Name

ART4 Gene

ADP-ribosyltransferase 4 (Dombrock blood group)

This gene encodes a protein that contains a mono-ADP-ribosylation (ART) motif. It is a member of the ADP-ribosyltransferase gene family but enzymatic activity has not been demonstrated experimentally. Antigens of the Dombrock blood group system are located on the gene product, which is glycosylphosphatidylinosotol-anchored to the erythrocyte membrane. Allelic variants, some of which lead to adverse transfusion reactions, are known. [provided by RefSeq, Jul 2008]

GCNT2 Gene

glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group)

This gene encodes the enzyme responsible for formation of the blood group I antigen. The i and I antigens are distinguished by linear and branched poly-N-acetyllactosaminoglycans, respectively. The encoded protein is the I-branching enzyme, a beta-1,6-N-acetylglucosaminyltransferase responsible for the conversion of fetal i antigen to adult I antigen in erythrocytes during embryonic development. Mutations in this gene have been associated with adult i blood group phenotype. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

LOC100422225 Gene

ATP-binding cassette, sub-family G (WHITE), member 2 (Junior blood group) pseudogene

BP49 Gene

Blood pressure QTL 49

C4B Gene

complement component 4B (Chido blood group)

This gene encodes the basic form of complement factor 4, part of the classical activation pathway. The protein is expressed as a single chain precursor which is proteolytically cleaved into a trimer of alpha, beta, and gamma chains prior to secretion. The trimer provides a surface for interaction between the antigen-antibody complex and other complement components. The alpha chain may be cleaved to release C4 anaphylatoxin, a mediator of local inflammation. Deficiency of this protein is associated with systemic lupus erythematosus. This gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6. Varying haplotypes of this gene cluster exist, such that individuals may have 1, 2, or 3 copies of this gene. In addition, this gene exists as a long form and a short form due to the presence or absence of a 6.4 kb endogenous HERV-K retrovirus in intron 9. [provided by RefSeq, Jul 2008]

BP24 Gene

Blood pressure QTL 24

BP25 Gene

Blood pressure QTL 25

BP26 Gene

Blood pressure QTL 26

BP27 Gene

Blood pressure QTL 27

BP20 Gene

Blood pressure QTL 20

BP21 Gene

Blood pressure QTL 21

BP22 Gene

Blood pressure QTL 22

BP23 Gene

Blood pressure QTL 23

BP28 Gene

Blood pressure QTL 28

BP29 Gene

Blood pressure QTL 29

SF Gene

Stoltzfus blood group

SLC4A1 Gene

solute carrier family 4 (anion exchanger), member 1 (Diego blood group)

The protein encoded by this gene is part of the anion exchanger (AE) family and is expressed in the erythrocyte plasma membrane, where it functions as a chloride/bicarbonate exchanger involved in carbon dioxide transport from tissues to lungs. The protein comprises two domains that are structurally and functionally distinct. The N-terminal 40kDa domain is located in the cytoplasm and acts as an attachment site for the red cell skeleton by binding ankyrin. The glycosylated C-terminal membrane-associated domain contains 12-14 membrane spanning segments and carries out the stilbene disulphonate-sensitive exchange transport of anions. The cytoplasmic tail at the extreme C-terminus of the membrane domain binds carbonic anhydrase II. The encoded protein associates with the red cell membrane protein glycophorin A and this association promotes the correct folding and translocation of the exchanger. This protein is predominantly dimeric but forms tetramers in the presence of ankyrin. Many mutations in this gene are known in man, and these mutations can lead to two types of disease: destabilization of red cell membrane leading to hereditary spherocytosis, and defective kidney acid secretion leading to distal renal tubular acidosis. Other mutations that do not give rise to disease result in novel blood group antigens, which form the Diego blood group system. Southeast Asian ovalocytosis (SAO, Melanesian ovalocytosis) results from the heterozygous presence of a deletion in the encoded protein and is common in areas where Plasmodium falciparum malaria is endemic. One null mutation in this gene is known, resulting in very severe anemia and nephrocalcinosis. [provided by RefSeq, Jul 2008]

