Name

CHEA Transcription Factor Binding Site Profiles Dataset

From ChIP-X Enrichment Analysis

transcription factor binding site profiles from published ChIP-chip, ChIP-seq, and other transcription factor functional studies

ENCODE Transcription Factor Binding Site Profiles Dataset

From Encyclopedia of DNA Elements

transcription factor binding site profiles for cell lines

Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq Dataset

From Allen Brain Atlas

mRNA expression profiles for human brain tissue samples spanning 31 time points and 26 brain structures

Roadmap Epigenomics Cell and Tissue DNA Accessibility Profiles Dataset

From Roadmap Epigenomics

DNA accessibility profiles for primary cell types and tissues

Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles Dataset

From Roadmap Epigenomics

DNA methylation profiles for primary cell types and tissues

CHEA Transcription Factor Targets Dataset

From ChIP-X Enrichment Analysis

target genes of transcription factors from published ChIP-chip, ChIP-seq, and other transcription factor binding site profiling studies

ENCODE Transcription Factor Targets Dataset

From Encyclopedia of DNA Elements

target genes of transcription factors from transcription factor binding site profiles

GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations Dataset

From Gene Expression Omnibus

mRNA expression profiles for cell lines or tissues following transcription factor perturbation (inhibition, activation, knockdown, knockout, over-expression, mutation)

JASPAR Predicted Transcription Factor Targets Dataset

From Jaspar PWMs

target genes of transcription factors predicted using known transcription factor binding site motifs

MotifMap Predicted Transcription Factor Targets Dataset

From MotifMap

target genes of transcription factors predicted using known transcription factor binding site motifs

TRANSFAC Curated Transcription Factor Targets Dataset

From TRANSFAC

target genes of transcription factors manually curated from low-throughput or high-throughput transcription factor functional studies

TRANSFAC Predicted Transcription Factor Targets Dataset

From TRANSFAC

target genes of transcription factors predicted using known transcription factor binding site motifs

ENCODE Histone Modification Site Profiles Dataset

From Encyclopedia of DNA Elements

histone modification profiles for cell lines

SPIDR Gene

scaffolding protein involved in DNA repair

PANDAR Gene

promoter of CDKN1A antisense DNA damage activated RNA

TPR Gene

translocated promoter region, nuclear basket protein

This gene encodes a large coiled-coil protein that forms intranuclear filaments attached to the inner surface of nuclear pore complexes (NPCs). The protein directly interacts with several components of the NPC. It is required for the nuclear export of mRNAs and some proteins. Oncogenic fusions of the 5' end of this gene with several different kinase genes occur in some neoplasias. [provided by RefSeq, Jul 2008]

GAPLINC Gene

gastric adenocarcinoma associated, positive CD44 regulator, long intergenic non-coding RNA

LOC100129955 Gene

RNA polymerase I-specific transcription initiation factor RRN3-like

BISPR Gene

BST2 interferon stimulated positive regulator (non-protein coding)

TESPA1 Gene

thymocyte expressed, positive selection associated 1

MDCMP Gene

muscular dystrophy, congenital, merosin-positive

GPBP1 Gene

GC-rich promoter binding protein 1

This gene was originally isolated by subtractive hybridization of cDNAs expressed in atherosclerotic plaques with a thrombus, and was found to be expressed only in vascular smooth muscle cells. However, a shorter splice variant was found to be more ubiquitously expressed. This protein is suggested to play a role in the development of atherosclerosis. Studies in mice suggest that it may also function as a GC-rich promoter-specific trans-activating transcription factor. Several alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Feb 2011]

DBP Gene

D site of albumin promoter (albumin D-box) binding protein

The protein encoded by this gene is a member of the PAR bZIP transcription factor family and binds to specific sequences in the promoters of several genes, such as albumin, CYP2A4, and CYP2A5. The encoded protein can bind DNA as a homo- or heterodimer and is involved in the regulation of some circadian rhythm genes. [provided by RefSeq, Jul 2014]

LOC100131038 Gene

GC-rich promoter binding protein 1 pseudogene

RIBIN Gene

rRNA promoter binding protein

GPBP1L1 Gene

GC-rich promoter binding protein 1-like 1

UBTF Gene

upstream binding transcription factor, RNA polymerase I

This gene encodes a member of the HMG-box DNA-binding protein family. The encoded protein plays a critical role in ribosomal RNA transcription as a key component of the pre-initiation complex, mediating the recruitment of RNA polymerase I to rDNA promoter regions. The encoded protein may also play important roles in chromatin remodeling and pre-rRNA processing, and its activity is regulated by both phosphorylation and acetylation. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. Pseudogenes of this gene are located on the short arm of chromosomes 3, 11 and X and the long arm of chromosome 11. [provided by RefSeq, Aug 2011]

LOC100128427 Gene

upstream binding transcription factor, RNA polymerase I pseudogene

UBTFL5 Gene

upstream binding transcription factor, RNA polymerase I-like 5 (pseudogene)

UBTFL7 Gene

upstream binding transcription factor, RNA polymerase I-like 7 (pseudogene)

UBTFL6 Gene

upstream binding transcription factor, RNA polymerase I-like 6 (pseudogene)

UBTFL1 Gene

upstream binding transcription factor, RNA polymerase I-like 1

UBTFL1 is a preimplantation-specific gene and is involved in early development, implantation, and embryonic stem (ES) cell derivation (summary by Yamada et al., 2010 [PubMed 19915186]).[supplied by OMIM, Jan 2011]

UBTFL3 Gene

upstream binding transcription factor, RNA polymerase I-like 3 (pseudogene)

UBTFL2 Gene

upstream binding transcription factor, RNA polymerase I-like 2 (pseudogene)

UBTFL8 Gene

upstream binding transcription factor, RNA polymerase I-like 8 (pseudogene)

LOC442446 Gene

upstream binding transcription factor, RNA polymerase I pseudogene

GREB1L Gene

growth regulation by estrogen in breast cancer-like

RPRD1A Gene

regulation of nuclear pre-mRNA domain containing 1A

This gene encodes a cell-cycle and transcription regulatory protein. The encoded protein interacts with the cell cycle inhibitor cyclin-dependent kinase 4 inhibitor B and may function as a negative regulator of G(1)/S phase progression. This protein also forms homo- and hetrodimers with the protein, regulation of nuclear pre-mRNA domain-containing protein 1B, to form a scaffold that interacts with the C-terminal domain of RNA polymerase II subunit B1 and regulates several aspects of transcription. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 16. [provided by RefSeq, Dec 2014]

RPRD1B Gene

regulation of nuclear pre-mRNA domain containing 1B

RPRD2 Gene

regulation of nuclear pre-mRNA domain containing 2

GREB1 Gene

growth regulation by estrogen in breast cancer 1

This gene is an estrogen-responsive gene that is an early response gene in the estrogen receptor-regulated pathway. It is thought to play an important role in hormone-responsive tissues and cancer. Three alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC100130602 Gene

regulation of nuclear pre-mRNA domain containing 1A pseudogene

CBFA2T3 Gene

core-binding factor, runt domain, alpha subunit 2; translocated to, 3

This gene encodes a member of the myeloid translocation gene family which interact with DNA-bound transcription factors and recruit a range of corepressors to facilitate transcriptional repression. The t(16;21)(q24;q22) translocation is one of the less common karyotypic abnormalities in acute myeloid leukemia. The translocation produces a chimeric gene made up of the 5'-region of the runt-related transcription factor 1 gene fused to the 3'-region of this gene. This gene is also a putative breast tumor suppressor. Alternative splicing results in transcript variants. [provided by RefSeq, Nov 2010]

CBFA2T2 Gene

core-binding factor, runt domain, alpha subunit 2; translocated to, 2

In acute myeloid leukemia, especially in the M2 subtype, the t(8;21)(q22;q22) translocation is one of the most frequent karyotypic abnormalities. The translocation produces a chimeric gene made up of the 5'-region of the RUNX1 (AML1) gene fused to the 3'-region of the CBFA2T1 (MTG8) gene. The chimeric protein is thought to associate with the nuclear corepressor/histone deacetylase complex to block hematopoietic differentiation. The protein encoded by this gene binds to the AML1-MTG8 complex and may be important in promoting leukemogenesis. Several transcript variants are thought to exist for this gene, but the full-length natures of only three have been described. [provided by RefSeq, Jul 2008]

