mu (MAM) domain, an Ig-like domain and four fibronectin type III-like repeats. This PTP was shown to mediate homophilic intercellular interaction, possibly through the interaction with beta- and gamma-catenin at adherens junctions. Expression of this gene was found to be stimulated by TGF-beta 1, which may be important for the inhibition of keratinocyte proliferation. [provided by RefSeq, Jul 2008]

PTPRJ Gene

protein tyrosine phosphatase, receptor type, J

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region containing five fibronectin type III repeats, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. This protein is present in all hematopoietic lineages, and was shown to negatively regulate T cell receptor signaling possibly through interfering with the phosphorylation of Phospholipase C Gamma 1 and Linker for Activation of T Cells. This protein can also dephosphorylate the PDGF beta receptor, and may be involved in UV-induced signal transduction. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PTPRH Gene

protein tyrosine phosphatase, receptor type, H

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. The extracellular region contains eight fibronectin type III-like repeats and multiple N-glycosylation sites. The gene was shown to be expressed primarily in brain and liver, and at a lower level in heart and stomach. It was also found to be expressed in several cancer cell lines, but not in the corresponding normal tissues. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2009]

AMHR2 Gene

anti-Mullerian hormone receptor, type II

This gene encodes the receptor for the anti-Mullerian hormone (AMH) which, in addition to testosterone, results in male sex differentiation. AMH and testosterone are produced in the testes by different cells and have different effects. Testosterone promotes the development of male genitalia while the binding of AMH to the encoded receptor prevents the development of the mullerian ducts into uterus and Fallopian tubes. Mutations in this gene are associated with persistent Mullerian duct syndrome type II. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Sep 2009]

TAS2R15P Gene

taste receptor, type 2, member 15, pseudogene

PTPRN2 Gene

protein tyrosine phosphatase, receptor type, N polypeptide 2

This gene encodes a protein with sequence similarity to receptor-like protein tyrosine phosphatases. However, tyrosine phosphatase activity has not been experimentally validated for this protein. Studies of the rat ortholog suggest that the encoded protein may instead function as a phosphatidylinositol phosphatase with the ability to dephosphorylate phosphatidylinositol 3-phosphate and phosphatidylinositol 4,5-diphosphate, and this function may be involved in the regulation of insulin secretion. This protein has been identified as an autoantigen in insulin-dependent diabetes mellitus. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

TAS2R2P Gene

taste receptor, type 2, member 2, pseudogene

PTPN20CP Gene

protein tyrosine phosphatase, non-receptor type 20C, pseudogene

IL1R2 Gene

interleukin 1 receptor, type II

The protein encoded by this gene is a cytokine receptor that belongs to the interleukin 1 receptor family. This protein binds interleukin alpha (IL1A), interleukin beta (IL1B), and interleukin 1 receptor, type I(IL1R1/IL1RA), and acts as a decoy receptor that inhibits the activity of its ligands. Interleukin 4 (IL4) is reported to antagonize the activity of interleukin 1 by inducing the expression and release of this cytokine. This gene and three other genes form a cytokine receptor gene cluster on chromosome 2q12. Alternative splicing results in multiple transcript variants and protein isoforms. Alternative splicing produces both membrane-bound and soluble proteins. A soluble protein is also produced by proteolytic cleavage. [provided by RefSeq, May 2012]

IL1R1 Gene

interleukin 1 receptor, type I

This gene encodes a cytokine receptor that belongs to the interleukin-1 receptor family. The encoded protein is a receptor for interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist. It is an important mediator involved in many cytokine-induced immune and inflammatory responses. This gene is located in a cluster of related cytokine receptor genes on chromosome 2q12. [provided by RefSeq, Dec 2013]

ITPR2 Gene

inositol 1,4,5-trisphosphate receptor, type 2

The protein encoded by this gene belongs to the inositol 1,4,5-triphosphate receptor family, whose members are second messenger intracellular calcium release channels. These proteins mediate a rise in cytoplasmic calcium in response to receptor activated production of inositol triphosphate. Inositol triphosphate receptor-mediated signaling is involved in many processes including cell migration, cell division, smooth muscle contraction, and neuronal signaling. This protein is a type 2 receptor that consists of a cytoplasmic amino-terminus that binds inositol triphosphate, six membrane-spanning helices that contribute to the ion pore, and a short cytoplasmic carboxy-terminus. A mutation in this gene has been associated with anhidrosis, suggesting that intracellular calcium release mediated by this protein is required for eccrine sweat production. [provided by RefSeq, Apr 2015]

ITPR3 Gene

inositol 1,4,5-trisphosphate receptor, type 3

This gene encodes a receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. The receptor contains a calcium channel at the C-terminus and the ligand-binding site at the N-terminus. Knockout studies in mice suggest that type 2 and type 3 inositol 1,4,5-trisphosphate receptors play a key role in exocrine secretion underlying energy metabolism and growth. [provided by RefSeq, Aug 2010]

ITPR1 Gene

inositol 1,4,5-trisphosphate receptor, type 1

This gene encodes an intracellular receptor for inositol 1,4,5-trisphosphate. Upon stimulation by inositol 1,4,5-trisphosphate, this receptor mediates calcium release from the endoplasmic reticulum. Mutations in this gene cause spinocerebellar ataxia type 15, a disease associated with an heterogeneous group of cerebellar disorders. Multiple transcript variants have been identified for this gene. [provided by RefSeq, Nov 2009]

TAS1R1 Gene

taste receptor, type 1, member 1

The protein encoded by this gene is a G protein-coupled receptor and is a component of the heterodimeric amino acid taste receptor T1R1+3. The T1R1+3 receptor responds to L-amino acids but not to D-enantiomers or other compounds. Most amino acids that are perceived as sweet activate T1R1+3, and this activation is strictly dependent on an intact T1R1+3 heterodimer. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2010]

TAS1R3 Gene

taste receptor, type 1, member 3

The TAS1R3 gene encodes the human homolog of mouse Sac, a major determinant of differences between sweet-sensitive and -insensitive mouse strains in their responsiveness to sucrose, saccharine, and other sweeteners (Max et al., 2001 [PubMed 11326277]).[supplied by OMIM, Jan 2010]

TAS1R2 Gene

taste receptor, type 1, member 2

BMPR2 Gene

bone morphogenetic protein receptor, type II (serine/threonine kinase)

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of two different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension, both familial and fenfluramine-associated, and with pulmonary venoocclusive disease. [provided by RefSeq, Jul 2008]

MRC2 Gene

mannose receptor, C type 2

This gene encodes a member of the mannose receptor family of proteins that contain a fibronectin type II domain and multiple C-type lectin-like domains. The encoded protein plays a role in extracellular matrix remodeling by mediating the internalization and lysosomal degradation of collagen ligands. Expression of this gene may play a role in the tumorigenesis and metastasis of several malignancies including breast cancer, gliomas and metastatic bone disease. [provided by RefSeq, Feb 2012]

PILRA Gene

paired immunoglobin-like type 2 receptor alpha

Cell signaling pathways rely on a dynamic interaction between activating and inhibiting processes. SHP-1-mediated dephosphorylation of protein tyrosine residues is central to the regulation of several cell signaling pathways. Two types of inhibitory receptor superfamily members are immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors and their non-ITIM-bearing, activating counterparts. Control of cell signaling via SHP-1 is thought to occur through a balance between PILRalpha-mediated inhibition and PILRbeta-mediated activation. These paired immunoglobulin-like receptor genes are located in a tandem head-to-tail orientation on chromosome 7. This particular gene encodes the ITIM-bearing member of the receptor pair, which functions in the inhibitory role. Alternative splicing has been observed at this locus and three variants, each encoding a distinct isoform, are described. [provided by RefSeq, Jul 2008]

LOC100421822 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

GNRHR2 Gene

gonadotropin-releasing hormone (type 2) receptor 2, pseudogene

In non-hominoid primates and non-mammalian vertebrates, the gonadotropin releasing hormone 2 receptor gene (GnRHR2) encodes a seven-transmembrane G-protein coupled receptor. However, in human, the corresponding reading frame contains a premature stop codon, which has been suggested to encode a selenocysteine residue, but there is no solid evidence for selenocysteine incorporation (PMID: 12538601). It appears that the human GnRHR2 transcription occurs but the gene does not likely produce a functional multi-transmembrane protein. A non-transcribed pseudogene of GnRHR2 is located on chromosome 14. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2013]

TAS2R6P Gene

taste receptor, type 2, member 6, pseudogene

TAS2R60 Gene

taste receptor, type 2, member 60

BMPR1A Gene

bone morphogenetic protein receptor, type IA

The bone morphogenetic protein (BMP) receptors are a family of transmembrane serine/threonine kinases that include the type I receptors BMPR1A and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF-betas and activins transduce their signals through the formation of heteromeric complexes with 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. [provided by RefSeq, Jul 2008]

BMPR1B Gene

bone morphogenetic protein receptor, type IB

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension. Several transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

F12 Gene

coagulation factor XII (Hageman factor)

This gene encodes coagulation factor XII which circulates in blood as a zymogen. This single chain zymogen is converted to a two-chain serine protease with an heavy chain (alpha-factor XIIa) and a light chain. The heavy chain contains two fibronectin-type domains, two epidermal growth factor (EGF)-like domains, a kringle domain and a proline-rich domain, whereas the light chain contains only a catalytic domain. On activation, further cleavages takes place in the heavy chain, resulting in the production of beta-factor XIIa light chain and the alpha-factor XIIa light chain becomes beta-factor XIIa heavy chain. Prekallikrein is cleaved by factor XII to form kallikrein, which then cleaves factor XII first to alpha-factor XIIa and then to beta-factor XIIa. The active factor XIIa participates in the initiation of blood coagulation, fibrinolysis, and the generation of bradykinin and angiotensin. It activates coagulation factors VII and XI. Defects in this gene do not cause any clinical symptoms and the sole effect is that whole-blood clotting time is prolonged. [provided by RefSeq, Jul 2008]

HIF1AP1 Gene

hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) pseudogene 1

ARFGEF1 Gene

ADP-ribosylation factor guanine nucleotide-exchange factor 1 (brefeldin A-inhibited)

ADP-ribosylation factors (ARFs) play an important role in intracellular vesicular trafficking. The protein encoded by this gene is involved in the activation of ARFs by accelerating replacement of bound GDP with GTP. It contains a Sec7 domain, which may be responsible for guanine-nucleotide exchange activity and also brefeldin A inhibition. [provided by RefSeq, Aug 2011]

ARFGEF2 Gene

ADP-ribosylation factor guanine nucleotide-exchange factor 2 (brefeldin A-inhibited)

ADP-ribosylation factors (ARFs) play an important role in intracellular vesicular trafficking. The protein encoded by this gene is involved in the activation of ARFs by accelerating replacement of bound GDP with GTP and is involved in Golgi transport. It contains a Sec7 domain, which may be responsible for its guanine-nucleotide exchange activity and also brefeldin A inhibition. [provided by RefSeq, Jul 2008]

EIF4ENIF1 Gene

eukaryotic translation initiation factor 4E nuclear import factor 1

The protein encoded by this gene is a nucleocytoplasmic shuttle protein for the translation initiation factor eIF4E. This shuttle protein interacts with the importin alpha-beta complex to mediate nuclear import of eIF4E. It is predominantly cytoplasmic; its own nuclear import is regulated by a nuclear localization signal and nuclear export signals. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2009]

TAF5L Gene

TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa

The product of this gene belongs to the WD-repeat TAF5 family of proteins. This gene encodes a protein that is a component of the PCAF histone acetylase complex. The PCAF histone acetylase complex, which is composed of more than 20 polypeptides some of which are TAFs, is required for myogenic transcription and differentiation. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors to facilitate complex assembly and transcription initiation. The encoded protein is structurally similar to one of the histone-like TAFs, TAF5. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

LOC100422267 Gene

coagulation factor III (thromboplastin, tissue factor) pseudogene

NXT2 Gene

nuclear transport factor 2-like export factor 2

The protein encoded by this gene contains a nuclear transport factor 2 (NTF2) domain, which plays an important role in the trafficking of macromolecules, ions, and small molecules between the cytoplasm and nucleus. This protein may also have a role in mRNA nuclear export. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jun 2011]