ABCB6 Gene

ATP-binding cassette, sub-family B (MDR/TAP), member 6 (Langereis blood group)

The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance as well as antigen presentation. This half-transporter likely plays a role in mitochondrial function. Localized to 2q26, this gene is considered a candidate gene for lethal neonatal metabolic syndrome, a disorder of mitochondrial function. [provided by RefSeq, Jul 2008]

XK Gene

X-linked Kx blood group

This locus controls the synthesis of the Kell blood group 'precursor substance' (Kx). Mutations in this gene have been associated with McLeod syndrome, an X-linked, recessive disorder characterized by abnormalities in the neuromuscular and hematopoietic systems. The encoded protein has structural characteristics of prokaryotic and eukaryotic membrane transport proteins. [provided by RefSeq, Jul 2008]

XG Gene

Xg blood group

This gene encodes the XG blood group antigen, and is located at the pseudoautosomal boundary on the short (p) arm of chromosome X. The three 5' exons reside in the pseudoautosomal region and the remaining exons within the X-specific end. A truncated copy of this gene is found on the Y chromosome at the pseudoautosomal boundary. It is transcribed, but not expected to make a Y-chromosome specific gene product. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2008]

CD55 Gene

CD55 molecule, decay accelerating factor for complement (Cromer blood group)

This gene encodes a glycoprotein involved in the regulation of the complement cascade. Binding of the encoded protein to complement proteins accelerates their decay, thereby disrupting the cascade and preventing damage to host cells. Antigens present on this protein constitute the Cromer blood group system (CROM). Alternative splicing results in multiple transcript variants. The predominant transcript variant encodes a membrane-bound protein, but alternatively spliced transcripts may produce soluble proteins. [provided by RefSeq, Jul 2014]

LOC100422194 Gene

ATP-binding cassette, sub-family G (WHITE), member 2 (Junior blood group) pseudogene

ERMAP Gene

erythroblast membrane-associated protein (Scianna blood group)

The protein encoded by this gene is a cell surface transmembrane protein that may act as an erythroid cell receptor, possibly as a mediator of cell adhesion. Polymorphisms in this gene are responsible for the Scianna/Radin blood group system. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

BP1 Gene

Blood pressure QTL 1

BP3 Gene

Blood pressure QTL 3

BP2 Gene

Blood pressure QTL 2

BP5 Gene

Blood pressure QTL 5

BP4 Gene

Blood pressure QTL 4

BP7 Gene

Blood pressure QTL 7

BP6 Gene

Blood pressure QTL 6

BP9 Gene

Blood pressure QTL 9

BP8 Gene

Blood pressure QTL 8

AQP3 Gene

aquaporin 3 (Gill blood group)

This gene encodes the water channel protein aquaporin 3. Aquaporins are a family of small integral membrane proteins related to the major intrinsic protein, also known as aquaporin 0. Aquaporin 3 is localized at the basal lateral membranes of collecting duct cells in the kidney. In addition to its water channel function, aquaporin 3 has been found to facilitate the transport of nonionic small solutes such as urea and glycerol, but to a smaller degree. It has been suggested that water channels can be functionally heterogeneous and possess water and solute permeation mechanisms. [provided by RefSeq, Aug 2011]

LOC401913 Gene

ABO blood group (transferase A, alpha 1-3-N-acetylgalactosaminyltransferase; transferase B, alpha 1-3-galactosyltransferase) pseudogene

SLC14A1 Gene

solute carrier family 14 (urea transporter), member 1 (Kidd blood group)

The protein encoded by this gene is a membrane transporter that mediates urea transport in erythrocytes. This gene forms the basis for the Kidd blood group system. [provided by RefSeq, Mar 2009]

ABCG2 Gene

ATP-binding cassette, sub-family G (WHITE), member 2 (Junior blood group)