CBFB Gene

core-binding factor, beta subunit

The protein encoded by this gene is the beta subunit of a heterodimeric core-binding transcription factor belonging to the PEBP2/CBF transcription factor family which master-regulates a host of genes specific to hematopoiesis (e.g., RUNX1) and osteogenesis (e.g., RUNX2). The beta subunit is a non-DNA binding regulatory subunit; it allosterically enhances DNA binding by alpha subunit as the complex binds to the core site of various enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers and GM-CSF promoters. Alternative splicing generates two mRNA variants, each encoding a distinct carboxyl terminus. In some cases, a pericentric inversion of chromosome 16 [inv(16)(p13q22)] produces a chimeric transcript consisting of the N terminus of core-binding factor beta in a fusion with the C-terminal portion of the smooth muscle myosin heavy chain 11. This chromosomal rearrangement is associated with acute myeloid leukemia of the M4Eo subtype. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PARTICL Gene

promoter of MAT2A antisense radiation-induced circulating long non-coding RNA

TARID Gene

TCF21 antisense RNA inducing promoter demethylation

GCFC2 Gene

GC-rich sequence DNA-binding factor 2

The first mRNA transcript isolated for this gene was part of an artificial chimera derived from two distinct gene transcripts and a primer used in the cloning process (see Genbank accession M29204). A positively charged amino terminus present only in the chimera was determined to bind GC-rich DNA, thus mistakenly thought to identify a transcription factor gene. [provided by RefSeq, Jul 2008]

FUSE Gene

polykaryocytosis promoter

RRN3P3 Gene

RNA polymerase I transcription factor homolog (S. cerevisiae) pseudogene 3

RRN3P2 Gene

RNA polymerase I transcription factor homolog (S. cerevisiae) pseudogene 2

RRN3P1 Gene

RNA polymerase I transcription factor homolog (S. cerevisiae) pseudogene 1

LOC101929862 Gene

RNA polymerase II transcription factor SIII subunit A3-like

LOC101930161 Gene

RNA polymerase II transcription factor SIII subunit A3-like

LOC101930165 Gene

RNA polymerase II transcription factor SIII subunit A3-like

TTF2 Gene

transcription termination factor, RNA polymerase II

This gene encodes a member of the SWI2/SNF2 family of proteins, which play a critical role in altering protein-DNA interactions. The encoded protein has been shown to have dsDNA-dependent ATPase activity and RNA polymerase II termination activity. This protein interacts with cell division cycle 5-like, associates with human splicing complexes, and plays a role in pre-mRNA splicing. [provided by RefSeq, Jul 2008]

TTF1 Gene

transcription termination factor, RNA polymerase I

This gene encodes a transcription termination factor that is localized to the nucleolus and plays a critical role in ribosomal gene transcription. The encoded protein mediates the termination of RNA polymerase I transcription by binding to Sal box terminator elements downstream of pre-rRNA coding regions. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. This gene shares the symbol/alias 'TFF1' with another gene, NK2 homeobox 1, also known as thyroid transcription factor 1, which plays a role in the regulation of thyroid-specific gene expression. [provided by RefSeq, Apr 2011]

LOC105369241 Gene

RNA polymerase II transcription factor SIII subunit A3-like

BRF2 Gene

BRF2, RNA polymerase III transcription initiation factor 50 kDa subunit

This gene encodes one of the multiple subunits of the RNA polymerase III transcription factor complex required for transcription of genes with promoter elements upstream of the initiation site. The product of this gene, a TFIIB-like factor, is directly recruited to the TATA-box of polymerase III small nuclear RNA gene promoters through its interaction with the TATA-binding protein. [provided by RefSeq, Jul 2008]

BRF1 Gene

BRF1, RNA polymerase III transcription initiation factor 90 kDa subunit

This gene encodes one of the three subunits of the RNA polymerase III transcription factor complex. This complex plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. The gene product belongs to the TF2B family. Several alternatively spliced variants encoding different isoforms, that function at different promoters transcribed by RNA polymerase III, have been identified. [provided by RefSeq, Jun 2011]

LOC101929851 Gene

RNA polymerase II transcription factor SIII subunit A3-like

LOC101930171 Gene

RNA polymerase II transcription factor SIII subunit A3-like

LOC105369255 Gene

RNA polymerase II transcription factor SIII subunit A3-like

RRN3 Gene

RRN3 RNA polymerase I transcription factor homolog (S. cerevisiae)

LOC102725069 Gene

RNA polymerase II transcription factor SIII subunit A3-like

LOC102725060 Gene

RNA polymerase II transcription factor SIII subunit A3-like

BTAF1 Gene

BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, 170kDa

This gene encodes a TAF (TATA box-binding protein-associated factor), which associates with TBP (TATA box-binding protein) to form the B-TFIID complex that is required for transcription initiation of genes by RNA polymerase II. This TAF has DNA-dependent ATPase activity, which drives the dissociation of TBP from DNA, freeing the TBP to associate with other TATA boxes or TATA-less promoters. [provided by RefSeq, Sep 2011]

LOC101929870 Gene

RNA polymerase II transcription factor SIII subunit A3-like

BDP1 Gene

B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB

The product of this gene is a subunit of the TFIIIB transcription initiation complex, which recruits RNA polymerase III to target promoters in order to initiate transcription. The encoded protein localizes to concentrated aggregates in the nucleus, and is required for transcription from all three types of polymerase III promoters. It is phosphorylated by casein kinase II during mitosis, resulting in its release from chromatin and suppression of polymerase III transcription. [provided by RefSeq, Jul 2008]

LOC102725046 Gene

RNA polymerase II transcription factor SIII subunit A3-like

GNAI2P2 Gene

guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2 pseudogene 2

GNAI2P1 Gene

guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2 pseudogene 1

GNAL Gene

guanine nucleotide binding protein (G protein), alpha activating activity polypeptide, olfactory type

This gene encodes a stimulatory G protein alpha subunit which mediates odorant signaling in the olfactory epithelium. This protein couples dopamine type 1 receptors and adenosine A2A receptors and is widely expressed in the central nervous system. Mutations in this gene have been associated with dystonia 25 and this gene is located in a susceptibility region for bipolar disorder and schizophrenia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

GNAO1 Gene

guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O

GNAT1 Gene

guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 1

Transducin is a 3-subunit guanine nucleotide-binding protein (G protein) which stimulates the coupling of rhodopsin and cGMP-phoshodiesterase during visual impulses. The transducin alpha subunits in rods and cones are encoded by separate genes. This gene encodes the alpha subunit in rods. This gene is also expressed in other cells, and has been implicated in bitter taste transduction in rat taste cells. Mutations in this gene result in autosomal dominant congenital stationary night blindness. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Feb 2009]

GNAT2 Gene

guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 2

Transducin is a 3-subunit guanine nucleotide-binding protein (G protein) which stimulates the coupling of rhodopsin and cGMP-phoshodiesterase during visual impulses. The transducin alpha subunits in rods and cones are encoded by separate genes. This gene encodes the alpha subunit in cones. [provided by RefSeq, Jul 2008]

GNAI2 Gene

guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2

The protein encoded by this gene is an alpha subunit of guanine nucleotide binding proteins (G proteins). The encoded protein contains the guanine nucleotide binding site and is involved in the hormonal regulation of adenylate cyclase. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2013]

GNAI3 Gene

guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3

Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling pathways. G proteins are composed of 3 units: alpha, beta and gamma. This gene encodes an alpha subunit and belongs to the G-alpha family. Mutation in this gene, resulting in a gly40-to-arg substitution, is associated with auriculocondylar syndrome, and shown to affect downstream targets in the G protein-coupled endothelin receptor pathway. [provided by RefSeq, Jun 2012]

GNAI1 Gene

guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1

Guanine nucleotide binding proteins are heterotrimeric signal-transducing molecules consisting of alpha, beta, and gamma subunits. The alpha subunit binds guanine nucleotide, can hydrolyze GTP, and can interact with other proteins. The protein encoded by this gene represents the alpha subunit of an inhibitory complex. The encoded protein is part of a complex that responds to beta-adrenergic signals by inhibiting adenylate cyclase. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

GNGT2 Gene

guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 2

Phototransduction in rod and cone photoreceptors is regulated by groups of signaling proteins. The encoded protein is thought to play a crucial role in cone phototransduction. It belongs to the G protein gamma family and localized specifically in cones. Several transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Nov 2010]

GNGT1 Gene

guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 1

Heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. Transducin is a guanine nucleotide-binding protein found specifically in rod outer segments, where it mediates activation by rhodopsin of a cyclic GTP-specific (guanosine monophosphate) phosphodiesterase. Transducin is also referred to as GMPase. GNGT1 encodes the gamma subunit of transducin (Hurley et al., 1984 [PubMed 6438626]; Scherer et al., 1996 [PubMed 8661128]).[supplied by OMIM, Mar 2008]

ELF3 Gene

E74-like factor 3 (ets domain transcription factor, epithelial-specific )

LOC442042 Gene

polymerase (RNA) II (DNA directed) polypeptide D pseudogene

LOC100421620 Gene

polymerase (RNA) mitochondrial (DNA directed) pseudogene

POLR3GP2 Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD) pseudogene 2

POLR3GP1 Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD) pseudogene 1

POLR2CP Gene

polymerase (RNA) II (DNA directed) polypeptide C, pseudogene

LOC390250 Gene

polymerase (RNA) II (DNA directed) polypeptide E, 25kDa pseudogene

LOC101060521 Gene

DNA-directed RNA polymerase III subunit RPC5

POLR3F Gene

polymerase (RNA) III (DNA directed) polypeptide F, 39 kDa

The protein encoded by this gene is one of more than a dozen subunits forming eukaryotic RNA polymerase III (RNA Pol III), which transcribes 5S ribosomal RNA and tRNA genes. This protein has been shown to bind both TFIIIB90 and TBP, two subunits of RNA polymerase III transcription initiation factor IIIB (TFIIIB). Unlike most of the other RNA Pol III subunits, the encoded protein is unique to this polymerase. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