NXT1 Gene

nuclear transport factor 2-like export factor 1

The protein encoded by this gene is located in the nuclear envelope. It has protein similarity to nuclear transport factor 2. This protein functions as a nuclear export factor in both RAN (Ras-related nuclear protein)- and CRM1 (required for chromosome region maintenance)-dependent pathways. It is found to stimulate the export of U1 snRNA in RAN- and CRM1-dependent pathways and the export of tRNA and mRNA in a CRM1-independent pathway. The encoded protein heterodimerizes with Tap protein and may regulate the ability of Tap protein to mediate nuclear mRNA export. The use of alternate polyadenylation sites has been found for this gene. [provided by RefSeq, Jul 2008]

HIF1A Gene

hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)

This gene encodes the alpha subunit of transcription factor hypoxia-inducible factor-1 (HIF-1), which is a heterodimer composed of an alpha and a beta subunit. HIF-1 functions as a master regulator of cellular and systemic homeostatic response to hypoxia by activating transcription of many genes, including those involved in energy metabolism, angiogenesis, apoptosis, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. HIF-1 thus plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2011]

ELF1 Gene

E74-like factor 1 (ets domain transcription factor)

This gene encodes an E26 transformation-specific related transcription factor. The encoded protein is primarily expressed in lymphoid cells and acts as both an enhancer and a repressor to regulate transcription of various genes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2009]

ELF3 Gene

E74-like factor 3 (ets domain transcription factor, epithelial-specific )

ELF2 Gene

E74-like factor 2 (ets domain transcription factor)

ELF5 Gene

E74-like factor 5 (ets domain transcription factor)

The protein encoded by this gene is a member of an epithelium-specific subclass of the Ets transcritpion factor family. In addition to its role in regulating the later stages of terminal differentiation of keratinocytes, it appears to regulate a number of epithelium-specific genes found in tissues containing glandular epithelium such as salivary gland and prostate. It has very low affinity to DNA due to its negative regulatory domain at the amino terminus. Several alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2011]

ELF4 Gene

E74-like factor 4 (ets domain transcription factor)

The protein encoded by this gene is a transcriptional activator that binds and activates the promoters of the CSF2, IL3, IL8, and PRF1 genes. The encoded protein is involved in natural killer cell development and function, innate immunity, and induction of cell cycle arrest in naive CD8+ cells. Two transcript variants encoding the same protein have been found for this gene.[provided by RefSeq, Jan 2010]

SRF Gene

serum response factor (c-fos serum response element-binding transcription factor)

This gene encodes a ubiquitous nuclear protein that stimulates both cell proliferation and differentiation. It is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors. This protein binds to the serum response element (SRE) in the promoter region of target genes. This protein regulates the activity of many immediate-early genes, for example c-fos, and thereby participates in cell cycle regulation, apoptosis, cell growth, and cell differentiation. This gene is the downstream target of many pathways; for example, the mitogen-activated protein kinase pathway (MAPK) that acts through the ternary complex factors (TCFs). Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

LOC101929989 Gene

lipopolysaccharide-induced tumor necrosis factor-alpha factor-like

TAF6L Gene

TAF6-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes a protein that is a component of the PCAF histone acetylase complex and structurally similar to one of the histone-like TAFs, TAF6. The PCAF histone acetylase complex, which is composed of more than 20 polypeptides some of which are TAFs, is required for myogenic transcription and differentiation. [provided by RefSeq, Jul 2008]

MIF Gene

macrophage migration inhibitory factor (glycosylation-inhibiting factor)

This gene encodes a lymphokine involved in cell-mediated immunity, immunoregulation, and inflammation. It plays a role in the regulation of macrophage function in host defense through the suppression of anti-inflammatory effects of glucocorticoids. This lymphokine and the JAB1 protein form a complex in the cytosol near the peripheral plasma membrane, which may indicate an additional role in integrin signaling pathways. [provided by RefSeq, Jul 2008]

TAF5LP1 Gene

TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa pseudogene 1

F3 Gene

coagulation factor III (thromboplastin, tissue factor)

This gene encodes coagulation factor III which is a cell surface glycoprotein. This factor enables cells to initiate the blood coagulation cascades, and it functions as the high-affinity receptor for the coagulation factor VII. The resulting complex provides a catalytic event that is responsible for initiation of the coagulation protease cascades by specific limited proteolysis. Unlike the other cofactors of these protease cascades, which circulate as nonfunctional precursors, this factor is a potent initiator that is fully functional when expressed on cell surfaces. There are 3 distinct domains of this factor: extracellular, transmembrane, and cytoplasmic. This protein is the only one in the coagulation pathway for which a congenital deficiency has not been described. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2010]

F5 Gene

coagulation factor V (proaccelerin, labile factor)

This gene encodes an essential cofactor of the blood coagulation cascade. This factor circulates in plasma, and is converted to the active form by the release of the activation peptide by thrombin during coagulation. This generates a heavy chain and a light chain which are held together by calcium ions. The activated protein is a cofactor that participates with activated coagulation factor X to activate prothrombin to thrombin. Defects in this gene result in either an autosomal recessive hemorrhagic diathesis or an autosomal dominant form of thrombophilia, which is known as activated protein C resistance. [provided by RefSeq, Oct 2008]

NFIC Gene

nuclear factor I/C (CCAAT-binding transcription factor)

The protein encoded by this gene belongs to the CTF/NF-I family. These are dimeric DNA-binding proteins, and function as cellular transcription factors and as replication factors for adenovirus DNA replication. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Oct 2011]

NFIX Gene

nuclear factor I/X (CCAAT-binding transcription factor)

The protein encoded by this gene is a transcription factor that binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3 in viral and cellular promoters. The encoded protein can also stimulate adenovirus replication in vitro. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2012]

LRIF1 Gene

ligand dependent nuclear receptor interacting factor 1

NRBF2P5 Gene

nuclear receptor binding factor 2 pseudogene 5

CSF1R Gene

colony stimulating factor 1 receptor

The protein encoded by this gene is the receptor for colony stimulating factor 1, a cytokine which controls the production, differentiation, and function of macrophages. This receptor mediates most if not all of the biological effects of this cytokine. Ligand binding activates the receptor kinase through a process of oligomerization and transphosphorylation. The encoded protein is a tyrosine kinase transmembrane receptor and member of the CSF1/PDGF receptor family of tyrosine-protein kinases. Mutations in this gene have been associated with a predisposition to myeloid malignancy. The first intron of this gene contains a transcriptionally inactive ribosomal protein L7 processed pseudogene oriented in the opposite direction. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

TNFRSF12A Gene

tumor necrosis factor receptor superfamily, member 12A

LOC286059 Gene

tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain pseudogene

RELT Gene

RELT tumor necrosis factor receptor

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is especially abundant in hematologic tissues. It has been shown to activate the NF-kappaB pathway and selectively bind TNF receptor-associated factor 1 (TRAF1). This receptor is capable of stimulating T-cell proliferation in the presence of CD3 signaling, which suggests its regulatory role in immune response. Two alternatively spliced transcript variants of this gene encoding the same protein have been reported. [provided by RefSeq, Jul 2008]

LOC100420513 Gene

TNF receptor-associated factor 4 pseudogene

TNFRSF10A Gene

tumor necrosis factor receptor superfamily, member 10a

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL), and thus transduces cell death signal and induces cell apoptosis. Studies with FADD-deficient mice suggested that FADD, a death domain containing adaptor protein, is required for the apoptosis mediated by this protein. [provided by RefSeq, Jul 2008]

TNFRSF21 Gene

tumor necrosis factor receptor superfamily, member 21

This gene encodes a member of the tumor necrosis factor receptor superfamily. The encoded protein activates nuclear factor kappa-B and mitogen-activated protein kinase 8 (also called c-Jun N-terminal kinase 1), and induces cell apoptosis. Through its death domain, the encoded receptor interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD) protein, which is known to mediate signal transduction of tumor necrosis factor receptors. Knockout studies in mice suggest that this gene plays a role in T-helper cell activation, and may be involved in inflammation and immune regulation. [provided by RefSeq, Jul 2013]

TNFRSF25 Gene

tumor necrosis factor receptor superfamily, member 25

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is expressed preferentially in the tissues enriched in lymphocytes, and it may play a role in regulating lymphocyte homeostasis. This receptor has been shown to stimulate NF-kappa B activity and regulate cell apoptosis. The signal transduction of this receptor is mediated by various death domain containing adaptor proteins. Knockout studies in mice suggested the role of this gene in the removal of self-reactive T cells in the thymus. Multiple alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported, most of which are potentially secreted molecules. The alternative splicing of this gene in B and T cells encounters a programmed change upon T-cell activation, which predominantly produces full-length, membrane bound isoforms, and is thought to be involved in controlling lymphocyte proliferation induced by T-cell activation. [provided by RefSeq, Jul 2008]

F2RL3 Gene

coagulation factor II (thrombin) receptor-like 3

Coagulation factor II (thrombin) receptor-like 3 (F2RL3) is a member of the large family of 7-transmembrane-region receptors that couple to guanosine-nucleotide-binding proteins. F2RL3 is also a member of the protease-activated receptor family. F2RL3 is activated by proteolytic cleavage of its extracellular amino terminus. The new amino terminus functions as a tethered ligand and activates the receptor. F2RL3 is activated by thrombin and trypsin. [provided by RefSeq, Jul 2008]

F2RL2 Gene

coagulation factor II (thrombin) receptor-like 2

This gene encodes a member of the protease-activated receptor (PAR) family which is a subfamily of the seven transmembrane G protein-coupled cell surface receptor family. The encoded protein acts as a cofactor in the thrombin-mediated cleavage and activation of the protease-activated receptor family member PAR4. The encoded protein plays an essential role in hemostasis and thrombosis. Alternate splicing results in multiple transcript variants that encode different isoforms. [provided by RefSeq, Feb 2012]

F2RL1 Gene

coagulation factor II (thrombin) receptor-like 1

Coagulation factor II (thrombin) receptor-like 1 (F2RL1) is a member of the large family of 7-transmembrane-region receptors that couple to guanosine-nucleotide-binding proteins. F2RL1 is also a member of the protease-activated receptor family. It is activated by trypsin, but not by thrombin. It is activated by proteolytic cleavage of its extracellular amino terminus. The new amino terminus functions as a tethered ligand and activates the receptor. The F2RL1 gene contains two exons and is widely expressed in human tissues. The predicted protein sequence is 83% identical to the mouse receptor sequence. [provided by RefSeq, Jul 2008]

LOC222344 Gene

TNF receptor-associated factor 6

CSF2RA Gene

colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage)

The protein encoded by this gene is the alpha subunit of the heterodimeric receptor for colony stimulating factor 2, a cytokine which controls the production, differentiation, and function of granulocytes and macrophages. The encoded protein is a member of the cytokine family of receptors. This gene is found in the pseudoautosomal region (PAR) of the X and Y chromosomes. Multiple transcript variants encoding different isoforms have been found for this gene, with some of the isoforms being membrane-bound and others being soluble. [provided by RefSeq, Jul 2008]

NRBF2P4 Gene

nuclear receptor binding factor 2 pseudogene 4

F2R Gene

coagulation factor II (thrombin) receptor

Coagulation factor II receptor is a 7-transmembrane receptor involved in the regulation of thrombotic response. Proteolytic cleavage leads to the activation of the receptor. F2R is a G-protein coupled receptor family member. [provided by RefSeq, Jul 2008]

AMFR Gene

autocrine motility factor receptor, E3 ubiquitin protein ligase

This locus encodes a glycosylated transmembrane receptor. Its ligand, autocrine motility factor, is a tumor motility-stimulating protein secreted by tumor cells. The encoded receptor is also a member of the E3 ubiquitin ligase family of proteins. It catalyzes ubiquitination and endoplasmic reticulum-associated degradation of specific proteins. [provided by RefSeq, Feb 2012]

CSF3R Gene

colony stimulating factor 3 receptor (granulocyte)

The protein encoded by this gene is the receptor for colony stimulating factor 3, a cytokine that controls the production, differentiation, and function of granulocytes. The encoded protein, which is a member of the family of cytokine receptors, may also function in some cell surface adhesion or recognition processes. Alternatively spliced transcript variants have been described. Mutations in this gene are a cause of Kostmann syndrome, also known as severe congenital neutropenia. [provided by RefSeq, Aug 2010]