The membrane-associated protein encoded by this gene is included in the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the White subfamily. Alternatively referred to as a breast cancer resistance protein, this protein functions as a xenobiotic transporter which may play a major role in multi-drug resistance. It likely serves as a cellular defense mechanism in response to mitoxantrone and anthracycline exposure. Significant expression of this protein has been observed in the placenta, which may suggest a potential role for this molecule in placenta tissue. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2012]

KEL Gene

Kell blood group, metallo-endopeptidase

This gene encodes a type II transmembrane glycoprotein that is the highly polymorphic Kell blood group antigen. The Kell glycoprotein links via a single disulfide bond to the XK membrane protein that carries the Kx antigen. The encoded protein contains sequence and structural similarity to members of the neprilysin (M13) family of zinc endopeptidases. [provided by RefSeq, Jul 2008]

LOC100499223 Gene

beta-1,3-N-acetylgalactosaminyltransferase 1 (globoside blood group) pseudogene

ACKR1 Gene

atypical chemokine receptor 1 (Duffy blood group)

The protein encoded by this gene is a glycosylated membrane protein and a non-specific receptor for several chemokines. The encoded protein is the receptor for the human malarial parasites Plasmodium vivax and Plasmodium knowlesi. Polymorphisms in this gene are the basis of the Duffy blood group system. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SEMA7A Gene

semaphorin 7A, GPI membrane anchor (John Milton Hagen blood group)

The protein encoded by this gene binds to cell surfaces through a glycosylphosphatidylinositol (GPI) linkage. The encoded glycoprotein is found on activated lymphocytes and erythrocytes. This protein may be involved in immunomodulatory and neuronal processes. Defects in this gene can result in loss of bone mineral density (BMD). Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Mar 2009]

XKRYP6 Gene

XK, Kell blood group complex subunit-related, Y-linked pseudogene 6

XKRYP4 Gene

XK, Kell blood group complex subunit-related, Y-linked pseudogene 4

XKRYP5 Gene

XK, Kell blood group complex subunit-related, Y-linked pseudogene 5

XKRYP2 Gene

XK, Kell blood group complex subunit-related, Y-linked pseudogene 2

XKRYP3 Gene

XK, Kell blood group complex subunit-related, Y-linked pseudogene 3

XKRYP1 Gene

XK, Kell blood group complex subunit-related, Y-linked pseudogene 1

FUT3 Gene

fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis blood group)

The Lewis histo-blood group system comprises a set of fucosylated glycosphingolipids that are synthesized by exocrine epithelial cells and circulate in body fluids. The glycosphingolipids function in embryogenesis, tissue differentiation, tumor metastasis, inflammation, and bacterial adhesion. They are secondarily absorbed to red blood cells giving rise to their Lewis phenotype. This gene is a member of the fucosyltransferase family, which catalyzes the addition of fucose to precursor polysaccharides in the last step of Lewis antigen biosynthesis. It encodes an enzyme with alpha(1,3)-fucosyltransferase and alpha(1,4)-fucosyltransferase activities. Mutations in this gene are responsible for the majority of Lewis antigen-negative phenotypes. Multiple alternatively spliced variants, encoding the same protein, have been found for this gene. [provided by RefSeq, Jul 2008]

FUT1 Gene

fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase, H blood group)

The protein encoded by this gene is a Golgi stack membrane protein that is involved in the creation of a precursor of the H antigen, which is required for the final step in the soluble A and B antigen synthesis pathway. This gene is one of two encoding the galactoside 2-L-fucosyltransferase enzyme. Mutations in this gene are a cause of the H-Bombay blood group. [provided by RefSeq, Jul 2008]

AQP1 Gene

aquaporin 1 (Colton blood group)

Aquaporins are a family of small integral membrane proteins related to the major intrinsic protein (MIP or AQP0). This gene encodes an aquaporin which functions as a molecular water channel protein. It is a homotetramer with 6 bilayer spanning domains and N-glycosylation sites. The protein physically resembles channel proteins and is abundant in erythrocytes and renal tubes. The gene encoding this aquaporin is a possible candidate for disorders involving imbalance in ocular fluid movement. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2010]