POLR3G Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD)

POLR3D Gene

polymerase (RNA) III (DNA directed) polypeptide D, 44kDa

This gene complements a temperature-sensitive mutant isolated from the BHK-21 Syrian hamster cell line. It leads to a block in progression through the G1 phase of the cell cycle at nonpermissive temperatures. [provided by RefSeq, Jul 2008]

POLR3E Gene

polymerase (RNA) III (DNA directed) polypeptide E (80kD)

POLR3B Gene

polymerase (RNA) III (DNA directed) polypeptide B

This gene encodes the second largest subunit of RNA polymerase III, the polymerase responsible for synthesizing transfer and small ribosomal RNAs in eukaryotes. The largest subunit and the encoded protein form the catalytic center of RNA polymerase III. Mutations in this gene are a cause of hypomyelinating leukodystrophy. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Dec 2011]

POLR3C Gene

polymerase (RNA) III (DNA directed) polypeptide C (62kD)

POLR3A Gene

polymerase (RNA) III (DNA directed) polypeptide A, 155kDa

The protein encoded by this gene is the catalytic component of RNA polymerase III, which synthesizes small RNAs. The encoded protein also acts as a sensor to detect foreign DNA and trigger an innate immune response. [provided by RefSeq, Aug 2011]

POLR3K Gene

polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa

This gene encodes a small essential subunit of RNA polymerase III, the polymerase responsible for synthesizing transfer and small ribosomal RNAs in eukaryotes. The carboxy-terminal domain of this subunit shares a high degree of sequence similarity to the carboxy-terminal domain of an RNA polymerase II elongation factor. This similarity in sequence is supported by functional studies showing that this subunit is required for proper pausing and termination during transcription. Pseudogenes of this gene are found on chromosomes 13 and 17.[provided by RefSeq, Jul 2010]

POLR3H Gene

polymerase (RNA) III (DNA directed) polypeptide H (22.9kD)

LOC246724 Gene

DNA directed RNA polymerase II polypeptide J-related gene

LOC246725 Gene

DNA directed RNA polymerase II polypeptide J-related gene

POLR3KP2 Gene

polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa pseudogene 2

POLR3KP1 Gene

polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa pseudogene 1

POLR2KP1 Gene

polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa pseudogene 1

POLRMT Gene

polymerase (RNA) mitochondrial (DNA directed)

This gene encodes a mitochondrial DNA-directed RNA polymerase. The gene product is responsible for mitochondrial gene expression as well as for providing RNA primers for initiation of replication of the mitochondrial genome. Although this polypeptide has the same function as the three nuclear DNA-directed RNA polymerases, it is more closely related to RNA polymerases of phage and mitochondrial polymerases of lower eukaryotes. [provided by RefSeq, Jul 2008]

POLR3GL Gene

polymerase (RNA) III (DNA directed) polypeptide G (32kD)-like

POLR2LP Gene

polymerase (RNA) II (DNA directed) polypeptide L pseudogene

POLR2KP2 Gene

polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa pseudogene 2

POLR3DP1 Gene

polymerase (RNA) III (DNA directed) polypeptide D, 44kDa pseudogene 1

LOC105373057 Gene

DNA-directed RNA polymerase II subunit RPB1-like

POLR2J4 Gene

polymerase (RNA) II (DNA directed) polypeptide J4, pseudogene

POLR2J2 Gene

polymerase (RNA) II (DNA directed) polypeptide J2

This gene is a member of the RNA polymerase II subunit 11 gene family, which includes three genes in a cluster on chromosome 7q22.1 and a pseudogene on chromosome 7p13. The founding member of this family, DNA directed RNA polymerase II polypeptide J, has been shown to encode a subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. This locus produces multiple, alternatively spliced transcripts that potentially express isoforms with distinct C-termini compared to DNA directed RNA polymerase II polypeptide J. Most or all variants are spliced to include additional non-coding exons at the 3' end which makes them candidates for nonsense-mediated decay (NMD). Consequently, it is not known if this locus expresses a protein or proteins in vivo. [provided by RefSeq, Jul 2008]

POLR2J3 Gene

polymerase (RNA) II (DNA directed) polypeptide J3

This gene is a member of the RNA polymerase II subunit 11 gene family, which includes three genes in a cluster on chromosome 7q22.1 and a pseudogene on chromosome 7p13. The founding member of this family, DNA directed RNA polymerase II polypeptide J, has been shown to encode a subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. This locus produces multiple, alternatively spliced transcripts that potentially express isoforms with distinct C-termini compared to DNA directed RNA polymerase II polypeptide J. Most or all variants are spliced to include additional non-coding exons at the 3' end which makes them candidates for nonsense-mediated decay (NMD). Consequently, it is not known if this locus expresses a protein or proteins in vivo. [provided by RefSeq, Jul 2008]

POLR2E Gene

polymerase (RNA) II (DNA directed) polypeptide E, 25kDa

This gene encodes the fifth largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. This subunit is shared by the other two DNA-directed RNA polymerases and is present in two-fold molar excess over the other polymerase subunits. An interaction between this subunit and a hepatitis virus transactivating protein has been demonstrated, suggesting that interaction between transcriptional activators and the polymerase can occur through this subunit. A pseudogene is located on chromosome 11. [provided by RefSeq, Jul 2008]

POLR2D Gene

polymerase (RNA) II (DNA directed) polypeptide D

This gene encodes the fourth largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. In yeast, this polymerase subunit is associated with the polymerase under suboptimal growth conditions and may have a stress protective role. A sequence for a ribosomal pseudogene is contained within the 3' untranslated region of the transcript from this gene. [provided by RefSeq, Jul 2008]

POLR2G Gene

polymerase (RNA) II (DNA directed) polypeptide G

This gene encodes the seventh largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The protein functions in transcription initiation, and is also thought to help stabilize transcribing polyermase molecules during elongation. [provided by RefSeq, Jan 2009]

POLR2F Gene

polymerase (RNA) II (DNA directed) polypeptide F

This gene encodes the sixth largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. In yeast, this polymerase subunit, in combination with at least two other subunits, forms a structure that stabilizes the transcribing polymerase on the DNA template. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

POLR2A Gene

polymerase (RNA) II (DNA directed) polypeptide A, 220kDa

This gene encodes the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene contains a carboxy terminal domain composed of heptapeptide repeats that are essential for polymerase activity. These repeats contain serine and threonine residues that are phosphorylated in actively transcribing RNA polymerase. In addition, this subunit, in combination with several other polymerase subunits, forms the DNA binding domain of the polymerase, a groove in which the DNA template is transcribed into RNA. [provided by RefSeq, Jul 2008]

POLR2C Gene

polymerase (RNA) II (DNA directed) polypeptide C, 33kDa

This gene encodes the third largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene contains a cysteine rich region and exists as a heterodimer with another polymerase subunit, POLR2J. These two subunits form a core subassembly unit of the polymerase. A pseudogene has been identified on chromosome 21. [provided by RefSeq, Jul 2008]

POLR2B Gene

polymerase (RNA) II (DNA directed) polypeptide B, 140kDa

This gene encodes the second largest subunit of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase that catalyzes the transcription of DNA into precursors of mRNA, snRNA and microRNA. This subunit and the largest subunit form opposite sides of the center cleft of Pol II. Deletion of the flap loop region of this subunit results in a decrease in the rate of transcriptional elongation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

POLR2M Gene

polymerase (RNA) II (DNA directed) polypeptide M

This gene encodes a subunit of a specific form of RNA polymerase II termed Pol II(G). The encoded protein may act as a negative regulator of transcriptional activation by the Mediator complex. Alternative splicing results in multiple transcript variants. There is a pseudogene for this gene on chromosome 4. Readthrough transcription between this gene and the neighboring upstream gene MYZAP (myocardial zonula adherens protein) is represented with GeneID 145781. [provided by RefSeq, Oct 2013]

POLR2L Gene

polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa

This gene encodes a subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene contains four conserved cysteines characteristic of an atypical zinc-binding domain. Like its counterpart in yeast, this subunit may be shared by the other two DNA-directed RNA polymerases. [provided by RefSeq, Jul 2008]

POLR2I Gene

polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa

This gene encodes a subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. This subunit, in combination with two other polymerase subunits, forms the DNA binding domain of the polymerase, a groove in which the DNA template is transcribed into RNA. The product of this gene has two zinc finger motifs with conserved cysteines and the subunit does possess zinc binding activity. [provided by RefSeq, Jul 2008]