TNFRSF10C Gene

tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contains an extracellular TRAIL-binding domain and a transmembrane domain, but no cytoplasmic death domain. This receptor is not capable of inducing apoptosis, and is thought to function as an antagonistic receptor that protects cells from TRAIL-induced apoptosis. This gene was found to be a p53-regulated DNA damage-inducible gene. The expression of this gene was detected in many normal tissues but not in most cancer cell lines, which may explain the specific sensitivity of cancer cells to the apoptosis-inducing activity of TRAIL. [provided by RefSeq, Jul 2008]

TNFRSF10B Gene

tumor necrosis factor receptor superfamily, member 10b

The protein encoded by this gene is a member of the TNF-receptor superfamily, and contains an intracellular death domain. This receptor can be activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL/APO-2L), and transduces an apoptosis signal. Studies with FADD-deficient mice suggested that FADD, a death domain containing adaptor protein, is required for the apoptosis mediated by this protein. Two transcript variants encoding different isoforms and one non-coding transcript have been found for this gene. [provided by RefSeq, Mar 2009]

TNFRSF10D Gene

tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contains an extracellular TRAIL-binding domain, a transmembrane domain, and a truncated cytoplamic death domain. This receptor does not induce apoptosis, and has been shown to play an inhibitory role in TRAIL-induced cell apoptosis. [provided by RefSeq, Jul 2008]

TRAF3IP1 Gene

TNF receptor-associated factor 3 interacting protein 1

TRAF1 Gene

TNF receptor-associated factor 1

The protein encoded by this gene is a member of the TNF receptor (TNFR) associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from various receptors of the TNFR superfamily. This protein and TRAF2 form a heterodimeric complex, which is required for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB. The protein complex formed by this protein and TRAF2 also interacts with inhibitor-of-apoptosis proteins (IAPs), and thus mediates the anti-apoptotic signals from TNF receptors. The expression of this protein can be induced by Epstein-Barr virus (EBV). EBV infection membrane protein 1 (LMP1) is found to interact with this and other TRAF proteins; this interaction is thought to link LMP1-mediated B lymphocyte transformation to the signal transduction from TNFR family receptors. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

TRAF2 Gene

TNF receptor-associated factor 2

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from members of the TNF receptor superfamily. This protein directly interacts with TNF receptors, and forms a heterodimeric complex with TRAF1. This protein is required for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB. The protein complex formed by this protein and TRAF1 interacts with the inhibitor-of-apoptosis proteins (IAPs), and functions as a mediator of the anti-apoptotic signals from TNF receptors. The interaction of this protein with TRADD, a TNF receptor associated apoptotic signal transducer, ensures the recruitment of IAPs for the direct inhibition of caspase activation. BIRC2/c-IAP1, an apoptosis inhibitor possessing ubiquitin ligase activity, can unbiquitinate and induce the degradation of this protein, and thus potentiate TNF-induced apoptosis. Multiple alternatively spliced transcript variants have been found for this gene, but the biological validity of only one transcript has been determined. [provided by RefSeq, Jul 2008]

TRAF3 Gene

TNF receptor-associated factor 3

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from, members of the TNF receptor (TNFR) superfamily. This protein participates in the signal transduction of CD40, a TNFR family member important for the activation of the immune response. This protein is found to be a critical component of the lymphotoxin-beta receptor (LTbetaR) signaling complex, which induces NF-kappaB activation and cell death initiated by LTbeta ligation. Epstein-Barr virus encoded latent infection membrane protein-1 (LMP1) can interact with this and several other members of the TRAF family, which may be essential for the oncogenic effects of LMP1. Several alternatively spliced transcript variants encoding three distinct isoforms have been reported. [provided by RefSeq, Dec 2010]

TRAF4 Gene

TNF receptor-associated factor 4

This gene encodes a member of the TNF receptor associated factor (TRAF) family. TRAF proteins are associated with, and mediate signal transduction from members of the TNF receptor superfamily. The encoded protein has been shown to interact with neurotrophin receptor, p75 (NTR/NTSR1), and negatively regulate NTR induced cell death and NF-kappa B activation. This protein has been found to bind to p47phox, a cytosolic regulatory factor included in a multi-protein complex known as NAD(P)H oxidase. This protein thus, is thought to be involved in the oxidative activation of MAPK8/JNK. Alternatively spliced transcript variants have been observed but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]

TRAF5 Gene

TNF receptor-associated factor 5

The scaffold protein encoded by this gene is a member of the tumor necrosis factor receptor-associated factor (TRAF) protein family and contains a meprin and TRAF homology (MATH) domain, a RING-type zinc finger, and two TRAF-type zinc fingers. TRAF proteins are associated with, and mediate signal transduction from members of the TNF receptor superfamily. This protein is one of the components of a multiple protein complex which binds to tumor necrosis factor (TNF) receptor cytoplasmic domains and mediates TNF-induced activation. Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul 2008]

TRAF6 Gene

TNF receptor-associated factor 6, E3 ubiquitin protein ligase

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins are associated with, and mediate signal transduction from, members of the TNF receptor superfamily. This protein mediates signaling from members of the TNF receptor superfamily as well as the Toll/IL-1 family. Signals from receptors such as CD40, TNFSF11/RANCE and IL-1 have been shown to be mediated by this protein. This protein also interacts with various protein kinases including IRAK1/IRAK, SRC and PKCzeta, which provides a link between distinct signaling pathways. This protein functions as a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. The interaction of this protein with UBE2N/UBC13, and UBE2V1/UEV1A, which are ubiquitin conjugating enzymes catalyzing the formation of polyubiquitin chains, has been found to be required for IKK activation by this protein. This protein also interacts with the transforming growth factor (TGF) beta receptor complex and is required for Smad-independent activation of the JNK and p38 kinases. This protein has an amino terminal RING domain which is followed by four zinc-finger motifs, a central coiled-coil region and a highly conserved carboxyl terminal domain, known as the TRAF-C domain. Two alternatively spliced transcript variants, encoding an identical protein, have been reported. [provided by RefSeq, Feb 2012]

TRAF7 Gene

TNF receptor-associated factor 7, E3 ubiquitin protein ligase

Tumor necrosis factor (TNF; see MIM 191160) receptor-associated factors, such as TRAF7, are signal transducers for members of the TNF receptor superfamily (see MIM 191190). TRAFs are composed of an N-terminal cysteine/histidine-rich region containing zinc RING and/or zinc finger motifs; a coiled-coil (leucine zipper) motif; and a homologous region that defines the TRAF family, the TRAF domain, which is involved in self-association and receptor binding.[supplied by OMIM, Apr 2004]

LOC100124401 Gene

cytokine receptor-like factor 3 pseudogene

LOC285706 Gene

cytokine receptor-like factor 3 pseudogene

NRBF2P1 Gene

nuclear receptor binding factor 2 pseudogene 1

NRBF2P3 Gene

nuclear receptor binding factor 2 pseudogene 3

NRBF2P2 Gene

nuclear receptor binding factor 2 pseudogene 2

CUBN Gene

cubilin (intrinsic factor-cobalamin receptor)

Cubilin (CUBN) acts as a receptor for intrinsic factor-vitamin B12 complexes. The role of receptor is supported by the presence of 27 CUB domains. Cubulin is located within the epithelium of intestine and kidney. Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia. [provided by RefSeq, Jul 2008]

TNFRSF8 Gene

tumor necrosis factor receptor superfamily, member 8

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is expressed by activated, but not by resting, T and B cells. TRAF2 and TRAF5 can interact with this receptor, and mediate the signal transduction that leads to the activation of NF-kappaB. This receptor is a positive regulator of apoptosis, and also has been shown to limit the proliferative potential of autoreactive CD8 effector T cells and protect the body against autoimmunity. Two alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

TNFRSF9 Gene

tumor necrosis factor receptor superfamily, member 9

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contributes to the clonal expansion, survival, and development of T cells. It can also induce proliferation in peripheral monocytes, enhance T cell apoptosis induced by TCR/CD3 triggered activation, and regulate CD28 co-stimulation to promote Th1 cell responses. The expression of this receptor is induced by lymphocyte activation. TRAF adaptor proteins have been shown to bind to this receptor and transduce the signals leading to activation of NF-kappaB. [provided by RefSeq, Jul 2008]

TNFRSF4 Gene

tumor necrosis factor receptor superfamily, member 4

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor has been shown to activate NF-kappaB through its interaction with adaptor proteins TRAF2 and TRAF5. Knockout studies in mice suggested that this receptor promotes the expression of apoptosis inhibitors BCL2 and BCL2lL1/BCL2-XL, and thus suppresses apoptosis. The knockout studies also suggested the roles of this receptor in CD4+ T cell response, as well as in T cell-dependent B cell proliferation and differentiation. [provided by RefSeq, Jul 2008]

NSMF Gene

NMDA receptor synaptonuclear signaling and neuronal migration factor

The protein encoded by this gene is involved in guidance of olfactory axon projections and migration of luteinizing hormone-releasing hormone neurons. Defects in this gene are a cause of idiopathic hypogonadotropic hypogonadism (IHH). Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2010]

NRBF2 Gene

nuclear receptor binding factor 2

LOC728815 Gene

cytokine receptor-like factor 3 pseudogene

PTAFR Gene

platelet-activating factor receptor

This gene encodes a seven-transmembrane G-protein-coupled receptor for platelet-activating factor (PAF) that localizes to lipid rafts and/or caveolae in the cell membrane. PAF (1-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a phospholipid that plays a significant role in oncogenic transformation, tumor growth, angiogenesis, metastasis, and pro-inflammatory processes. Binding of PAF to the PAF-receptor (PAFR) stimulates numerous signal transduction pathways including phospholipase C, D, A2, mitogen-activated protein kinases (MAPKs), and the phosphatidylinositol-calcium second messenger system. Following PAFR activation, cells become rapidly desensitized and this refractory state is dependent on PAFR phosphorylation, internalization, and down-regulation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2011]

TRAF6P1 Gene

TNF receptor-associated factor 6 pseudogene 1

TNFRSF6B Gene

tumor necrosis factor receptor superfamily, member 6b, decoy

This gene belongs to the tumor necrosis factor receptor superfamily. The encoded protein is postulated to play a regulatory role in suppressing FasL- and LIGHT-mediated cell death. It acts as a decoy receptor that competes with death receptors for ligand binding. Over-expression of this gene has been noted in gastrointestinal tract tumors. Read-through transcription into this gene from the neighboring upstream gene, which encodes regulator of telomere elongation helicase 1 (RTEL1), generates a non-coding transcript. [provided by RefSeq, Feb 2011]

LOC730069 Gene

nuclear receptor binding factor 2 pseudogene

TNFRSF13B Gene

tumor necrosis factor receptor superfamily, member 13B

The protein encoded by this gene is a lymphocyte-specific member of the tumor necrosis factor (TNF) receptor superfamily. It interacts with calcium-modulator and cyclophilin ligand (CAML). The protein induces activation of the transcription factors NFAT, AP1, and NF-kappa-B and plays a crucial role in humoral immunity by interacting with a TNF ligand. This gene is located within the Smith-Magenis syndrome region on chromosome 17. [provided by RefSeq, Jul 2008]

TNFRSF13C Gene

tumor necrosis factor receptor superfamily, member 13C

B cell-activating factor (BAFF) enhances B-cell survival in vitro and is a regulator of the peripheral B-cell population. Overexpression of Baff in mice results in mature B-cell hyperplasia and symptoms of systemic lupus erythematosus (SLE). Also, some SLE patients have increased levels of BAFF in serum. Therefore, it has been proposed that abnormally high levels of BAFF may contribute to the pathogenesis of autoimmune diseases by enhancing the survival of autoreactive B cells. The protein encoded by this gene is a receptor for BAFF and is a type III transmembrane protein containing a single extracellular cysteine-rich domain. It is thought that this receptor is the principal receptor required for BAFF-mediated mature B-cell survival. [provided by RefSeq, Jul 2008]

LOC100420641 Gene

TNF receptor-associated factor 7, E3 ubiquitin protein ligase pseudogene

CRLF2 Gene

cytokine receptor-like factor 2

This gene encodes a member of the type I cytokine receptor family. The encoded protein is a receptor for thymic stromal lymphopoietin (TSLP). Together with the interleukin 7 receptor (IL7R), the encoded protein and TSLP activate STAT3, STAT5, and JAK2 pathways, which control processes such as cell proliferation and development of the hematopoietic system. Rearrangement of this gene with immunoglobulin heavy chain gene (IGH) on chromosome 14, or with P2Y purinoceptor 8 gene (P2RY8) on the same X or Y chromosomes is associated with B-progenitor acute lymphoblastic leukemia (ALL) and Down syndrome ALL. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Sep 2014]