SMIM1 Gene

small integral membrane protein 1 (Vel blood group)

This gene encodes a small, conserved protein that participates in red blood cell formation. The encoded protein is localized to the cell membrane and is the antigen for the Vel blood group. Alternative splicing results in different transcript variants that encode the same protein. [provided by RefSeq, Dec 2013]

LOC100533842 Gene

ATP-binding cassette, sub-family G (WHITE), member 2 (Junior blood group) pseudogene

ICAM4 Gene

intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)

This gene encodes the Landsteiner-Wiener (LW) blood group antigen(s) that belongs to the immunoglobulin (Ig) superfamily, and that shares similarity with the intercellular adhesion molecule (ICAM) protein family. This ICAM protein contains 2 Ig-like C2-type domains and binds to the leukocyte adhesion LFA-1 protein. The molecular basis of the LW(A)/LW(B) blood group antigens is a single aa variation at position 100; Gln-100=LW(A) and Arg-100=LW(B). Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

BP51 Gene

Blood pressure QTL 51

BP50 Gene

Blood pressure QTL 50

BP53 Gene

Blood pressure QTL 53

BP52 Gene

Blood pressure QTL 52

BP55 Gene

Blood pressure QTL 55

BP54 Gene

Blood pressure QTL 54

PFBI Gene

Plasmodium falciparum blood infection levels

RHD Gene

Rh blood group, D antigen

The Rh blood group system is the second most clinically significant of the blood groups, second only to ABO. It is also the most polymorphic of the blood groups, with variations due to deletions, gene conversions, and missense mutations. The Rh blood group includes this gene, which encodes the RhD protein, and a second gene that encodes both the RhC and RhE antigens on a single polypeptide. The two genes, and a third unrelated gene, are found in a cluster on chromosome 1. The classification of Rh-positive and Rh-negative individuals is determined by the presence or absence of the highly immunogenic RhD protein on the surface of erythrocytes. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

CR1 Gene

complement component (3b/4b) receptor 1 (Knops blood group)

This gene is a member of the receptors of complement activation (RCA) family and is located in the 'cluster RCA' region of chromosome 1. The gene encodes a monomeric single-pass type I membrane glycoprotein found on erythrocytes, leukocytes, glomerular podocytes, and splenic follicular dendritic cells. The Knops blood group system is a system of antigens located on this protein. The protein mediates cellular binding to particles and immune complexes that have activated complement. Decreases in expression of this protein and/or mutations in its gene have been associated with gallbladder carcinomas, mesangiocapillary glomerulonephritis, systemic lupus erythematosus and sarcoidosis. Mutations in this gene have also been associated with a reduction in Plasmodium falciparum rosetting, conferring protection against severe malaria. Alternate allele-specific splice variants, encoding different isoforms, have been characterized. Additional allele specific isoforms, including a secreted form, have been described but have not been fully characterized. [provided by RefSeq, Jul 2008]

CD151 Gene

CD151 molecule (Raph blood group)

The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobic domains. The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility. This encoded protein is a cell surface glycoprotein that is known to complex with integrins and other transmembrane 4 superfamily proteins. It is involved in cellular processes including cell adhesion and may regulate integrin trafficking and/or function. This protein enhances cell motility, invasion and metastasis of cancer cells. Multiple alternatively spliced transcript variants that encode the same protein have been described for this gene. [provided by RefSeq, Jul 2008]

B3GALNT1 Gene

beta-1,3-N-acetylgalactosaminyltransferase 1 (globoside blood group)

This gene is a member of the beta-1,3-galactosyltransferase (beta3GalT) gene family. This family encodes type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesized by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). The encoded protein of this gene does not use N-acetylglucosamine as an acceptor sugar at all. Multiple transcript variants that are alternatively spliced in the 5' UTR have been described; they all encode the same protein. [provided by RefSeq, Jul 2008]