POLR2H Gene

polymerase (RNA) II (DNA directed) polypeptide H

The three eukaryotic RNA polymerases are complex multisubunit enzymes that play a central role in the transcription of nuclear genes. This gene encodes an essential and highly conserved subunit of RNA polymerase II that is shared by the other two eukaryotic DNA-directed RNA polymerases, I and III. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jul 2013]

POLR2K Gene

polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa

This gene encodes one of the smallest subunits of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. This subunit is shared by the other two DNA-directed RNA polymerases. [provided by RefSeq, Jul 2008]

POLR2J Gene

polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa

This gene encodes a subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes. The product of this gene exists as a heterodimer with another polymerase subunit; together they form a core subassembly unit of the polymerase. Two similar genes are located nearby on chromosome 7q22.1 and a pseudogene is found on chromosome 7p13. [provided by RefSeq, Jul 2008]

POLRMTP1 Gene

polymerase (RNA) mitochondrial (DNA directed) pseudogene 1

DDB2 Gene

damage-specific DNA binding protein 2, 48kDa

This gene encodes a protein that is necessary for the repair of ultraviolet light-damaged DNA. This protein is the smaller subunit of a heterodimeric protein complex that participates in nucleotide excision repair, and this complex mediates the ubiquitylation of histones H3 and H4, which facilitates the cellular response to DNA damage. This subunit appears to be required for DNA binding. Mutations in this gene cause xeroderma pigmentosum complementation group E, a recessive disease that is characterized by an increased sensitivity to UV light and a high predisposition for skin cancer development, in some cases accompanied by neurological abnormalities. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2014]

DDB1 Gene

damage-specific DNA binding protein 1, 127kDa

The protein encoded by this gene is the large subunit (p127) of the heterodimeric DNA damage-binding (DDB) complex while another protein (p48) forms the small subunit. This protein complex functions in nucleotide-excision repair and binds to DNA following UV damage. Defective activity of this complex causes the repair defect in patients with xeroderma pigmentosum complementation group E (XPE) - an autosomal recessive disorder characterized by photosensitivity and early onset of carcinomas. However, it remains for mutation analysis to demonstrate whether the defect in XPE patients is in this gene or the gene encoding the small subunit. In addition, Best vitelliform mascular dystrophy is mapped to the same region as this gene on 11q, but no sequence alternations of this gene are demonstrated in Best disease patients. The protein encoded by this gene also functions as an adaptor molecule for the cullin 4 (CUL4) ubiquitin E3 ligase complex by facilitating the binding of substrates to this complex and the ubiquitination of proteins. [provided by RefSeq, May 2012]

TAF4B Gene

TAF4b RNA polymerase II, TATA box binding protein (TBP)-associated factor, 105kDa

TATA binding protein (TBP) and TBP-associated factors (TAFs) participate in the formation of the TFIID protein complex, which is involved in initiation of transcription of genes by RNA polymerase II. This gene encodes a cell type-specific TAF that may be responsible for mediating transcription by a subset of activators in B cells. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jun 2014]

LOC100422622 Gene

TAF10 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 30kDa pseudogene

LOC100422627 Gene

TAF4b RNA polymerase II, TATA box binding protein (TBP)-associated factor, 105kDa pseudogene

TAF13P2 Gene

TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18kDa pseudogene 2

TAF13P1 Gene

TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor pseudogene 1

TAF7L Gene

TAF7-like RNA polymerase II, TATA box binding protein (TBP)-associated factor, 50kDa

This gene is similar to a mouse gene that encodes a TATA box binding protein-associated factor, and shows testis-specific expression. The encoded protein could be a spermatogenesis-specific component of the DNA-binding general transcription factor complex TFIID. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2009]

LOC285697 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

LOC391742 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

LOC391746 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

LOC391747 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

TAF7 Gene

TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 55kDa

The intronless gene for this transcription coactivator is located between the protocadherin beta and gamma gene clusters on chromosome 5. The protein encoded by this gene is a component of the TFIID protein complex, a complex which binds to the TATA box in class II promoters and recruits RNA polymerase II and other factors. This particular subunit interacts with the largest TFIID subunit, as well as multiple transcription activators. The protein is required for transcription by promoters targeted by RNA polymerase II. [provided by RefSeq, Jul 2008]

TAF6 Gene

TAF6 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 80kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the smaller subunits of TFIID that binds weakly to TBP but strongly to TAF1, the largest subunit of TFIID. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2010]

TAF5 Gene

TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes an integral subunit of TFIID associated with all transcriptionally competent forms of that complex. This subunit interacts strongly with two TFIID subunits that show similarity to histones H3 and H4, and it may participate in forming a nucleosome-like core in the TFIID complex. [provided by RefSeq, Jul 2008]

TAF4 Gene

TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the larger subunits of TFIID that has been shown to potentiate transcriptional activation by retinoic acid, thyroid hormone and vitamin D3 receptors. In addition, this subunit interacts with the transcription factor CREB, which has a glutamine-rich activation domain, and binds to other proteins containing glutamine-rich regions. Aberrant binding to this subunit by proteins with expanded polyglutamine regions has been suggested as one of the pathogenetic mechanisms underlying a group of neurodegenerative disorders referred to as polyglutamine diseases. [provided by RefSeq, Jul 2008]

TAF3 Gene

TAF3 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 140kDa

The highly conserved RNA polymerase II transcription factor TFIID (see TAF1; MIM 313650) comprises the TATA box-binding protein (TBP; MIM 600075) and a set of TBP-associated factors (TAFs), including TAF3. TAFs contribute to promoter recognition and selectivity and act as antiapoptotic factors (Gangloff et al., 2001 [PubMed 11438666]).[supplied by OMIM, May 2009]

TAF2 Gene

TAF2 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 150kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the larger subunits of TFIID that is stably associated with the TFIID complex. It contributes to interactions at and downstream of the transcription initiation site, interactions that help determine transcription complex response to activators. [provided by RefSeq, Jul 2008]

TAF1 Gene

TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is the basal transcription factor TFIID, which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes the largest subunit of TFIID. This subunit binds to core promoter sequences encompassing the transcription start site. It also binds to activators and other transcriptional regulators, and these interactions affect the rate of transcription initiation. This subunit contains two independent protein kinase domains at the N- and C-terminals, but also possesses acetyltransferase activity and can act as a ubiquitin-activating/conjugating enzyme. Mutations in this gene result in Dystonia 3, torsion, X-linked, a dystonia-parkinsonism disorder. Alternative splicing of this gene results in multiple transcript variants. This gene is part of a complex transcription unit (TAF1/DYT3), wherein some transcript variants share exons with TAF1 as well as additional downstream DYT3 exons. [provided by RefSeq, Oct 2013]

TAF9 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the smaller subunits of TFIID that binds to the basal transcription factor GTF2B as well as to several transcriptional activators such as p53 and VP16. In human, TAF9 and AK6 (GeneID: 102157402) are two distinct genes that share 5' exons. A similar but distinct gene (TAF9L) has been found on the X chromosome and a pseudogene has been identified on chromosome 19. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

LOC100130612 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa pseudogene

TAF9P1 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa pseudogene 1

TAF9P2 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa pseudogene 2

TAF9P3 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa pseudogene 3

TAF1B Gene

TATA box binding protein (TBP)-associated factor, RNA polymerase I, B, 63kDa

Initiation of transcription by RNA polymerase I requires the formation of a complex composed of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs) specific for RNA polymerase I. This complex, known as SL1, binds to the core promoter of ribosomal RNA genes to position the polymerase properly and acts as a channel for regulatory signals. This gene encodes one of the SL1-specific TAFs. [provided by RefSeq, Jul 2008]

TAF1D Gene

TATA box binding protein (TBP)-associated factor, RNA polymerase I, D, 41kDa

TAF1D is a member of the SL1 complex, which includes TBP (MIM 600075) and TAF1A (MIM 604903), TAF1B (MIM 604904), and TAF1C (MIM 604905), and plays a role in RNA polymerase I transcription (Wang et al., 2004 [PubMed 15520167]; Gorski et al., 2007 [PubMed 17318177]).[supplied by OMIM, Jun 2009]

TAF9BP2 Gene

TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 31kDa pseudogene 2

TAF9BP1 Gene

TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 31kDa pseudogene 1

LOC100131770 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa pseudogene

LOC646066 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

LOC646103 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

TAF8 Gene

TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa

This gene encodes one of several TATA-binding protein (TBP)-associated factors (TAFs), which are integral subunits of the general transcription factor complex TFIID. TFIID recognizes the core promoter of many genes and nucleates the assembly of a transcription preinitiation complex containing RNA polymerase II and other initiation factors. The protein encoded by this gene contains an H4-like histone fold domain, and interacts with several subunits of TFIID including TBP and the histone-fold protein TAF10. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

LOC100128673 Gene

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa pseudogene

TAF13 Gene

TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes a small subunit associated with a subset of TFIID complexes. This subunit interacts with TBP and with two other small subunits of TFIID, TAF10 and TAF11. There is a pseudogene located on chromosome 6. [provided by RefSeq, Jul 2008]