CRLF3 Gene

cytokine receptor-like factor 3

This gene encodes a cytokine receptor-like factor that may negatively regulate cell cycle progression at the G0/G1 phase. Studies of the related rat protein suggest that it may regulate neuronal morphology and synaptic vesicle biogenesis. This gene is one of several genes located in the neurofibromatosis type I tumor suppressor region on the q arm of chromosome 17, a region that is subject to microdeletions, duplications, chromosomal breaks and rearrangements. Alternative splicing of this gene results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 2 and 5. [provided by RefSeq, Aug 2012]

CRLF1 Gene

cytokine receptor-like factor 1

This gene encodes a member of the cytokine type I receptor family. The protein forms a secreted complex with cardiotrophin-like cytokine factor 1 and acts on cells expressing ciliary neurotrophic factor receptors. The complex can promote survival of neuronal cells. Mutations in this gene result in Crisponi syndrome and cold-induced sweating syndrome. [provided by RefSeq, Oct 2009]

TNFRSF17 Gene

tumor necrosis factor receptor superfamily, member 17

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is preferentially expressed in mature B lymphocytes, and may be important for B cell development and autoimmune response. This receptor has been shown to specifically bind to the tumor necrosis factor (ligand) superfamily, member 13b (TNFSF13B/TALL-1/BAFF), and to lead to NF-kappaB and MAPK8/JNK activation. This receptor also binds to various TRAF family members, and thus may transduce signals for cell survival and proliferation. [provided by RefSeq, Jul 2008]

TNFRSF14 Gene

tumor necrosis factor receptor superfamily, member 14

This gene encodes a member of the TNF (tumor necrosis factor) receptor superfamily. The encoded protein functions in signal transduction pathways that activate inflammatory and inhibitory T-cell immune response. It binds herpes simplex virus (HSV) viral envelope glycoprotein D (gD), mediating its entry into cells. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

TNFRSF18 Gene

tumor necrosis factor receptor superfamily, member 18

This gene encodes a member of the TNF-receptor superfamily. The encoded receptor has been shown to have increased expression upon T-cell activation, and it is thought to play a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells. Knockout studies in mice also suggest the role of this receptor is in the regulation of CD3-driven T-cell activation and programmed cell death. Three alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Feb 2011]

TNFRSF19 Gene

tumor necrosis factor receptor superfamily, member 19

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is highly expressed during embryonic development. It has been shown to interact with TRAF family members, and to activate JNK signaling pathway when overexpressed in cells. This receptor is capable of inducing apoptosis by a caspase-independent mechanism, and it is thought to play an essential role in embryonic development. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

TNFRSF1B Gene

tumor necrosis factor receptor superfamily, member 1B

The protein encoded by this gene is a member of the TNF-receptor superfamily. This protein and TNF-receptor 1 form a heterocomplex that mediates the recruitment of two anti-apoptotic proteins, c-IAP1 and c-IAP2, which possess E3 ubiquitin ligase activity. The function of IAPs in TNF-receptor signalling is unknown, however, c-IAP1 is thought to potentiate TNF-induced apoptosis by the ubiquitination and degradation of TNF-receptor-associated factor 2, which mediates anti-apoptotic signals. Knockout studies in mice also suggest a role of this protein in protecting neurons from apoptosis by stimulating antioxidative pathways. [provided by RefSeq, Jul 2008]

TNFRSF1A Gene

tumor necrosis factor receptor superfamily, member 1A

The protein encoded by this gene is a member of the TNF-receptor superfamily. This protein is one of the major receptors for the tumor necrosis factor-alpha. This receptor can activate NF-kappaB, mediate apoptosis, and function as a regulator of inflammation. Antiapoptotic protein BCL2-associated athanogene 4 (BAG4/SODD) and adaptor proteins TRADD and TRAF2 have been shown to interact with this receptor, and thus play regulatory roles in the signal transduction mediated by the receptor. Germline mutations of the extracellular domains of this receptor were found to be associated with the autosomal dominant periodic fever syndrome. The impaired receptor clearance is thought to be a mechanism of the disease. [provided by RefSeq, Jul 2008]

CUBNP2 Gene

cubilin (intrinsic factor-cobalamin receptor) pseudogene 2

CUBNP3 Gene

cubilin (intrinsic factor-cobalamin receptor) pseudogene 3

CUBNP1 Gene

cubilin (intrinsic factor-cobalamin receptor) pseudogene 1

CNTFR Gene

ciliary neurotrophic factor receptor

This gene encodes a member of the type 1 cytokine receptor family. The encoded protein is the ligand-specific component of a tripartite receptor for ciliary neurotrophic factor, which plays a critical role in neuronal cell survival, differentiation and gene expression. Binding of ciliary neurotrophic factor to the encoded protein recruits the transmembrane components of the receptor, gp130 and leukemia inhibitory factor receptor, facilitating signal transduction. Single nucleotide polymorphisms in this gene may be associated with variations in muscle strength, as well as early onset of eating disorders. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2011]

LIFR Gene

leukemia inhibitory factor receptor alpha

This gene encodes a protein that belongs to the type I cytokine receptor family. This protein combines with a high-affinity converter subunit, gp130, to form a receptor complex that mediates the action of the leukemia inhibitory factor, a polyfunctional cytokine that is involved in cellular differentiation, proliferation and survival in the adult and the embryo. Mutations in this gene cause Schwartz-Jampel syndrome type 2, a disease belonging to the group of the bent-bone dysplasias. A translocation that involves the promoter of this gene, t(5;8)(p13;q12) with the pleiomorphic adenoma gene 1, is associated with salivary gland pleiomorphic adenoma, a common type of benign epithelial tumor of the salivary gland. Multiple splice variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

TNFRSF11A Gene

tumor necrosis factor receptor superfamily, member 11a, NFKB activator

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptors can interact with various TRAF family proteins, through which this receptor induces the activation of NF-kappa B and MAPK8/JNK. This receptor and its ligand are important regulators of the interaction between T cells and dendritic cells. This receptor is also an essential mediator for osteoclast and lymph node development. Mutations at this locus have been associated with familial expansile osteolysis, autosomal recessive osteopetrosis, and Paget disease of bone. Alternatively spliced transcript variants have been described for this locus. [provided by RefSeq, Aug 2012]

TNFRSF11B Gene

tumor necrosis factor receptor superfamily, member 11b

The protein encoded by this gene is a member of the TNF-receptor superfamily. This protein is an osteoblast-secreted decoy receptor that functions as a negative regulator of bone resorption. This protein specifically binds to its ligand, osteoprotegerin ligand, both of which are key extracellular regulators of osteoclast development. Studies of the mouse counterpart also suggest that this protein and its ligand play a role in lymph-node organogenesis and vascular calcification. Alternatively spliced transcript variants of this gene have been reported, but their full length nature has not been determined. [provided by RefSeq, Jul 2008]

LRP8 Gene

low density lipoprotein receptor-related protein 8, apolipoprotein e receptor

This gene encodes a member of the low density lipoprotein receptor (LDLR) family. Low density lipoprotein receptors are cell surface proteins that play roles in both signal transduction and receptor-mediated endocytosis of specific ligands for lysosomal degradation. The encoded protein plays a critical role in the migration of neurons during development by mediating Reelin signaling, and also functions as a receptor for the cholesterol transport protein apolipoprotein E. Expression of this gene may be a marker for major depressive disorder. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jun 2011]

ROR2 Gene

receptor tyrosine kinase-like orphan receptor 2

The protein encoded by this gene is a receptor protein tyrosine kinase and type I transmembrane protein that belongs to the ROR subfamily of cell surface receptors. The protein may be involved in the early formation of the chondrocytes and may be required for cartilage and growth plate development. Mutations in this gene can cause brachydactyly type B, a skeletal disorder characterized by hypoplasia/aplasia of distal phalanges and nails. In addition, mutations in this gene can cause the autosomal recessive form of Robinow syndrome, which is characterized by skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly, and a dysmorphic facial appearance. [provided by RefSeq, Jul 2008]

ROR1 Gene

receptor tyrosine kinase-like orphan receptor 1

This gene encodes a receptor tyrosine kinase-like orphan receptor that modulates neurite growth in the central nervous system. The encoded protein is a glycosylated type I membrane protein that belongs to the ROR subfamily of cell surface receptors. It is a pseudokinase that lacks catalytic activity and may interact with the non-canonical Wnt signalling pathway. This gene is highly expressed during early embryonic development but expressed at very low levels in adult tissues. Increased expression of this gene is associated with B-cell chronic lymphocytic leukaemia. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jun 2012]

NR3C1 Gene

nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)

This gene encodes glucocorticoid receptor, which can function both as a transcription factor that binds to glucocorticoid response elements in the promoters of glucocorticoid responsive genes to activate their transcription, and as a regulator of other transcription factors. This receptor is typically found in the cytoplasm, but upon ligand binding, is transported into the nucleus. It is involved in inflammatory responses, cellular proliferation, and differentiation in target tissues. Mutations in this gene are associated with generalized glucocorticoid resistance. Alternative splicing of this gene results in transcript variants encoding either the same or different isoforms. Additional isoforms resulting from the use of alternate in-frame translation initiation sites have also been described, and shown to be functional, displaying diverse cytoplasm-to-nucleus trafficking patterns and distinct transcriptional activities (PMID:15866175). [provided by RefSeq, Feb 2011]

MC1R Gene

melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)

This intronless gene encodes the receptor protein for melanocyte-stimulating hormone (MSH). The encoded protein, a seven pass transmembrane G protein coupled receptor, controls melanogenesis. Two types of melanin exist: red pheomelanin and black eumelanin. Gene mutations that lead to a loss in function are associated with increased pheomelanin production, which leads to lighter skin and hair color. Eumelanin is photoprotective but pheomelanin may contribute to UV-induced skin damage by generating free radicals upon UV radiation. Binding of MSH to its receptor activates the receptor and stimulates eumelanin synthesis. This receptor is a major determining factor in sun sensitivity and is a genetic risk factor for melanoma and non-melanoma skin cancer. Over 30 variant alleles have been identified which correlate with skin and hair color, providing evidence that this gene is an important component in determining normal human pigment variation. [provided by RefSeq, Jul 2008]

INSRR Gene

insulin receptor-related receptor

B3GAT3 Gene

beta-1,3-glucuronyltransferase 3

The protein encoded by this gene is a member of the glucuronyltransferase gene family, enzymes that exhibit strict acceptor specificity, recognizing nonreducing terminal sugars and their anomeric linkages. This gene product catalyzes the formation of the glycosaminoglycan-protein linkage by way of a glucuronyl transfer reaction in the final step of the biosynthesis of the linkage region of proteoglycans. A pseudogene of this gene has been identified on chromosome 3. [provided by RefSeq, Dec 2013]

B3GAT2 Gene

beta-1,3-glucuronyltransferase 2

The product of this gene is a transmembrane protein belonging to the glucuronyltransferase family, and catalyzes the transfer of a beta-1,3 linked glucuronic acid to a terminal galactose in different glycoproteins or glycolipids containing a Gal-beta-1-4GlcNAc or Gal-beta-1-3GlcNAc residue. The encoded protein is involved in the synthesis of the human natural killer-1 (HNK-1) carbohydrate epitope, a sulfated trisaccharide implicated in cellular migration and adhesion in the nervous system. [provided by RefSeq, Jul 2008]

B3GAT1 Gene

beta-1,3-glucuronyltransferase 1

The protein encoded by this gene is a member of the glucuronyltransferase gene family. These enzymes exhibit strict acceptor specificity, recognizing nonreducing terminal sugars and their anomeric linkages. This gene product functions as the key enzyme in a glucuronyl transfer reaction during the biosynthesis of the carbohydrate epitope HNK-1 (human natural killer-1, also known as CD57 and LEU7). Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul 2008]