BSG Gene

basigin (Ok blood group)

The protein encoded by this gene is a plasma membrane protein that is important in spermatogenesis, embryo implantation, neural network formation, and tumor progression. The encoded protein is also a member of the immunoglobulin superfamily. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SEC1P Gene

secretory blood group 1, pseudogene

GYPA Gene

glycophorin A (MNS blood group)

Glycophorins A (GYPA) and B (GYPB) are major sialoglycoproteins of the human erythrocyte membrane which bear the antigenic determinants for the MN and Ss blood groups. In addition to the M or N and S or s antigens that commonly occur in all populations, about 40 related variant phenotypes have been identified. These variants include all the variants of the Miltenberger complex and several isoforms of Sta, as well as Dantu, Sat, He, Mg, and deletion variants Ena, S-s-U- and Mk. Most of the variants are the result of gene recombinations between GYPA and GYPB. [provided by RefSeq, Jul 2008]

GYPB Gene

glycophorin B (MNS blood group)

Glycophorins A (GYPA) and B (GYPB) are major sialoglycoproteins of the human erythrocyte membrane which bear the antigenic determinants for the MN and Ss blood groups. GYPB gene consists of 5 exons and has 97% sequence homology with GYPA from the 5' UTR to the coding sequence encoding the first 45 amino acids. In addition to the M or N and S or s antigens, that commonly occur in all populations, about 40 related variant phenotypes have been identified. These variants include all the variants of the Miltenberger complex and several isoforms of Sta; also, Dantu, Sat, He, Mg, and deletion variants Ena, S-s-U- and Mk. Most of the variants are the result of gene recombinations between GYPA and GYPB. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jan 2015]

GYPC Gene

glycophorin C (Gerbich blood group)

Glycophorin C (GYPC) is an integral membrane glycoprotein. It is a minor species carried by human erythrocytes, but plays an important role in regulating the mechanical stability of red cells. A number of glycophorin C mutations have been described. The Gerbich and Yus phenotypes are due to deletion of exon 3 and 2, respectively. The Webb and Duch antigens, also known as glycophorin D, result from single point mutations of the glycophorin C gene. The glycophorin C protein has very little homology with glycophorins A and B. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2012]

GYPE Gene

glycophorin E (MNS blood group)

The protein encoded by this gene is a sialoglycoprotein and a type I membrane protein. It is a member of a gene family with GPA and GPB genes. This encoded protein might carry the M blood group antigen. GYPA, GYPB, and GYPE are organized in tandem on chromosome 4. This gene might have derived from an ancestral gene common to the GPB gene by gene duplication. Two alternatively spliced transcript variants encoding the same protein have been described for this gene. [provided by RefSeq, Jul 2008]

XKR9 Gene

XK, Kell blood group complex subunit-related family, member 9

XKR8 Gene

XK, Kell blood group complex subunit-related family, member 8

LOC100422434 Gene

complement component (3b/4b) receptor 1 (Knops blood group) pseudogene

C4B_2 Gene

complement component 4B (Chido blood group), copy 2

This gene encodes the basic form of complement factor 4, part of the classical activation pathway. The protein is expressed as a single chain precursor which is proteolytically cleaved into a trimer of alpha, beta, and gamma chains prior to secretion. The trimer provides a surface for interaction between the antigen-antibody complex and other complement components. The alpha chain may be cleaved to release C4 anaphylatoxin, a mediator of local inflammation. Deficiency of this protein is associated with systemic lupus erythematosus. This gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6. Varying haplotypes of this gene cluster exist, such that individuals may have 1, 2, or 3 copies of this gene. In addition, this gene exists as a long form and a short form due to the presence or absence of a 6.4 kb endogenous HERV-K retrovirus in intron 9. This GeneID and its associated RefSeq record represent a second copy of C4B found on ALT_REF_LOCI_7. [provided by RefSeq, Jul 2011]