TAF12 Gene

TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20kDa

Control of transcription by RNA polymerase II involves the basal transcription machinery which is a collection of proteins. These proteins with RNA polymerase II, assemble into complexes which are modulated by transactivator proteins that bind to cis-regulatory elements located adjacent to the transcription start site. Some modulators interact directly with the basal complex, whereas others may act as bridging proteins linking transactivators to the basal transcription factors. Some of these associated factors are weakly attached while others are tightly associated with TBP in the TFIID complex. Among the latter are the TAF proteins. Different TAFs are predicted to mediate the function of distinct transcriptional activators for a variety of gene promoters and RNA polymerases. TAF12 interacts directly with TBP as well as with TAF2I. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2008]

TAF11 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes a small subunit of TFIID that is present in all TFIID complexes and interacts with TBP. This subunit also interacts with another small subunit, TAF13, to form a heterodimer with a structure similar to the histone core structure. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2012]

TAF10 Gene

TAF10 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 30kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the small subunits of TFIID that is associated with a subset of TFIID complexes. Studies with human and mammalian cells have shown that this subunit is required for transcriptional activation by the estrogen receptor, for progression through the cell cycle, and may also be required for certain cellular differentiation programs. [provided by RefSeq, Jul 2008]

TAF15 Gene

TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68kDa

This gene encodes a member of the TET family of RNA-binding proteins. The encoded protein plays a role in RNA polymerase II gene transcription as a component of a distinct subset of multi-subunit transcription initiation factor TFIID complexes. Translocations involving this gene play a role in acute leukemia and extraskeletal myxoid chondrosarcoma, and mutations in this gene may play a role in amyotrophic lateral sclerosis. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, May 2012]

TAF1C Gene

TATA box binding protein (TBP)-associated factor, RNA polymerase I, C, 110kDa

Initiation of transcription by RNA polymerase I requires the formation of a complex composed of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs) specific for RNA polymerase I. This complex, known as SL1, binds to the core promoter of ribosomal RNA genes to position the polymerase properly and acts as a channel for regulatory signals. This gene encodes the largest SL1-specific TAF. Multiple alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2011]

TAF1A Gene

TATA box binding protein (TBP)-associated factor, RNA polymerase I, A, 48kDa

This gene encodes a subunit of the RNA polymerase I complex, Selectivity Factor I (SLI). The encoded protein is a TATA box-binding protein-associated factor that plays a role in the assembly of the RNA polymerase I preinitiation complex. Alternate splicing results in multiple transcript variants encoding multiple isoforms.[provided by RefSeq, Jan 2011]

TAF1L Gene

TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 210kDa-like

This locus is intronless, and apparently arose in the primate lineage from retrotransposition of the transcript from the multi-exon TAF1 locus on the X chromosome. The gene is expressed in male germ cells, and the product has been shown to function interchangeably with the TAF1 product. [provided by RefSeq, Aug 2009]

LOC391768 Gene

TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa pseudogene

TAF9B Gene

TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 31kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes a protein that is similar to one of the small subunits of TFIID, TBP-associated factor 9, and is also a subunit of TFIID. TAF9 and TAF9b share some functions but also have distinct roles in the transcriptional regulatory process. [provided by RefSeq, Jul 2008]

POLN Gene

polymerase (DNA directed) nu

This gene encodes a DNA polymerase type-A family member. The encoded protein plays a role in DNA repair and homologous recombination. This gene shares its 5' exons with some transcripts from overlapping GeneID: 79441, which encodes an augmentin-like protein complex subunit. [provided by RefSeq, Dec 2014]

PRIMPOL Gene

primase and polymerase (DNA-directed)

POLD4 Gene

polymerase (DNA-directed), delta 4, accessory subunit

This gene encodes the smallest subunit of DNA polymerase delta. DNA polymerase delta possesses both polymerase and 3' to 5' exonuclease activity and plays a critical role in DNA replication and repair. The encoded protein enhances the activity of DNA polymerase delta and plays a role in fork repair and stabilization through interactions with the DNA helicase Bloom syndrome protein. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Mar 2012]

POLE3 Gene

polymerase (DNA directed), epsilon 3, accessory subunit

POLE3 is a histone-fold protein that interacts with other histone-fold proteins to bind DNA in a sequence-independent manner. These histone-fold protein dimers combine within larger enzymatic complexes for DNA transcription, replication, and packaging.[supplied by OMIM, Apr 2004]

POLDIP3 Gene

polymerase (DNA-directed), delta interacting protein 3

This gene encodes an RRM (RNA recognition motif)-containing protein that participates in the regulation of translation by recruiting ribosomal protein S6 kinase beta-1 to mRNAs. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

POLDIP2 Gene

polymerase (DNA-directed), delta interacting protein 2

This gene encodes a protein that interacts with the DNA polymerase delta p50 subunit, as well as with proliferating cell nuclear antigen. The encoded protein maybe play a role in the ability of the replication fork to bypass DNA lesions. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

REV3L Gene

REV3-like, polymerase (DNA directed), zeta, catalytic subunit

REV1 Gene

REV1, polymerase (DNA directed)

This gene encodes a protein with similarity to the S. cerevisiae mutagenesis protein Rev1. The Rev1 proteins contain a BRCT domain, which is important in protein-protein interactions. A suggested role for the human Rev1-like protein is as a scaffold that recruits DNA polymerases involved in translesion synthesis (TLS) of damaged DNA. Two alternatively spliced transcript variants that encode different proteins have been found. [provided by RefSeq, Jul 2008]

POLG Gene

polymerase (DNA directed), gamma

Mitochondrial DNA polymerase is heterotrimeric, consisting of a homodimer of accessory subunits plus a catalytic subunit. The protein encoded by this gene is the catalytic subunit of mitochondrial DNA polymerase. The encoded protein contains a polyglutamine tract near its N-terminus that may be polymorphic. Defects in this gene are a cause of progressive external ophthalmoplegia with mitochondrial DNA deletions 1 (PEOA1), sensory ataxic neuropathy dysarthria and ophthalmoparesis (SANDO), Alpers-Huttenlocher syndrome (AHS), and mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE). Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

POLE Gene

polymerase (DNA directed), epsilon, catalytic subunit

This gene encodes the catalytic subunit of DNA polymerase epsilon. The enzyme is involved in DNA repair and chromosomal DNA replication. Mutations in this gene have been associated with colorectal cancer 12 and facial dysmorphism, immunodeficiency, livedo, and short stature. [provided by RefSeq, Sep 2013]

POLB Gene

polymerase (DNA directed), beta

The protein encoded by this gene is a DNA polymerase involved in base excision and repair, also called gap-filling DNA synthesis. The encoded protein, acting as a monomer, is normally found in the cytoplasm, but it translocates to the nucleus upon DNA damage. Several transcript variants of this gene exist, but the full-length nature of only one has been described to date. [provided by RefSeq, Sep 2011]

POLM Gene

polymerase (DNA directed), mu

POLL Gene

polymerase (DNA directed), lambda

This gene encodes a DNA polymerase. DNA polymerases catalyze DNA-template-directed extension of the 3'-end of a DNA strand. This particular polymerase, which is a member of the X family of DNA polymerases, likely plays a role in non-homologous end joining and other DNA repair processes. Alternatively spliced transcript variants have been described. [provided by RefSeq, Mar 2010]

POLK Gene

polymerase (DNA directed) kappa

External and internal DNA-damaging agents continually threaten the integrity of genetic material in cells. Although a variety of repair mechanisms exist to remove the resulting lesions, some lesions escape repair and block the replication machinery. Members of the Y family of DNA polymerases, such as POLK, permit the continuity of the replication fork by allowing replication through such DNA lesions. Each Y family polymerase has a unique DNA-damage bypass and fidelity profile. POLK is specialized for the extension step of lesion bypass (summary by Lone et al., 2007 [PubMed 17317631]).[supplied by OMIM, Jan 2010]

POLI Gene

polymerase (DNA directed) iota

POLH Gene

polymerase (DNA directed), eta

This gene encodes a member of the Y family of specialized DNA polymerases. It copies undamaged DNA with a lower fidelity than other DNA-directed polymerases. However, it accurately replicates UV-damaged DNA; when thymine dimers are present, this polymerase inserts the complementary nucleotides in the newly synthesized DNA, thereby bypassing the lesion and suppressing the mutagenic effect of UV-induced DNA damage. This polymerase is thought to be involved in hypermutation during immunoglobulin class switch recombination. Mutations in this gene result in XPV, a variant type of xeroderma pigmentosum. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

POLE2 Gene

polymerase (DNA directed), epsilon 2, accessory subunit

POLE4 Gene

polymerase (DNA-directed), epsilon 4, accessory subunit

POLE4 is a histone-fold protein that interacts with other histone-fold proteins to bind DNA in a sequence-independent manner. These histone-fold protein dimers combine within larger enzymatic complexes for DNA transcription, replication, and packaging.[supplied by OMIM, Apr 2004]