HLA-DQB1 Gene

major histocompatibility complex, class II, DQ beta 1

HLA-DQB1 belongs to the HLA class II beta chain paralogs. This class II molecule is a heterodimer consisting of an alpha (DQA) and a beta chain (DQB), both anchored in the membrane. It plays a central role in the immune system by presenting peptides derived from extracellular proteins. Class II molecules are expressed in antigen presenting cells (APC: B lymphocytes, dendritic cells, macrophages). The beta chain is approximately 26-28 kDa and it contains six exons. Exon 1 encodes the leader peptide, exons 2 and 3 encode the two extracellular domains, exon 4 encodes the transmembrane domain and exon 5 encodes the cytoplasmic tail. Within the DQ molecule both the alpha chain and the beta chain contain the polymorphisms specifying the peptide binding specificities, resulting in up to four different molecules. Typing for these polymorphisms is routinely done for bone marrow transplantation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2011]

MSMB Gene

microseminoprotein, beta-

The protein encoded by this gene is a member of the immunoglobulin binding factor family. It is synthesized by the epithelial cells of the prostate gland and secreted into the seminal plasma. This protein has inhibin-like activity. It may have a role as an autocrine paracrine factor in uterine, breast and other female reproductive tissues. The expression of the encoded protein is found to be decreased in prostate cancer. Two alternatively spliced transcript variants encoding different isoforms are described for this gene. The use of alternate polyadenylation sites has been found for this gene. [provided by RefSeq, Jul 2008]

HLA-DQB3 Gene

major histocompatibility complex, class II, DQ beta 3

HLA-DQB2 Gene

major histocompatibility complex, class II, DQ beta 2

HLA-DQB2 belongs to the family of HLA class II beta chain paralogs. Class II molecules are heterodimers consisting of an alpha (DQA) and a beta chain (DQB), both anchored in the membrane. They play a central role in the immune system by presenting peptides derived from extracellular proteins. Class II molecules are expressed in antigen presenting cells (APC: B lymphocytes, dendritic cells, macrophages). Polymorphisms in the alpha and beta chains specify the peptide binding specificity, and typing for these polymorphisms is routinely done for bone marrow transplantation. However this gene, HLA-DQB2, is not routinely typed, as it is not thought to have an effect on transplantation. There is conflicting evidence in the literature and public sequence databases for the protein-coding capacity of HLA-DQB2. Because there is evidence of transcription and an intact ORF, HLA-DQB2 is represented in Entrez Gene and in RefSeq as a protein-coding locus. [provided by RefSeq, Oct 2010]

CAMKK2 Gene

calcium/calmodulin-dependent protein kinase kinase 2, beta

The product of this gene belongs to the Serine/Threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. The major isoform of this gene plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade by phosphorylating the downstream kinases CaMK1 and CaMK4. Protein products of this gene also phosphorylate AMP-activated protein kinase (AMPK). This gene has its strongest expression in the brain and influences signalling cascades involved with learning and memory, neuronal differentiation and migration, neurite outgrowth, and synapse formation. Alternative splicing results in multiple transcript variants encoding distinct isoforms. The identified isoforms differ in their ability to undergo autophosphorylation and to phosphorylate downstream kinases. [provided by RefSeq, Jul 2012]

NDUFB11P1 Gene

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11, pseudogene 1

PPP3CB Gene

protein phosphatase 3, catalytic subunit, beta isozyme

LOC347381 Gene

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), beta subunit pseudogene

LOC100533945 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

ENO3 Gene

enolase 3 (beta, muscle)

This gene encodes one of the three enolase isoenzymes found in mammals. This isoenzyme is found in skeletal muscle cells in the adult where it may play a role in muscle development and regeneration. A switch from alpha enolase to beta enolase occurs in muscle tissue during development in rodents. Mutations in this gene have be associated glycogen storage disease. Alternatively spliced transcript variants encoding different isoforms have been described.[provided by RefSeq, Jul 2010]

CNGB1 Gene

cyclic nucleotide gated channel beta 1

In humans, the rod photoreceptor cGMP-gated cation channel helps regulate ion flow into the rod photoreceptor outer segment in response to light-induced alteration of the levels of intracellular cGMP. This channel consists of two subunits, alpha and beta, with the protein encoded by this gene representing the beta subunit. Defects in this gene are a cause of cause of retinitis pigmentosa type 45. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2013]

LOC100421751 Gene

ATPase, Na+/K+ transporting, beta 3 polypeptide pseudogene

LOC100421362 Gene

hydroxysteroid (17-beta) dehydrogenase 12 pseudogene

HSP90B3P Gene

heat shock protein 90kDa beta (Grp94), member 3, pseudogene

LAMB1 Gene

laminin, beta 1

Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of basement membranes. They have been implicated in a wide variety of biological processes including cell adhesion, differentiation, migration, signaling, neurite outgrowth and metastasis. Laminins are composed of 3 non identical chains: laminin alpha, beta and gamma (formerly A, B1, and B2, respectively) and they form a cruciform structure consisting of 3 short arms, each formed by a different chain, and a long arm composed of all 3 chains. Each laminin chain is a multidomain protein encoded by a distinct gene. Several isoforms of each chain have been described. Different alpha, beta and gamma chain isomers combine to give rise to different heterotrimeric laminin isoforms which are designated by Arabic numerals in the order of their discovery, i.e. alpha1beta1gamma1 heterotrimer is laminin 1. The biological functions of the different chains and trimer molecules are largely unknown, but some of the chains have been shown to differ with respect to their tissue distribution, presumably reflecting diverse functions in vivo. This gene encodes the beta chain isoform laminin, beta 1. The beta 1 chain has 7 structurally distinct domains which it shares with other beta chain isomers. The C-terminal helical region containing domains I and II are separated by domain alpha, domains III and V contain several EGF-like repeats, and domains IV and VI have a globular conformation. Laminin, beta 1 is expressed in most tissues that produce basement membranes, and is one of the 3 chains constituting laminin 1, the first laminin isolated from Engelbreth-Holm-Swarm (EHS) tumor. A sequence in the beta 1 chain that is involved in cell attachment, chemotaxis, and binding to the laminin receptor was identified and shown to have the capacity to inhibit metastasis. [provided by RefSeq, Aug 2011]

LAMB3 Gene

laminin, beta 3

The product encoded by this gene is a laminin that belongs to a family of basement membrane proteins. This protein is a beta subunit laminin, which together with an alpha and a gamma subunit, forms laminin-5. Mutations in this gene cause epidermolysis bullosa junctional Herlitz type, and generalized atrophic benign epidermolysis bullosa, diseases that are characterized by blistering of the skin. Multiple alternatively spliced transcript variants that encode the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

LAMB2 Gene

laminin, beta 2 (laminin S)

Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous constituent of basement membranes. They have been implicated in a wide variety of biological processes including cell adhesion, differentiation, migration, signaling, neurite outgrowth and metastasis. Laminins, composed of 3 non identical chains: laminin alpha, beta and gamma (formerly A, B1, and B2, respectively), form a cruciform structure consisting of 3 short arms, each formed by a different chain, and a long arm composed of all 3 chains. Each laminin chain is a multidomain protein encoded by a distinct gene. Several isoforms of each chain have been described. Different alpha, beta and gamma chain isomers combine to give rise to different heterotrimeric laminin isoforms which are designated by Arabic numerals in the order of their discovery, i.e. alpha1beta1gamma1 heterotrimer is laminin 1. The biological functions of the different chains and trimer molecules are largely unknown, but some of the chains have been shown to differ with respect to their tissue distribution, presumably reflecting diverse functions in vivo. This gene encodes the beta chain isoform laminin, beta 2. The beta 2 chain contains the 7 structural domains typical of beta chains of laminin, including the short alpha region. However, unlike beta 1 chain, beta 2 has a more restricted tissue distribution. It is enriched in the basement membrane of muscles at the neuromuscular junctions, kidney glomerulus and vascular smooth muscle. Transgenic mice in which the beta 2 chain gene was inactivated by homologous recombination, showed defects in the maturation of neuromuscular junctions and impairment of glomerular filtration. Alternative splicing involving a non consensus 5' splice site (gc) in the 5' UTR of this gene has been reported. It was suggested that inefficient splicing of this first intron, which does not change the protein sequence, results in a greater abundance of the unspliced form of the transcript than the spliced form. The full-length nature of the spliced transcript is not known. [provided by RefSeq, Aug 2011]

LAMB4 Gene

laminin, beta 4

ATP7B Gene

ATPase, Cu++ transporting, beta polypeptide

This gene is a member of the P-type cation transport ATPase family and encodes a protein with several membrane-spanning domains, an ATPase consensus sequence, a hinge domain, a phosphorylation site, and at least 2 putative copper-binding sites. This protein functions as a monomer, exporting copper out of the cells, such as the efflux of hepatic copper into the bile. Alternate transcriptional splice variants, encoding different isoforms with distinct cellular localizations, have been characterized. Mutations in this gene have been associated with Wilson disease (WD). [provided by RefSeq, Jul 2008]

GJB6 Gene

gap junction protein, beta 6, 30kDa

Gap junctions allow the transport of ions and metabolites between the cytoplasm of adjacent cells. They are formed by two hemichannels, made up of six connexin proteins assembled in groups. Each connexin protein has four transmembrane segments, two extracellular loops, a cytoplasmic loop formed between the two inner transmembrane segments, and the N- and C-terminus both being in the cytoplasm. The specificity of the gap junction is determined by which connexin proteins comprise the hemichannel. In the past, connexin protein names were based on their molecular weight, however the new nomenclature uses sequential numbers based on which form (alpha or beta) of the gap junction is present. This gene encodes one of the connexin proteins. Mutations in this gene have been found in some forms of deafness and in some families with hidrotic ectodermal dysplasia. [provided by RefSeq, Jul 2008]

HLA-DMB Gene

major histocompatibility complex, class II, DM beta

HLA-DMB belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer consisting of an alpha (DMA) and a beta (DMB) chain, both anchored in the membrane. It is located in intracellular vesicles. DM plays a central role in the peptide loading of MHC class II molecules by helping to release the CLIP (class II-associated invariant chain peptide) molecule from the peptide binding site. Class II molecules are expressed in antigen presenting cells (APC: B lymphocytes, dendritic cells, macrophages). The beta chain is approximately 26-28 kDa and its gene contains 6 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the two extracellular domains, exon 4 encodes the transmembrane domain and exon 5 encodes the cytoplasmic tail. [provided by RefSeq, Jul 2008]

ACACB Gene

acetyl-CoA carboxylase beta

Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. ACC is a biotin-containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ACC-beta is thought to control fatty acid oxidation by means of the ability of malonyl-CoA to inhibit carnitine-palmitoyl-CoA transferase I, the rate-limiting step in fatty acid uptake and oxidation by mitochondria. ACC-beta may be involved in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. There is evidence for the presence of two ACC-beta isoforms. [provided by RefSeq, Jul 2008]

GUSBP5 Gene

glucuronidase, beta pseudogene 5

GUSBP4 Gene

glucuronidase, beta pseudogene 4

GUSBP7 Gene

glucuronidase, beta pseudogene 7

GUSBP1 Gene

glucuronidase, beta pseudogene 1

GUSBP3 Gene

glucuronidase, beta pseudogene 3

GUSBP2 Gene

glucuronidase, beta pseudogene 2

GUSBP9 Gene

glucuronidase, beta pseudogene 9

GUSBP8 Gene

glucuronidase, beta pseudogene 8

REG1B Gene

regenerating islet-derived 1 beta

This gene is a type I subclass member of the Reg gene family. The Reg gene family is a multigene family grouped into four subclasses, types I, II, III and IV based on the primary structures of the encoded proteins. This gene encodes a protein secreted by the exocrine pancreas that is highly similar to the REG1A protein. The related REG1A protein is associated with islet cell regeneration and diabetogenesis, and may be involved in pancreatic lithogenesis. Reg family members REG1A, REGL, PAP and this gene are tandemly clustered on chromosome 2p12 and may have arisen from the same ancestral gene by gene duplication. [provided by RefSeq, Jul 2008]

ACTBP8 Gene

actin, beta pseudogene 8

ACTBP9 Gene

actin, beta pseudogene 9

ACTBP3 Gene

actin, beta pseudogene 3

ACTBP4 Gene

actin, beta pseudogene 4

ACTBP6 Gene

actin, beta pseudogene 6

ACTBP7 Gene

actin, beta pseudogene 7

LOC100418883 Gene

actin, beta pseudogene

TUBB8P10 Gene

tubulin, beta 8 class VIII pseudogene 10

DAGLB Gene

diacylglycerol lipase, beta

LOC101180897 Gene

Rab geranylgeranyltransferase, beta subunit pseudogene

LOC105376811 Gene

laminin subunit beta-2-like

CCBL1 Gene

cysteine conjugate-beta lyase, cytoplasmic

This gene encodes a cytosolic enzyme that is responsible for the metabolism of cysteine conjugates of certain halogenated alkenes and alkanes. This metabolism can form reactive metabolites leading to nephrotoxicity and neurotoxicity. Increased levels of this enzyme have been linked to schizophrenia. Multiple transcript variants that encode different isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