C4A Gene

complement component 4A (Rodgers blood group)

This gene encodes the acidic form of complement factor 4, part of the classical activation pathway. The protein is expressed as a single chain precursor which is proteolytically cleaved into a trimer of alpha, beta, and gamma chains prior to secretion. The trimer provides a surface for interaction between the antigen-antibody complex and other complement components. The alpha chain is cleaved to release C4 anaphylatoxin, an antimicrobial peptide and a mediator of local inflammation. Deficiency of this protein is associated with systemic lupus erythematosus and type I diabetes mellitus. This gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6. Varying haplotypes of this gene cluster exist, such that individuals may have 1, 2, or 3 copies of this gene. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2014]

BP37 Gene

Blood pressure QTL 37

BP36 Gene

Blood pressure QTL 36

BP35 Gene

Blood pressure QTL 35

BP34 Gene

Blood pressure QTL 34

BP33 Gene

Blood pressure QTL 33

BP32 Gene

Blood pressure QTL 32

BP31 Gene

Blood pressure QTL 31

BP30 Gene

Blood pressure QTL 30

BP39 Gene

Blood pressure QTL 39

BP38 Gene

Blood pressure QTL 38

BVES Gene

blood vessel epicardial substance

This gene encodes a member of the POP family of proteins containing three putative transmembrane domains. This gene is expressed in cardiac and skeletal muscle and may play an important role in development of these tissues. The mouse ortholog may be involved in the regeneration of adult skeletal muscle and may act as a cell adhesion molecule in coronary vasculogenesis. Three transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Dec 2010]

BP18 Gene

Blood pressure QTL 18

BP14 Gene

Blood pressure QTL 14

XKRY2 Gene

XK, Kell blood group complex subunit-related, Y-linked 2

This gene is located in the nonrecombining portion of the Y chromosome, and is expressed specifically in testis. It encodes a protein which is similar to XK (X-linked Kell blood group precursor), a putative membrane transport protein. This gene is present as two identical copies within a palindromic region; this record represents the more telomeric copy. [provided by RefSeq, Jul 2008]

ACHE Gene

acetylcholinesterase (Yt blood group)

Acetylcholinesterase hydrolyzes the neurotransmitter, acetylcholine at neuromuscular junctions and brain cholinergic synapses, and thus terminates signal transmission. It is also found on the red blood cell membranes, where it constitutes the Yt blood group antigen. Acetylcholinesterase exists in multiple molecular forms which possess similar catalytic properties, but differ in their oligomeric assembly and mode of cell attachment to the cell surface. It is encoded by the single ACHE gene, and the structural diversity in the gene products arises from alternative mRNA splicing, and post-translational associations of catalytic and structural subunits. The major form of acetylcholinesterase found in brain, muscle and other tissues is the hydrophilic species, which forms disulfide-linked oligomers with collagenous, or lipid-containing structural subunits. The other, alternatively spliced form, expressed primarily in the erythroid tissues, differs at the C-terminal end, and contains a cleavable hydrophobic peptide with a GPI-anchor site. It associates with the membranes through the phosphoinositide (PI) moieties added post-translationally. [provided by RefSeq, Jul 2008]

CD44 Gene

CD44 molecule (Indian blood group)

The protein encoded by this gene is a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion and migration. It is a receptor for hyaluronic acid (HA) and can also interact with other ligands, such as osteopontin, collagens, and matrix metalloproteinases (MMPs). This protein participates in a wide variety of cellular functions including lymphocyte activation, recirculation and homing, hematopoiesis, and tumor metastasis. Transcripts for this gene undergo complex alternative splicing that results in many functionally distinct isoforms, however, the full length nature of some of these variants has not been determined. Alternative splicing is the basis for the structural and functional diversity of this protein, and may be related to tumor metastasis. [provided by RefSeq, Jul 2008]