POLQ Gene

polymerase (DNA directed), theta

POLA2 Gene

polymerase (DNA directed), alpha 2, accessory subunit

POLA1 Gene

polymerase (DNA directed), alpha 1, catalytic subunit

This gene encodes the catalytic subunit of DNA polymerase, which together with a regulatory and two primase subunits, forms the DNA polymerase alpha complex. The catalytic subunit plays an essential role in the initiation of DNA replication. [provided by RefSeq, Mar 2010]

POLD2P1 Gene

polymerase (DNA directed), delta 2, accessory subunit pseudogene 1

LOC100422453 Gene

polymerase (DNA directed), delta 1, catalytic subunit 125kDa pseudogene

POLD1 Gene

polymerase (DNA directed), delta 1, catalytic subunit

This gene encodes the 125-kDa catalytic subunit of DNA polymerase delta. DNA polymerase delta possesses both polymerase and 3' to 5' exonuclease activity and plays a critical role in DNA replication and repair. Alternatively spliced transcript variants have been observed for this gene, and a pseudogene of this gene is located on the long arm of chromosome 6. [provided by RefSeq, Mar 2012]

POLD2 Gene

polymerase (DNA directed), delta 2, accessory subunit

This gene encodes the 50-kDa catalytic subunit of DNA polymerase delta. DNA polymerase delta possesses both polymerase and 3' to 5' exonuclease activity and plays a critical role in DNA replication and repair. The encoded protein is required for the stimulation of DNA polymerase delta activity by the processivity cofactor proliferating cell nuclear antigen (PCNA). Expression of this gene may be a marker for ovarian carcinomas. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of this gene is located on the long arm of chromosome 5. [provided by RefSeq, Mar 2012]

POLD3 Gene

polymerase (DNA-directed), delta 3, accessory subunit

This gene encodes the 66-kDa subunit of DNA polymerase delta. DNA polymerase delta possesses both polymerase and 3' to 5' exonuclease activity and plays a critical role in DNA replication and repair. The encoded protein plays a role in regulating the activity of DNA polymerase delta through interactions with other subunits and the processivity cofactor proliferating cell nuclear antigen (PCNA). Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Mar 2012]

LOC100421824 Gene

polymerase (DNA directed), epsilon 2, accessory subunit pseudogene

POLG2 Gene

polymerase (DNA directed), gamma 2, accessory subunit

This gene encodes the processivity subunit of the mitochondrial DNA polymerase gamma. The encoded protein forms a heterotrimer containing one catalytic subunit and two processivity subunits. This protein enhances DNA binding and promotes processive DNA synthesis. Mutations in this gene result in autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions.[provided by RefSeq, Sep 2009]

TAF5L Gene

TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa

The product of this gene belongs to the WD-repeat TAF5 family of proteins. This gene encodes a protein that is a component of the PCAF histone acetylase complex. The PCAF histone acetylase complex, which is composed of more than 20 polypeptides some of which are TAFs, is required for myogenic transcription and differentiation. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors to facilitate complex assembly and transcription initiation. The encoded protein is structurally similar to one of the histone-like TAFs, TAF5. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

TAF6L Gene

TAF6-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes a protein that is a component of the PCAF histone acetylase complex and structurally similar to one of the histone-like TAFs, TAF6. The PCAF histone acetylase complex, which is composed of more than 20 polypeptides some of which are TAFs, is required for myogenic transcription and differentiation. [provided by RefSeq, Jul 2008]

TAF5LP1 Gene

TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa pseudogene 1

SRF Gene

serum response factor (c-fos serum response element-binding transcription factor)

This gene encodes a ubiquitous nuclear protein that stimulates both cell proliferation and differentiation. It is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily of transcription factors. This protein binds to the serum response element (SRE) in the promoter region of target genes. This protein regulates the activity of many immediate-early genes, for example c-fos, and thereby participates in cell cycle regulation, apoptosis, cell growth, and cell differentiation. This gene is the downstream target of many pathways; for example, the mitogen-activated protein kinase pathway (MAPK) that acts through the ternary complex factors (TCFs). Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

NFIC Gene

nuclear factor I/C (CCAAT-binding transcription factor)

The protein encoded by this gene belongs to the CTF/NF-I family. These are dimeric DNA-binding proteins, and function as cellular transcription factors and as replication factors for adenovirus DNA replication. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Oct 2011]

NFIX Gene

nuclear factor I/X (CCAAT-binding transcription factor)

The protein encoded by this gene is a transcription factor that binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3 in viral and cellular promoters. The encoded protein can also stimulate adenovirus replication in vitro. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2012]

GAFA2 Gene

FGF-2 activity-associated protein 2

GAFA3 Gene

FGF-2 activity-associated protein 3

LOC129026 Gene

gamma-glutamyltransferase-like activity 1 pseudogene

This pseudogene is similar to the human gene encoding gamma-glutamyltransferase-like activity 1, an enzyme which hydrolyzes the gamma-glutamyl moiety of glutathione and converts leukotriene C4 to leukotriene D4. This pseudogene lies in the immunoglobulin lambda gene cluster on chromosome 22q11.21. [provided by RefSeq, Jul 2008]

SKIV2L2 Gene

superkiller viralicidic activity 2-like 2 (S. cerevisiae)

ADNP Gene

activity-dependent neuroprotector homeobox

Vasoactive intestinal peptide is a neuroprotective factor that has a stimulatory effect on the growth of some tumor cells and an inhibitory effect on others. This gene encodes a protein that is upregulated by vasoactive intestinal peptide and may be involved in its stimulatory effect on certain tumor cells. The encoded protein contains one homeobox and nine zinc finger domains, suggesting that it functions as a transcription factor. This gene is also upregulated in normal proliferative tissues. Finally, the encoded protein may increase the viability of certain cell types through modulation of p53 activity. Alternatively spliced transcript variants encoding the same protein have been described. [provided by RefSeq, Jul 2008]

MIA3 Gene

melanoma inhibitory activity family, member 3

RAMP1 Gene

receptor (G protein-coupled) activity modifying protein 1

The protein encoded by this gene is a member of the RAMP family of single-transmembrane-domain proteins, called receptor (calcitonin) activity modifying proteins (RAMPs). RAMPs are type I transmembrane proteins with an extracellular N terminus and a cytoplasmic C terminus. RAMPs are required to transport calcitonin-receptor-like receptor (CRLR) to the plasma membrane. CRLR, a receptor with seven transmembrane domains, can function as either a calcitonin-gene-related peptide (CGRP) receptor or an adrenomedullin receptor, depending on which members of the RAMP family are expressed. In the presence of this (RAMP1) protein, CRLR functions as a CGRP receptor. The RAMP1 protein is involved in the terminal glycosylation, maturation, and presentation of the CGRP receptor to the cell surface. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Apr 2015]

RAMP3 Gene

receptor (G protein-coupled) activity modifying protein 3

The protein encoded by this gene is a member of the RAMP family of single-transmembrane-domain proteins, called receptor (calcitonin) activity modifying proteins (RAMPs). RAMPs are type I transmembrane proteins with an extracellular N terminus and a cytoplasmic C terminus. RAMPs are required to transport calcitonin-receptor-like receptor (CRLR) to the plasma membrane. CRLR, a receptor with seven transmembrane domains, can function as either a calcitonin-gene-related peptide (CGRP) receptor or an adrenomedullin receptor, depending on which members of the RAMP family are expressed. In the presence of this (RAMP3) protein, CRLR functions as an adrenomedullin receptor. [provided by RefSeq, Jul 2008]

RAMP2 Gene

receptor (G protein-coupled) activity modifying protein 2

The protein encoded by this gene is a member of the RAMP family of single-transmembrane-domain proteins, called receptor (calcitonin) activity modifying proteins (RAMPs). RAMPs are type I transmembrane proteins with an extracellular N terminus and a cytoplasmic C terminus. RAMPs are required to transport calcitonin-receptor-like receptor (CRLR) to the plasma membrane. CRLR, a receptor with seven transmembrane domains, can function as either a calcitonin-gene-related peptide (CGRP) receptor or an adrenomedullin receptor, depending on which members of the RAMP family are expressed. In the presence of this (RAMP2) protein, CRLR functions as an adrenomedullin receptor. The RAMP2 protein is involved in core glycosylation and transportation of adrenomedullin receptor to the cell surface. [provided by RefSeq, Jul 2008]

SKIV2L Gene

superkiller viralicidic activity 2-like (S. cerevisiae)

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein, which is a human homologue of yeast SKI2 and may be involved in antiviral activity by blocking translation of poly(A) deficient mRNAs. This gene is located in the class III region of the major histocompatibility complex. [provided by RefSeq, Jul 2008]

CAAP1 Gene

caspase activity and apoptosis inhibitor 1

MIA2 Gene

melanoma inhibitory activity 2

CXCL1 Gene

chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)

This antimicrobial gene encodes a member of the CXC subfamily of chemokines. The encoded protein is a secreted growth factor that signals through the G-protein coupled receptor, CXC receptor 2. This protein plays a role in inflammation and as a chemoattractant for neutrophils. Aberrant expression of this protein is associated with the growth and progression of certain tumors. A naturally occurring processed form of this protein has increased chemotactic activity. Alternate splicing results in coding and non-coding variants of this gene. A pseudogene of this gene is found on chromosome 4. [provided by RefSeq, Sep 2014]