CCBL2 Gene

cysteine conjugate-beta lyase 2

This gene encodes an aminotransferase that transaminates kynurenine to form kynurenic acid. Kynurenic acid is a metabolite of tryptophan. Multiple alternatively spliced transcript variants that encode different proteins have been described for this gene. This gene shares 5' exon structure with the RNA binding motif protein, X-linked-like 1 locus on chromosome 1, but the coding sequences are non-overlapping. [provided by RefSeq, Jun 2009]

ALG1 Gene

ALG1, chitobiosyldiphosphodolichol beta-mannosyltransferase

The enzyme encoded by this gene catalyzes the first mannosylation step in the biosynthesis of lipid-linked oligosaccharides. This gene is mutated in congenital disorder of glycosylation type Ik. [provided by RefSeq, Dec 2008]

ALG5 Gene

ALG5, dolichyl-phosphate beta-glucosyltransferase

This gene encodes a member of the glycosyltransferase 2 family. The encoded protein participates in glucosylation of the oligomannose core in N-linked glycosylation of proteins. The addition of glucose residues to the oligomannose core is necessary to ensure substrate recognition, and therefore, effectual transfer of the oligomannose core to the nascent glycoproteins. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2008]

MAP1LC3B2 Gene

microtubule-associated protein 1 light chain 3 beta 2

DEFB135 Gene

defensin, beta 135

Defensins are cysteine-rich cationic polypeptides that are important in the immunologic response to invading microorganisms. The antimicrobial protein encoded by this gene is secreted and is a member of the beta defensin protein family. Beta defensin genes are found in several clusters throughout the genome, with this gene mapping to a cluster at 8p23. [provided by RefSeq, Nov 2014]

DEFB136 Gene

defensin, beta 136

Defensins are cysteine-rich cationic polypeptides that are important in the immunologic response to invading microorganisms. The antimicrobial protein encoded by this gene is secreted and is a member of the beta defensin protein family. Beta defensin genes are found in several clusters throughout the genome, with this gene mapping to a cluster at 8p23. [provided by RefSeq, Nov 2014]

DEFB130 Gene

defensin, beta 130

Defensins are cysteine-rich cationic polypeptides that are important in the immunologic response to invading microorganisms. The antimicrobial protein encoded by this gene is secreted and is a member of the beta defensin protein family. Beta defensin genes are found in several clusters throughout the genome, with this gene mapping to a cluster at 8p23. [provided by RefSeq, Nov 2014]

DEFB132 Gene

defensin, beta 132

Defensins are cysteine-rich cationic polypeptides that are important in the immunologic response to invading microorganisms. The protein encoded by this gene is secreted and is a member of the beta defensin protein family. This protein binds spermatozoa and has antimicrobial activity against E. coli. Beta defensin genes are found in several clusters throughout the genome, with this gene mapping to a cluster at 20p13. [provided by RefSeq, Nov 2014]

DEFB133 Gene

defensin, beta 133

TPSAB1 Gene

tryptase alpha/beta 1

Tryptases comprise a family of trypsin-like serine proteases, the peptidase family S1. Tryptases are enzymatically active only as heparin-stabilized tetramers, and they are resistant to all known endogenous proteinase inhibitors. Several tryptase genes are clustered on chromosome 16p13.3. These genes are characterized by several distinct features. They have a highly conserved 3' UTR and contain tandem repeat sequences at the 5' flank and 3' UTR which are thought to play a role in regulation of the mRNA stability. These genes have an intron immediately upstream of the initiator Met codon, which separates the site of transcription initiation from protein coding sequence. This feature is characteristic of tryptases but is unusual in other genes. The alleles of this gene exhibit an unusual amount of sequence variation, such that the alleles were once thought to represent two separate genes, alpha and beta 1. Beta tryptases appear to be the main isoenzymes expressed in mast cells; whereas in basophils, alpha tryptases predominate. Tryptases have been implicated as mediators in the pathogenesis of asthma and other allergic and inflammatory disorders. [provided by RefSeq, Jul 2008]

NDUFB1P2 Gene

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1 pseudogene 2

B3GALNT1P1 Gene

beta-1,3-N-acetylgalactosaminyltransferase 1 pseudogene 1

MYH7B Gene

myosin, heavy chain 7B, cardiac muscle, beta

The myosin II molecule is a multi-subunit complex consisting of two heavy chains and four light chains. This gene encodes a heavy chain of myosin II, which is a member of the motor-domain superfamily. The heavy chain includes a globular motor domain, which catalyzes ATP hydrolysis and interacts with actin, and a tail domain in which heptad repeat sequences promote dimerization by interacting to form a rod-like alpha-helical coiled coil. This heavy chain subunit is a slow-twitch myosin. Alternatively spliced transcript variants have been found, but the full-length nature of these variants is not determined. [provided by RefSeq, Mar 2010]

KCNMB3P1 Gene

potassium channel subfamily M regulatory beta subunit 3 pseudogene 1

PSG8 Gene

pregnancy specific beta-1-glycoprotein 8

The human pregnancy-specific glycoproteins (PSGs) are a group of molecules that are mainly produced by the placental syncytiotrophoblasts during pregnancy. PSGs comprise a subgroup of the carcinoembryonic antigen (CEA) family, which belongs to the immunoglobulin superfamily. For additional general information about the PSG gene family, see PSG1 (MIM 176390).[supplied by OMIM, Oct 2009]

PSG9 Gene

pregnancy specific beta-1-glycoprotein 9

The protein encoded by this gene is a member of the pregnancy-specific glycoprotein (PSG) family. This protein family and the closely related carcinoembryonic antigen cell adhesion molecule (CEACAM) gene family are both members of the immunoglobulin superfamily, and are organized as a large gene cluster. This protein is thought to inhibit platelet-fibrinogen interactions. Several studies suggest that reduced serum concentrations of PSGs are associated with fetal growth restrictions, while up-regulation of this gene has been observed in colorectal cancers. Several pseudogenes of this gene are found on chromosome 19. Alternative splicing results in multiple transcript variants that encode multiple protein isoforms. [provided by RefSeq, Sep 2014]

PSG6 Gene

pregnancy specific beta-1-glycoprotein 6

This gene is a member of the pregnancy-specific glycoprotein (PSG) gene family. The PSG genes are a subgroup of the carcinoembryonic antigen (CEA) family of immunoglobulin-like genes, and are found in a gene cluster at 19q13.1-q13.2 telomeric to another cluster of CEA-related genes. The PSG genes are expressed by placental trophoblasts and released into the maternal circulation during pregnancy, and are thought to be essential for maintenance of normal pregnancy. The protein encoded by this gene contains the Arg-Gly-Asp tripeptide associated with cellular adhesion and recognition. Alternative splicing results in multiple transcript variants and protein isoforms. [provided by RefSeq, Jul 2012]

PSG7 Gene

pregnancy specific beta-1-glycoprotein 7 (gene/pseudogene)

This gene is a member of the pregnancy-specific glycoprotein (PSG) gene family. The PSG genes are a subgroup of the carcinoembryonic antigen (CEA) family of immunoglobulin-like genes, and are found in a gene cluster at 19q13.1-q13.2 telomeric to another cluster of CEA-related genes. The PSG genes are expressed by placental trophoblasts and released into the maternal circulation during pregnancy, and are thought to be essential for maintenance of normal pregnancy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

PSG4 Gene

pregnancy specific beta-1-glycoprotein 4

The human pregnancy-specific glycoproteins (PSGs) are a family of proteins that are synthesized in large amounts by placental trophoblasts and released into the maternal circulation during pregnancy. Molecular cloning and analysis of several PSG genes has indicated that the PSGs form a subgroup of the carcinoembryonic antigen (CEA) gene family, which belongs to the immunoglobulin superfamily of genes. Members of the CEA family consist of a single N domain, with structural similarity to the immunoglobulin variable domains, followed by a variable number of immunoglobulin constant-like A and/or B domains. Most PSGs have an arg-gly-asp (RGD) motif, which has been shown to function as an adhesion recognition signal for several integrins, in the N-terminal domain (summary by Teglund et al., 1994 [PubMed 7851896]). For additional general information about the PSG gene family, see PSG1 (MIM 176390).[supplied by OMIM, Oct 2009]

PSG5 Gene

pregnancy specific beta-1-glycoprotein 5

The human pregnancy-specific glycoproteins (PSGs) are a group of molecules that are mainly produced by the placental syncytiotrophoblasts during pregnancy. PSGs comprise a subgroup of the carcinoembryonic antigen (CEA) family, which belongs to the immunoglobulin superfamily. For additional general information about the PSG gene family, see PSG1 (MIM 176390).[supplied by OMIM, Oct 2009]

PSG2 Gene

pregnancy specific beta-1-glycoprotein 2

The human pregnancy-specific glycoproteins (PSGs) are a family of proteins that are synthesized in large amounts by placental trophoblasts and released into the maternal circulation during pregnancy. Molecular cloning and analysis of several PSG genes has indicated that the PSGs form a subgroup of the carcinoembryonic antigen (CEA) gene family, which belongs to the immunoglobulin superfamily of genes. Members of the CEA family consist of a single N domain, with structural similarity to the immunoglobulin variable domains, followed by a variable number of immunoglobulin constant-like A and/or B domains. Most PSGs have an arg-gly-asp (RGD) motif, which has been shown to function as an adhesion recognition signal for several integrins, in the N-terminal domain (summary by Teglund et al., 1994 [PubMed 7851896]). For additional general information about the PSG gene family, see PSG1 (MIM 176390).[supplied by OMIM, Oct 2009]

PSG3 Gene

pregnancy specific beta-1-glycoprotein 3

The human pregnancy-specific glycoproteins (PSGs) are a family of proteins that are synthesized in large amounts by placental trophoblasts and released into the maternal circulation during pregnancy. Molecular cloning and analysis of several PSG genes has indicated that the PSGs form a subgroup of the carcinoembryonic antigen (CEA) gene family, which belongs to the immunoglobulin superfamily of genes. Members of the CEA family consist of a single N domain, with structural similarity to the immunoglobulin variable domains, followed by a variable number of immunoglobulin constant-like A and/or B domains. Most PSGs have an arg-gly-asp (RGD) motif, which has been shown to function as an adhesion recognition signal for several integrins, in the N-terminal domain (summary by Teglund et al., 1994 [PubMed 7851896]). For additional general information about the PSG gene family, see PSG1 (MIM 176390).[supplied by OMIM, Oct 2009]

PSG1 Gene

pregnancy specific beta-1-glycoprotein 1

The human placenta is a multihormonal endocrine organ that produces hormones, enzymes, and other molecules that support fetal survival and development. Pregnancy-specific beta-1-glycoprotein (PSBG, PSG) is a major product of the syncytiotrophoblast, reaching concentrations of 100 to 290 mg/l at term in the serum of pregnant women (Horne et al., 1976 [PubMed 971765]). PSG is a member of the immunoglobulin (Ig) superfamily (Watanabe and Chou, 1988 [PubMed 3257488]; Streydio et al., 1988 [PubMed 3260773]).[supplied by OMIM, Oct 2009]

LOC100421417 Gene

ATPase, H+/K+ exchanging, beta polypeptide pseudogene

NDUFB4P1 Gene

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa pseudogene 1

LAMB2P1 Gene

laminin, beta 2 pseudogene 1

HSD11B2 Gene

hydroxysteroid (11-beta) dehydrogenase 2

There are at least two isozymes of the corticosteroid 11-beta-dehydrogenase, a microsomal enzyme complex responsible for the interconversion of cortisol and cortisone. The type I isozyme has both 11-beta-dehydrogenase (cortisol to cortisone) and 11-oxoreductase (cortisone to cortisol) activities. The type II isozyme, encoded by this gene, has only 11-beta-dehydrogenase activity. In aldosterone-selective epithelial tissues such as the kidney, the type II isozyme catalyzes the glucocorticoid cortisol to the inactive metabolite cortisone, thus preventing illicit activation of the mineralocorticoid receptor. In tissues that do not express the mineralocorticoid receptor, such as the placenta and testis, it protects cells from the growth-inhibiting and/or pro-apoptotic effects of cortisol, particularly during embryonic development. Mutations in this gene cause the syndrome of apparent mineralocorticoid excess and hypertension. [provided by RefSeq, Feb 2010]