BP46 Gene

Blood pressure QTL 46

BP47 Gene

Blood pressure QTL 47

BP45 Gene

Blood pressure QTL 45

BP48 Gene

Blood pressure QTL 48

AN Gene

blood group Ahonen

ABO Gene

ABO blood group (transferase A, alpha 1-3-N-acetylgalactosaminyltransferase; transferase B, alpha 1-3-galactosyltransferase)

This gene encodes proteins related to the first discovered blood group system, ABO. Which allele is present in an individual determines the blood group. The 'O' blood group is caused by a deletion of guanine-258 near the N-terminus of the protein which results in a frameshift and translation of an almost entirely different protein. Individuals with the A, B, and AB alleles express glycosyltransferase activities that convert the H antigen into the A or B antigen. Other minor alleles have been found for this gene. [provided by RefSeq, Jul 2008]

XKRY Gene

XK, Kell blood group complex subunit-related, Y-linked

This gene is located in the nonrecombining portion of the Y chromosome, and is expressed specifically in testis. It encodes a protein which is similar to XK (X-linked Kell blood group precursor), a putative membrane transport protein. This gene is present as two identical copies within a palindromic region; this record represents the more centromeric copy. [provided by RefSeq, Jul 2008]

XKRX Gene

XK, Kell blood group complex subunit-related, X-linked

This gene encodes a protein that is related to a component of the XK/Kell complex of the Kell blood group system. The encoded protein includes several transmembrane domains, is known to be exposed to the cell surface, and may function as a membrane transporter. [provided by RefSeq, May 2010]

XKR5 Gene

XK, Kell blood group complex subunit-related family, member 5

XKR4 Gene

XK, Kell blood group complex subunit-related family, member 4

XKR7 Gene

XK, Kell blood group complex subunit-related family, member 7

XKR6 Gene

XK, Kell blood group complex subunit-related family, member 6

XKR3 Gene

XK, Kell blood group complex subunit-related family, member 3

XKRX (MIM 300684) and XKR3 are homologs of the Kell blood group precursor XK (MIM 314850), which is a putative membrane transporter and a component of the XK/Kell complex of the Kell blood group system (Calenda et al., 2006 [PubMed 16431037]).[supplied by OMIM, Mar 2008]

LOC100422564 Gene

glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group) pseudogene

BP19 Gene

Blood pressure QTL 19

BP15 Gene

Blood pressure QTL 15

BP17 Gene

Blood pressure QTL 17

BP16 Gene

Blood pressure QTL 16

BP11 Gene

Blood pressure QTL 11

BP10 Gene

Blood pressure QTL 10

BP13 Gene

Blood pressure QTL 13

BP12 Gene

Blood pressure QTL 12

BCAM Gene

basal cell adhesion molecule (Lutheran blood group)

This gene encodes Lutheran blood group glycoprotein, a member of the immunoglobulin superfamily and a receptor for the extracellular matrix protein, laminin. The protein contains five extracellular immunoglobulin domains, a single transmembrane domain, and a short C-terminal cytoplasmic tail. This protein may play a role in epithelial cell cancer and in vaso-occlusion of red blood cells in sickle cell disease. Polymorphisms in this gene define some of the antigens in the Lutheran system and also the Auberger system. Inactivating variants of this gene result in the recessive Lutheran null phenotype, Lu(a-b-), of the Lutheran blood group. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2012]

RHCE Gene

Rh blood group, CcEe antigens

The Rh blood group system is the second most clinically significant of the blood groups, second only to ABO. It is also the most polymorphic of the blood groups, with variations due to deletions, gene conversions, and missense mutations. The Rh blood group includes this gene which encodes both the RhC and RhE antigens on a single polypeptide and a second gene which encodes the RhD protein. The classification of Rh-positive and Rh-negative individuals is determined by the presence or absence of the highly immunogenic RhD protein on the surface of erythrocytes. A mutation in this gene results in amorph-type Rh-null disease. Alternative splicing of this gene results in four transcript variants encoding four different isoforms. [provided by RefSeq, Jul 2008]