MIA Gene

melanoma inhibitory activity

ARC Gene

activity-regulated cytoskeleton-associated protein

PTF1A Gene

pancreas specific transcription factor, 1a

This gene encodes a protein that is a component of the pancreas transcription factor 1 complex (PTF1) and is known to have a role in mammalian pancreatic development. The protein plays a role in determining whether cells allocated to the pancreatic buds continue towards pancreatic organogenesis or revert back to duodenal fates. The protein is thought to be involved in the maintenance of exocrine pancreas-specific gene expression including elastase 1 and amylase. Mutations in this gene cause cerebellar agenesis and loss of expression is seen in ductal type pancreas cancers. [provided by RefSeq, Jul 2008]

TCF7 Gene

transcription factor 7 (T-cell specific, HMG-box)

The protein encoded by this gene is a transcriptional activator that plays an important role in lymphocyte differentiation. This gene is expressed predominantly in T-cells. The encoded protein can bind an enhancer element and activate the CD3E gene, and it also may repress the CTNNB1 and TCF7L2 genes through a feedback mechanism. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

TCF7L1 Gene

transcription factor 7-like 1 (T-cell specific, HMG-box)

This gene encodes a member of the T cell factor/lymphoid enhancer factor family of transcription factors. These transcription factors are activated by beta catenin, mediate the Wnt signaling pathway and are antagonized by the transforming growth factor beta signaling pathway. The encoded protein contains a high mobility group-box DNA binding domain and participates in the regulation of cell cycle genes and cellular senescence. [provided by RefSeq, Nov 2010]

TCF7L2 Gene

transcription factor 7-like 2 (T-cell specific, HMG-box)

This gene encodes a high mobility group (HMG) box-containing transcription factor that plays a key role in the Wnt signaling pathway. The protein has been implicated in blood glucose homeostasis. Genetic variants of this gene are associated with increased risk of type 2 diabetes. Several transcript variants encoding multiple different isoforms have been found for this gene.[provided by RefSeq, Oct 2010]

GCNT4 Gene

glucosaminyl (N-acetyl) transferase 4, core 2

GCNT1 Gene

glucosaminyl (N-acetyl) transferase 1, core 2

This gene is a member of the beta-1,6-N-acetylglucosaminyltransferase gene family. It is essential to the formation of Gal beta 1-3(GlcNAc beta 1-6)GalNAc structures and the core 2 O-glycan branch. The gene coding this enzyme was originally mapped to 9q21, but was later localized to 9q13. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

WFDC9 Gene

WAP four-disulfide core domain 9

The WAP-type four-disulfide core (WFDC) domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor in many members of the WFDC domain family. This gene encodes a protein which contains a WFDC domain, and is thus a member of the WFDC domain family. This gene and several other gene family members are clustered at 20q13.12. [provided by RefSeq, Jul 2008]

WFDC8 Gene

WAP four-disulfide core domain 8

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. The encoded protein contains a Kunitz-inhibitor domain, in addition to three WFDC domains. Most WFDC genes are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. Two alternatively spliced transcript variants have been found for this gene, and they encode the same protein. [provided by RefSeq, Jul 2008]

WFDC1 Gene

WAP four-disulfide core domain 1

This gene encodes a member of the WAP-type four disulfide core domain family. The WAP-type four-disulfide core domain contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor in many family members. This gene is mapped to chromosome 16q24, an area of frequent loss of heterozygosity in cancers, including prostate, breast and hepatocellular cancers and Wilms' tumor. This gene is downregulated in many cancer types and may be involved in the inhibition of cell proliferation. The encoded protein may also play a role in the susceptibility of certain CD4 memory T cells to human immunodeficiency virus infection. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

WFDC3 Gene

WAP four-disulfide core domain 3

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. The encoded protein contains four WFDC domains. Most WFDC genes are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. Alternatively spliced transcript variants have been observed but their full-length nature has not been determined. [provided by RefSeq, Jul 2008]

WFDC5 Gene

WAP four-disulfide core domain 5

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. Most WFDC proteins contain only one WFDC domain, and this encoded protein contains two WFDC domains. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the centromeric cluster. [provided by RefSeq, Jul 2008]

WFDC6 Gene

WAP four-disulfide core domain 6

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. Read-through transcription exists between this gene and the upstream SPINLW1 (serine peptidase inhibitor-like, with Kunitz and WAP domains 1) gene. [provided by RefSeq, Nov 2010]

WFDC2 Gene

WAP four-disulfide core domain 2

This gene encodes a protein that is a member of the WFDC domain family. The WFDC domain, or WAP Signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor in many family members. This gene is expressed in pulmonary epithelial cells, and was also found to be expressed in some ovarian cancers. The encoded protein is a small secretory protein, which may be involved in sperm maturation. [provided by RefSeq, Jul 2008]

WFDC21P Gene

WAP four-disulfide core domain 21, pseudogene

WFDC10B Gene

WAP four-disulfide core domain 10B

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. Two alternatively spliced transcript variants have been found for this gene, and they encode distinct isoforms. [provided by RefSeq, Jul 2008]

WFDC10A Gene

WAP four-disulfide core domain 10A

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. [provided by RefSeq, Jul 2008]

GCNT1P3 Gene

glucosaminyl (N-acetyl) transferase 1, core 2 pseudogene 3

UQCRC2P1 Gene

ubiquinol-cytochrome c reductase core protein II pseudogene 1

LIN54 Gene

lin-54 DREAM MuvB core complex component

LIN54 is a component of the LIN, or DREAM, complex, an essential regulator of cell cycle genes (Schmit et al., 2009 [PubMed 19725879]).[supplied by OMIM, Dec 2010]

LIN52 Gene

lin-52 DREAM MuvB core complex component

WFDC11 Gene

WAP four-disulfide core domain 11

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. [provided by RefSeq, Jul 2008]

WFDC13 Gene

WAP four-disulfide core domain 13

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the telomeric cluster. [provided by RefSeq, Jul 2008]

WFDC12 Gene

WAP four-disulfide core domain 12

This gene encodes a member of the WAP-type four-disulfide core (WFDC) domain family. The WFDC domain, or WAP signature motif, contains eight cysteines forming four disulfide bonds at the core of the protein, and functions as a protease inhibitor. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. This gene belongs to the centromeric cluster. [provided by RefSeq, Jul 2008]

LIN37 Gene

lin-37 DREAM MuvB core complex component

This gene encodes a protein expressed in the eye. [provided by RefSeq, Jul 2008]

GCNT1P4 Gene

glucosaminyl (N-acetyl) transferase 1, core 2 pseudogene 4

GCNT1P5 Gene

glucosaminyl (N-acetyl) transferase 1, core 2 pseudogene 5

GCNT1P2 Gene

glucosaminyl (N-acetyl) transferase 1, core 2 pseudogene 2

GCNT1P1 Gene

glucosaminyl (N-acetyl) transferase 1, core 2 pseudogene 1

C1GALT1P1 Gene

core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 pseudogene 1

UQCRC2 Gene

ubiquinol-cytochrome c reductase core protein II

UQCRC1 Gene

ubiquinol-cytochrome c reductase core protein I

LIN9 Gene

lin-9 DREAM MuvB core complex component

This gene encodes a tumor suppressor protein that inhibits DNA synthesis and oncogenic transformation through association with the retinoblastoma 1 protein. The encoded protein also interacts with a complex of other cell cycle regulators to repress cell cycle-dependent gene expression in non-dividing cells. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

C1GALT1 Gene

core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1

The protein encoded by this gene generates the common core 1 O-glycan structure, Gal-beta-1-3GalNAc-R, by the transfer of Gal from UDP-Gal to GalNAc-alpha-1-R. Core 1 is a precursor for many extended mucin-type O-glycans on cell surface and secreted glycoproteins. Studies in mice suggest that this gene plays a key role in thrombopoiesis and kidney homeostasis.[provided by RefSeq, Sep 2010]

PAPOLB Gene

poly(A) polymerase beta (testis specific)

RNPC3 Gene

RNA-binding region (RNP1, RRM) containing 3

Two types of spliceosomes catalyze splicing of pre-mRNAs. The major U2-type spliceosome is found in all eukaryotes and removes U2-type introns, which represent more than 99% of pre-mRNA introns. The minor U12-type spliceosome is found in some eukaryotes and removes U12-type introns, which are rare and have distinct splice consensus signals. The U12-type spliceosome consists of several small nuclear RNAs and associated proteins. This gene encodes a 65K protein that is a component of the U12-type spliceosome. This protein contains two RNA recognition motifs (RRMs), suggesting that it may contact one of the small nuclear RNAs of the minor spliceosome. [provided by RefSeq, Jul 2008]

RNPC3P1 Gene

RNA-binding region (RNP1, RRM) containing 3 pseudogene 1

N6AMT1 Gene

N-6 adenine-specific DNA methyltransferase 1 (putative)