HSD11B1 Gene

hydroxysteroid (11-beta) dehydrogenase 1

The protein encoded by this gene is a microsomal enzyme that catalyzes the conversion of the stress hormone cortisol to the inactive metabolite cortisone. In addition, the encoded protein can catalyze the reverse reaction, the conversion of cortisone to cortisol. Too much cortisol can lead to central obesity, and a particular variation in this gene has been associated with obesity and insulin resistance in children. Mutations in this gene and H6PD (hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase)) are the cause of cortisone reductase deficiency. Alternate splicing results in multiple transcript variants encoding the same protein.[provided by RefSeq, May 2011]

GUCY1B2 Gene

guanylate cyclase 1, soluble, beta 2 (pseudogene)

TAB3P1 Gene

TGF-beta activated kinase 1/MAP3K7 binding protein 3 pseudogene 1

LOC105373314 Gene

UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like protein 1

B4GALNT4 Gene

beta-1,4-N-acetyl-galactosaminyl transferase 4

B4GALNT1 Gene

beta-1,4-N-acetyl-galactosaminyl transferase 1

GM2 and GD2 gangliosides are sialic acid-containing glycosphingolipids. GalNAc-T is the enzyme involved in the biosynthesis of G(M2) and G(D2) glycosphingolipids. GalNAc-T catalyzes the transfer of GalNAc into G(M3) and G(D3) by a beta-1,4 linkage, resulting in the synthesis of G(M2) and G(D2), respectively. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2013]

B4GALNT2 Gene

beta-1,4-N-acetyl-galactosaminyl transferase 2

B4GALNT2 catalyzes the last step in the biosynthesis of the human Sd(a) antigen through the addition of an N-acetylgalactosamine residue via a beta-1,4 linkage to a subterminal galactose residue substituted with an alpha-2,3-linked sialic acid. B4GALNT2 also catalyzes the last step in the biosynthesis of the Cad antigen (Montiel et al., 2003 [PubMed 12678917]).[supplied by OMIM, Mar 2008]

B4GALNT3 Gene

beta-1,4-N-acetyl-galactosaminyl transferase 3

B4GALNT3 transfers N-acetylgalactosamine (GalNAc) onto glucosyl residues to form N,N-prime-diacetyllactosediamine (LacdiNAc, or LDN), a unique terminal structure of cell surface N-glycans (Ikehara et al., 2006 [PubMed 16728562]).[supplied by OMIM, Aug 2008]

GBAP1 Gene

glucosidase, beta, acid pseudogene 1

YWHAB Gene

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta

This gene encodes a protein belonging to the 14-3-3 family of proteins, members of which mediate signal transduction by binding to phosphoserine-containing proteins. This highly conserved protein family is found in both plants and mammals. The encoded protein has been shown to interact with RAF1 and CDC25 phosphatases, suggesting that it may play a role in linking mitogenic signaling and the cell cycle machinery. Two transcript variants, which encode the same protein, have been identified for this gene. [provided by RefSeq, Jul 2008]

LOC101927519 Gene

tubulin beta-7 chain-like

RFNG Gene

RFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase

SCNN1B Gene

sodium channel, non voltage gated 1 beta subunit

Nonvoltage-gated, amiloride-sensitive, sodium channels control fluid and electrolyte transport across epithelia in many organs. These channels are heteromeric complexes consisting of 3 subunits: alpha, beta, and gamma. This gene encodes the beta subunit, and mutations in this gene have been associated with pseudohypoaldosteronism type 1 (PHA1), and Liddle syndrome. [provided by RefSeq, Apr 2009]

LOC102725016 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

LOC100287066 Gene

defensin, beta 131 pseudogene

GLB1L2 Gene

galactosidase, beta 1-like 2

GLB1L3 Gene

galactosidase, beta 1-like 3

CRYBA2 Gene

crystallin, beta A2

Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of the vertebrate eye, which function to maintain the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also defined as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Beta-crystallins, the most heterogeneous, differ by the presence of the C-terminal extension (present in the basic group but absent in the acidic group). Beta-crystallins form aggregates of different sizes and are able to form homodimers through self-association or heterodimers with other beta-crystallins. This gene is a beta acidic group member. Three alternatively spliced transcript variants encoding identical proteins have been reported. [provided by RefSeq, Jul 2008]

CRYBA1 Gene

crystallin, beta A1

Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also considered as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Beta-crystallins, the most heterogeneous, differ by the presence of the C-terminal extension (present in the basic group, none in the acidic group). Beta-crystallins form aggregates of different sizes and are able to self-associate to form dimers or to form heterodimers with other beta-crystallins. This gene, a beta acidic group member, encodes two proteins (crystallin, beta A3 and crystallin, beta A1) from a single mRNA, the latter protein is 17 aa shorter than crystallin, beta A3 and is generated by use of an alternate translation initiation site. Deletion of exons 3 and 4 causes the autosomal dominant disease 'zonular cataract with sutural opacities'. [provided by RefSeq, Jul 2008]

CRYBA4 Gene

crystallin, beta A4

Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also considered as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Beta-crystallins, the most heterogeneous, differ by the presence of the C-terminal extension (present in the basic group, none in the acidic group). Beta-crystallins form aggregates of different sizes and are able to self-associate to form dimers or to form heterodimers with other beta-crystallins. This gene, a beta acidic group member, is part of a gene cluster with beta-B1, beta-B2, and beta-B3. [provided by RefSeq, Jul 2008]

BTRCP1 Gene

beta-transducin repeat containing E3 ubiquitin protein ligase pseudogene 1

AP5B1 Gene

adaptor-related protein complex 5, beta 1 subunit

ITGB3 Gene

integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)

The ITGB3 protein product is the integrin beta chain beta 3. Integrins are integral cell-surface proteins composed of an alpha chain and a beta chain. A given chain may combine with multiple partners resulting in different integrins. Integrin beta 3 is found along with the alpha IIb chain in platelets. Integrins are known to participate in cell adhesion as well as cell-surface mediated signalling. [provided by RefSeq, Jul 2008]

ITGB5 Gene

integrin, beta 5

ITGB4 Gene

integrin, beta 4

Integrins are heterodimers comprised of alpha and beta subunits, that are noncovalently associated transmembrane glycoprotein receptors. Different combinations of alpha and beta polypeptides form complexes that vary in their ligand-binding specificities. Integrins mediate cell-matrix or cell-cell adhesion, and transduced signals that regulate gene expression and cell growth. This gene encodes the integrin beta 4 subunit, a receptor for the laminins. This subunit tends to associate with alpha 6 subunit and is likely to play a pivotal role in the biology of invasive carcinoma. Mutations in this gene are associated with epidermolysis bullosa with pyloric atresia. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

ITGB7 Gene

integrin, beta 7

This gene encodes a protein that is a member of the integrin superfamily. Members of this family are adhesion receptors that function in signaling from the extracellular matrix to the cell. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. The encoded protein forms dimers with an alpha4 chain or an alphaE chain and plays a role in leukocyte adhesion. Dimerization with alpha4 forms a homing receptor for migration of lymphocytes to the intestinal mucosa and Peyer's patches. Dimerization with alphaE permits binding to the ligand epithelial cadherin, a calcium-dependent adhesion molecule. Alternate splicing results in multiple transcript variants. Additional alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Sep 2013]

ITGB6 Gene

integrin, beta 6

This gene encodes a protein that is a member of the integrin superfamily. Members of this family are adhesion receptors that function in signaling from the extracellular matrix to the cell. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. The encoded protein forms a dimer with an alpha v chain and this heterodimer can bind to ligands like fibronectin and transforming growth factor beta 1. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

ITGB8 Gene

integrin, beta 8

This gene is a member of the integrin beta chain family and encodes a single-pass type I membrane protein with a VWFA domain and four cysteine-rich repeats. This protein noncovalently binds to an alpha subunit to form a heterodimeric integrin complex. In general, integrin complexes mediate cell-cell and cell-extracellular matrix interactions and this complex plays a role in human airway epithelial proliferation. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized. [provided by RefSeq, Jul 2008]

FGB Gene

fibrinogen beta chain

The protein encoded by this gene is the beta component of fibrinogen, a blood-borne glycoprotein comprised of three pairs of nonidentical polypeptide chains. Following vascular injury, fibrinogen is cleaved by thrombin to form fibrin which is the most abundant component of blood clots. In addition, various cleavage products of fibrinogen and fibrin regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and are mitogens for several cell types. Mutations in this gene lead to several disorders, including afibrinogenemia, dysfibrinogenemia, hypodysfibrinogenemia and thrombotic tendency. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2014]

CLYBL Gene

citrate lyase beta like

AABT Gene

Beta-amino acids, renal transport of

IFNB1 Gene

interferon, beta 1, fibroblast

HLA-DOB Gene

major histocompatibility complex, class II, DO beta

HLA-DOB belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer consisting of an alpha (DOA) and a beta chain (DOB), both anchored in the membrane. It is located in intracellular vesicles. DO suppresses peptide loading of MHC class II molecules by inhibiting HLA-DM. Class II molecules are expressed in antigen presenting cells (APC: B lymphocytes, dendritic cells, macrophages). The beta chain is approximately 26-28 kDa and its gene contains 6 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the two extracellular domains, exon 4 encodes the transmembrane domain and exon 5 encodes the cytoplasmic tail. [provided by RefSeq, Jul 2008]

C8B Gene

complement component 8, beta polypeptide

This gene encodes one of the three subunits of the complement component 8 (C8) protein. C8 is composed of equimolar amounts of alpha, beta and gamma subunits, which are encoded by three separate genes. C8 is one component of the membrane attack complex, which mediates cell lysis, and it initiates membrane penetration of the complex. This protein mediates the interaction of C8 with the C5b-7 membrane attack complex precursor. In humans deficiency of this protein is associated with increased risk of meningococcal infections. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2013]

PDHB Gene

pyruvate dehydrogenase (lipoamide) beta

The pyruvate dehydrogenase (PDH) complex is a nuclear-encoded mitochondrial multienzyme complex that catalyzes the overall conversion of pyruvate to acetyl-CoA and carbon dioxide, and provides the primary link between glycolysis and the tricarboxylic acid (TCA) cycle. The PDH complex is composed of multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). The E1 enzyme is a heterotetramer of two alpha and two beta subunits. This gene encodes the E1 beta subunit. Mutations in this gene are associated with pyruvate dehydrogenase E1-beta deficiency. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Mar 2012]

FSHB Gene

follicle stimulating hormone, beta polypeptide

The pituitary glycoprotein hormone family includes follicle-stimulating hormone, luteinizing hormone, chorionic gonadotropin, and thyroid-stimulating hormone. All of these glycoproteins consist of an identical alpha subunit and a hormone-specific beta subunit. This gene encodes the beta subunit of follicle-stimulating hormone. In conjunction with luteinizing hormone, follicle-stimulating hormone induces egg and sperm production. Alternative splicing results in two transcript variants encoding the same protein. [provided by RefSeq, Jul 2008]

LOC100533944 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC390705 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

LOC100533948 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100422013 Gene

catenin (cadherin-associated protein), beta 1, 88kDa pseudogene

SNCB Gene

synuclein, beta

The protein encoded by this gene is highly homologous to alpha-synuclein. These proteins are abundantly expressed in the brain and putatively inhibit phospholipase D2 selectively. The encoded protein, which may play a role in neuronal plasticity, is abundant in neurofibrillary lesions of patients with Alzheimer disease. This protein has been shown to be highly expressed in the substantia nigra of the brain, a region of neuronal degeneration in patients with Parkinson disease; however, no direct relation to Parkinson disease has been established. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

DEFB109P1B Gene

defensin, beta 109, pseudogene 1B

CHKB Gene

choline kinase beta

Choline kinase (CK) and ethanolamine kinase (EK) catalyze the phosphorylation of choline/ethanolamine to phosphocholine/phosphoethanolamine. This is the first enzyme in the biosynthesis of phosphatidylcholine/phosphatidylethanolamine in all animal cells. The highly purified CKs from mammalian sources and their recombinant gene products have been shown to have EK activity also, indicating that both activities reside on the same protein. The choline kinase-like protein encoded by CHKL belongs to the choline/ethanolamine kinase family; however, its exact function is not known. Read-through transcripts are expressed from this locus that include exons from the downstream CPT1B locus. [provided by RefSeq, Jun 2009]

CNGB3 Gene

cyclic nucleotide gated channel beta 3

This gene encodes the beta subunit of a cyclic nucleotide-gated ion channel. The encoded beta subunit appears to play a role in modulation of channel function in cone photoreceptors. This heterotetrameric channel is necessary for sensory transduction, and mutations in this gene have been associated with achromatopsia 3, progressive cone dystrophy, and juvenile macular degeneration, also known as Stargardt Disease. [provided by RefSeq, Feb 2010]

ST6GALNAC4P1 Gene

ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 4 pseudogene 1

AP2B1 Gene

adaptor-related protein complex 2, beta 1 subunit

The protein encoded by this gene is one of two large chain components of the assembly protein complex 2, which serves to link clathrin to receptors in coated vesicles. The encoded protein is found on the cytoplasmic face of coated vesicles in the plasma membrane. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC102723971 Gene

beta-lactoglobulin-like

IL1B Gene

interleukin 1, beta

The protein encoded by this gene is a member of the interleukin 1 cytokine family. This cytokine is produced by activated macrophages as a proprotein, which is proteolytically processed to its active form by caspase 1 (CASP1/ICE). This cytokine is an important mediator of the inflammatory response, and is involved in a variety of cellular activities, including cell proliferation, differentiation, and apoptosis. The induction of cyclooxygenase-2 (PTGS2/COX2) by this cytokine in the central nervous system (CNS) is found to contribute to inflammatory pain hypersensitivity. This gene and eight other interleukin 1 family genes form a cytokine gene cluster on chromosome 2. [provided by RefSeq, Jul 2008]

PKIB Gene

protein kinase (cAMP-dependent, catalytic) inhibitor beta

This gene encodes a member of the cAMP-dependent protein kinase inhibitor family. The encoded protein may play a role in the protein kinase A (PKA) pathway by interacting with the catalytic subunit of PKA, and overexpression of this gene may play a role in prostate cancer. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

BCO1 Gene

beta-carotene oxygenase 1

Vitamin A metabolism is important for vital processes such as vision, embryonic development, cell differentiation, and membrane and skin protection. The protein encoded by this gene is a key enzyme in beta-carotene metabolism to vitamin A. It catalyzes the oxidative cleavage of beta,beta-carotene into two retinal molecules. [provided by RefSeq, Jul 2008]

ATP1B1P1 Gene

ATPase, Na+/K+ transporting, beta 1 polypeptide pseudogene 1

TECPR1 Gene

tectonin beta-propeller repeat containing 1

This gene encodes a tethering factor involved in autophagy. The encoded protein is found at autolysosomes, and is involved in targeting protein aggregates, damaged mitochondria, and bacterial pathogens for autophagy [provided by RefSeq, Nov 2012]

TECPR2 Gene

tectonin beta-propeller repeat containing 2

APBB1IP Gene

amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein

ST6GAL2 Gene

ST6 beta-galactosamide alpha-2,6-sialyltranferase 2

This locus encodes a sialyltransferase. The encoded type II transmembrane protein catalyzes the transfer of sialic acid from CMP to an oligosaccharide substrate. Polymorphisms at this locus may be associated with variations in risperidone response in schizophrenic patients. Alternatively spliced transcript variants have been described. [provided by RefSeq, Jan 2012]

ATP5BP1 Gene

ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide pseudogene 1

CGB8 Gene

chorionic gonadotropin, beta polypeptide 8

This gene is a member of the glycoprotein hormone beta chain family and encodes the beta 8 subunit of chorionic gonadotropin (CG). Glycoprotein hormones are heterodimers consisting of a common alpha subunit and an unique beta subunit which confers biological specificity. CG is produced by the trophoblastic cells of the placenta and stimulates the ovaries to synthesize the steroids that are essential for the maintenance of pregnancy. The beta subunit of CG is encoded by 6 genes which are arranged in tandem and inverted pairs on chromosome 19q13.3 and contiguous with the luteinizing hormone beta subunit gene. [provided by RefSeq, Jul 2008]

CGB5 Gene

chorionic gonadotropin, beta polypeptide 5

This gene is a member of the glycoprotein hormone beta chain family and encodes the beta 5 subunit of chorionic gonadotropin (CG). Glycoprotein hormones are heterodimers consisting of a common alpha subunit and an unique beta subunit which confers biological specificity. CG is produced by the trophoblastic cells of the placenta and stimulates the ovaries to synthesize the steroids that are essential for the maintenance of pregnancy. The beta subunit of CG is encoded by 6 genes which are arranged in tandem and inverted pairs on chromosome 19q13.3 and contiguous with the luteinizing hormone beta subunit gene. [provided by RefSeq, Jul 2008]

CGB7 Gene

chorionic gonadotropin, beta polypeptide 7

This gene is a member of the glycoprotein hormone beta chain family and encodes the beta 7 subunit of chorionic gonadotropin (CG). Glycoprotein hormones are heterodimers consisting of a common alpha subunit and an unique beta subunit which confers biological specificity. CG is produced by the trophoblastic cells of the placenta and stimulates the ovaries to synthesize the steroids that are essential for the maintenance of pregnancy. The beta subunit of CG is encoded by 6 genes which are arranged in tandem and inverted pairs on chromosome 19q13.3 and contiguous with the luteinizing hormone beta subunit gene. [provided by RefSeq, Jul 2008]

CGB1 Gene

chorionic gonadotropin, beta polypeptide 1

The beta subunit of chorionic gonadotropin (CGB) is encoded by six highly homologous and structurally similar genes that are arranged in tandem and inverted pairs on chromosome 19q13.3, and contiguous with the luteinizing hormone beta (LHB) subunit gene. The CGB genes are primarily distinguished by differences in the 5' untranscribed region. This gene was originally thought to be one of the two pseudogenes (CGB1 and CGB2) of CGB subunit, however, detection of CGB1 and CGB2 transcripts in vivo, and their presence on the polysomes, suggested that these transcripts are translated. To date, a protein product corresponding to CGB1 has not been isolated. The deduced sequence of the hypothetical protein of 132 aa does not share any similarity with that of functional CGB subunits (PMID:8954017). However, a 155 aa protein, translated from a different frame, is about the same size, and shares 98% identity with other CGB subunits. [provided by RefSeq, Jul 2008]

CGB2 Gene

chorionic gonadotropin, beta polypeptide 2

The beta subunit of chorionic gonadotropin (CGB) is encoded by six highly homologous and structurally similar genes that are arranged in tandem and inverted pairs on chromosome 19q13.3, and contiguous with the luteinizing hormone beta (LHB) subunit gene. The CGB genes are primarily distinguished by differences in the 5' untranscribed region. This gene was originally thought to be one of the two pseudogenes (CGB1 and CGB2) of CGB subunit, however, detection of CGB1 and CGB2 transcripts in vivo, and their presence on the polysomes, suggested that these transcripts are translated. To date, a protein product corresponding to CGB2 has not been isolated. The deduced sequence of the hypothetical protein of 132 aa does not share any similarity with that of functional CGB subunits (PMID:8954017). However, a 163 aa protein, translated from a different frame, is about the same size, and shares 98% identity with other CGB subunits. [provided by RefSeq, Jul 2008]

LOC100128711 Gene

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa pseudogene

TMSB4X Gene

thymosin beta 4, X-linked

This gene encodes an actin sequestering protein which plays a role in regulation of actin polymerization. The protein is also involved in cell proliferation, migration, and differentiation. This gene escapes X inactivation and has a homolog on chromosome Y. [provided by RefSeq, Jul 2008]

TMSB4Y Gene

thymosin beta 4, Y-linked

This gene lies within the male specific region of chromosome Y. Its homolog on chromosome X escapes X inactivation and encodes an actin sequestering protein. [provided by RefSeq, Jul 2008]

APBB1 Gene

amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65)

The protein encoded by this gene is a member of the Fe65 protein family. It is an adaptor protein localized in the nucleus. It interacts with the Alzheimer's disease amyloid precursor protein (APP), transcription factor CP2/LSF/LBP1 and the low-density lipoprotein receptor-related protein. APP functions as a cytosolic anchoring site that can prevent the gene product's nuclear translocation. This encoded protein could play an important role in the pathogenesis of Alzheimer's disease. It is thought to regulate transcription. Also it is observed to block cell cycle progression by downregulating thymidylate synthase expression. Multiple alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Mar 2012]

APBB2 Gene

amyloid beta (A4) precursor protein-binding, family B, member 2

The protein encoded by this gene interacts with the cytoplasmic domains of amyloid beta (A4) precursor protein and amyloid beta (A4) precursor-like protein 2. This protein contains two phosphotyrosine binding (PTB) domains, which are thought to function in signal transduction. Polymorphisms in this gene have been associated with Alzheimer's disease. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

APBB3 Gene

amyloid beta (A4) precursor protein-binding, family B, member 3

The protein encoded by this gene is a member of the APBB protein family. It is found in the cytoplasm and binds to the intracellular domain of the Alzheimer's disease beta-amyloid precursor protein (APP) as well as to other APP-like proteins. It is thought that the protein encoded by this gene may modulate the internalization of APP. Multiple transcript variants encoding several different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GUSBP11 Gene

glucuronidase, beta pseudogene 11

This transcribed pseudogene is similar to two functional genes. The 5' portion of the pseudogene is related to glucuronidase, beta, and the 3' portion is related to immunoglobulin lambda-like polypeptide 1. [provided by RefSeq, Jul 2011]

HSD17B8 Gene

hydroxysteroid (17-beta) dehydrogenase 8

In mice, the Ke6 protein is a 17-beta-hydroxysteroid dehydrogenase that can regulate the concentration of biologically active estrogens and androgens. It is preferentially an oxidative enzyme and inactivates estradiol, testosterone, and dihydrotestosterone. However, the enzyme has some reductive activity and can synthesize estradiol from estrone. The protein encoded by this gene is similar to Ke6 and is a member of the short-chain dehydrogenase superfamily. An alternatively spliced transcript of this gene has been detected, but the full-length nature of this variant has not been determined. [provided by RefSeq, Jul 2008]

HSD17B1 Gene

hydroxysteroid (17-beta) dehydrogenase 1

HSD17B2 Gene

hydroxysteroid (17-beta) dehydrogenase 2

HSD17B3 Gene

hydroxysteroid (17-beta) dehydrogenase 3

This isoform of 17 beta-hydroxysteroid dehydrogenase is expressed predominantly in the testis and catalyzes the conversion of androstenedione to testosterone. It preferentially uses NADP as cofactor. Deficiency can result in male pseudohermaphroditism with gynecomastia. [provided by RefSeq, Jul 2008]

HSD17B4 Gene

hydroxysteroid (17-beta) dehydrogenase 4

The protein encoded by this gene is a bifunctional enzyme that is involved in the peroxisomal beta-oxidation pathway for fatty acids. It also acts as a catalyst for the formation of 3-ketoacyl-CoA intermediates from both straight-chain and 2-methyl-branched-chain fatty acids. Defects in this gene that affect the peroxisomal fatty acid beta-oxidation activity are a cause of D-bifunctional protein deficiency (DBPD). An apparent pseudogene of this gene is present on chromosome 8. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, May 2014]

HSD17B6 Gene

hydroxysteroid (17-beta) dehydrogenase 6

The protein encoded by this gene has both oxidoreductase and epimerase activities and is involved in androgen catabolism. The oxidoreductase activity can convert 3 alpha-adiol to dihydrotestosterone, while the epimerase activity can convert androsterone to epi-androsterone. Both reactions use NAD+ as the preferred cofactor. This gene is a member of the retinol dehydrogenase family. [provided by RefSeq, Aug 2013]

HSD17B7 Gene

hydroxysteroid (17-beta) dehydrogenase 7

HSD17B7 encodes an enzyme that functions both as a 17-beta-hydroxysteroid dehydrogenase (EC 1.1.1.62) in the biosynthesis of sex steroids and as a 3-ketosteroid reductase (EC 1.1.1.270) in the biosynthesis of cholesterol (Marijanovic et al., 2003 [PubMed 12829805]).[supplied by OMIM, May 2010]

LOC100287189 Gene

Sec61 beta subunit pseudogene

<