This gene encodes an N(6)-adenine-specific DNA methyltransferase. The encoded enzyme may be involved in the methylation of release factor I during translation termination. This enzyme is also involved in converting the arsenic metabolite monomethylarsonous acid to the less toxic dimethylarsonic acid. Alternative splicing pf this gene results in multiple transcript variants. A related pseudogene has been identified on chromosome 11. [provided by RefSeq, Jul 2014]

N6AMT2 Gene

N-6 adenine-specific DNA methyltransferase 2 (putative)

LOC642897 Gene

N-6 adenine-specific DNA methyltransferase 1 (putative) pseudogene

GRSF1 Gene

G-rich RNA sequence binding factor 1

The protein encoded by this gene is a cellular protein that binds RNAs containing the G-rich element. The protein is localized in the cytoplasm, and has been shown to stimulate translation of viral mRNAs in vitro. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

D6S2723E Gene

DNA segment on chromosome 6 (unique, pseudogene) 2723 expressed sequence

KIN Gene

Kin17 DNA and RNA binding protein

The protein encoded by this gene is a nuclear protein that forms intranuclear foci during proliferation and is redistributed in the nucleoplasm during the cell cycle. Short-wave ultraviolet light provokes the relocalization of the protein, suggesting its participation in the cellular response to DNA damage. Originally selected based on protein-binding with RecA antibodies, the mouse protein presents a limited similarity with a functional domain of the bacterial RecA protein, a characteristic shared by this human ortholog. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Jan 2012]

ELL2P1 Gene

elongation factor, RNA polymerase II, 2 pseudogene 1

ELL2P4 Gene

elongation factor, RNA polymerase II, 2 pseudogene 4

ELL3 Gene

elongation factor RNA polymerase II-like 3

ELL2 Gene

elongation factor, RNA polymerase II, 2

ELL2P2 Gene

elongation factor, RNA polymerase II, 2 pseudogene 2

ELL2P3 Gene

elongation factor, RNA polymerase II, 2 pseudogene 3

ELL Gene

elongation factor RNA polymerase II

PAF1 Gene

Paf1, RNA polymerase II associated factor, homolog (S. cerevisiae)

This gene encodes a subunit of the polymerase associated factor (PAF1) complex. The PAF1 complex interacts with RNA polymerase II and plays a role in transcription elongation as well as histone modifications including ubiquitylation and methylation. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Feb 2012]

RNU6V Gene

RNA, U6 small nuclear variant sequence with SNRPE pseudogene sequence

TFAP4 Gene

transcription factor AP-4 (activating enhancer binding protein 4)

Transcription factors of the basic helix-loop-helix-zipper (bHLH-ZIP) family contain a basic domain, which is used for DNA binding, and HLH and ZIP domains, which are used for oligomerization. Transcription factor AP4 activates both viral and cellular genes by binding to the symmetrical DNA sequence CAGCTG (Mermod et al., 1988 [PubMed 2833704]; Hu et al., 1990 [PubMed 2123466]).[supplied by OMIM, Jul 2009]

GABPAP Gene

GA binding protein transcription factor, alpha subunit pseudogene

TFAP2A Gene

transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)

The protein encoded by this gene is a transcription factor that binds the consensus sequence 5'-GCCNNNGGC-3'. The encoded protein functions as either a homodimer or as a heterodimer with similar family members. This protein activates the transcription of some genes while inhibiting the transcription of others. Defects in this gene are a cause of branchiooculofacial syndrome (BOFS). Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Dec 2009]

TFAP2C Gene

transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma)

The protein encoded by this gene is a sequence-specific DNA-binding transcription factor involved in the activation of several developmental genes. The encoded protein can act as either a homodimer or heterodimer with other family members and is induced during retinoic acid-mediated differentiation. It plays a role in the development of the eyes, face, body wall, limbs, and neural tube. [provided by RefSeq, Jul 2008]

TFAP2B Gene

transcription factor AP-2 beta (activating enhancer binding protein 2 beta)

This gene encodes a member of the AP-2 family of transcription factors. AP-2 proteins form homo- or hetero-dimers with other AP-2 family members and bind specific DNA sequences. They are thought to stimulate cell proliferation and suppress terminal differentiation of specific cell types during embryonic development. Specific AP-2 family members differ in their expression patterns and binding affinity for different promoters. This protein functions as both a transcriptional activator and repressor. Mutations in this gene result in autosomal dominant Char syndrome, suggesting that this gene functions in the differentiation of neural crest cell derivatives. [provided by RefSeq, Jul 2008]

TFAP2E Gene

transcription factor AP-2 epsilon (activating enhancer binding protein 2 epsilon)

TFAP2D Gene

transcription factor AP-2 delta (activating enhancer binding protein 2 delta)

GABPB2 Gene

GA binding protein transcription factor, beta subunit 2

GABPB1 Gene

GA binding protein transcription factor, beta subunit 1

This gene encodes the GA-binding protein transcription factor, beta subunit. This protein forms a tetrameric complex with the alpha subunit, and stimulates transcription of target genes. The encoded protein may be involved in activation of cytochrome oxidase expression and nuclear control of mitochondrial function. The crystal structure of a similar protein in mouse has been resolved as a ternary protein complex. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

NFXL1 Gene

nuclear transcription factor, X-box binding-like 1

NFX1 Gene

nuclear transcription factor, X-box binding 1

MHC class II gene expression is controlled primarily at the transcriptional level by transcription factors that bind to the X and Y boxes, two highly conserved elements in the proximal promoter of MHC class II genes. The protein encoded by this gene is a transcriptional repressor capable of binding to the conserved X box motif of HLA-DRA and other MHC class II genes in vitro. The protein may play a role in regulating the duration of an inflammatory response by limiting the period in which class II MHC molecules are induced by IFN-gamma. Three alternative splice variants, each of which encodes a different isoform, have been identified. [provided by RefSeq, Jul 2008]

E2F4P1 Gene

E2F transcription factor 4, p107/p130-binding pseudogene 1

GABPA Gene

GA binding protein transcription factor, alpha subunit 60kDa

This gene encodes one of three GA-binding protein transcription factor subunits which functions as a DNA-binding subunit. Since this subunit shares identity with a subunit encoding the nuclear respiratory factor 2 gene, it is likely involved in activation of cytochrome oxidase expression and nuclear control of mitochondrial function. This subunit also shares identity with a subunit constituting the transcription factor E4TF1, responsible for expression of the adenovirus E4 gene. Because of its chromosomal localization and ability to form heterodimers with other polypeptides, this gene may play a role in the Down Syndrome phenotype. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Oct 2010]

SREBF2 Gene

sterol regulatory element binding transcription factor 2

This gene encodes a member of the a ubiquitously expressed transcription factor that controls cholesterol homeostasis by regulating transcription of sterol-regulated genes. The encoded protein contains a basic helix-loop-helix-leucine zipper (bHLH-Zip) domain and binds the sterol regulatory element 1 motif. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

SREBF1 Gene

sterol regulatory element binding transcription factor 1

This gene encodes a transcription factor that binds to the sterol regulatory element-1 (SRE1), which is a decamer flanking the low density lipoprotein receptor gene and some genes involved in sterol biosynthesis. The protein is synthesized as a precursor that is attached to the nuclear membrane and endoplasmic reticulum. Following cleavage, the mature protein translocates to the nucleus and activates transcription by binding to the SRE1. Sterols inhibit the cleavage of the precursor, and the mature nuclear form is rapidly catabolized, thereby reducing transcription. The protein is a member of the basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor family. This gene is located within the Smith-Magenis syndrome region on chromosome 17. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

E2F5 Gene

E2F transcription factor 5, p130-binding

The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionarily conserved domains that are present in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein is differentially phosphorylated and is expressed in a wide variety of human tissues. It has higher identity to E2F4 than to other family members. Both this protein and E2F4 interact with tumor suppressor proteins p130 and p107, but not with pRB. Alternative splicing results in multiple variants encoding different isoforms. [provided by RefSeq, Jul 2008]

E2F4 Gene

E2F transcription factor 4, p107/p130-binding

The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein binds to all three of the tumor suppressor proteins pRB, p107 and p130, but with higher affinity to the last two. It plays an important role in the suppression of proliferation-associated genes, and its gene mutation and increased expression may be associated with human cancer. [provided by RefSeq, Jul 2008]

DMTF1 Gene

cyclin D binding myb-like transcription factor 1

This gene encodes a transcription factor that contains a cyclin D-binding domain, three central Myb-like repeats, and two flanking acidic transactivation domains at the N- and C-termini. The encoded protein is induced by the oncogenic Ras signaling pathway and functions as a tumor suppressor by activating the transcription of ARF and thus the ARF-p53 pathway to arrest cell growth or induce apoptosis. It also activates the transcription of aminopeptidase N and may play a role in hematopoietic cell differentiation. The transcriptional activity of this protein is regulated by binding of D-cyclins. This gene is hemizygously deleted in approximately 40% of human non-small-cell lung cancer and is a potential prognostic and gene-therapy target for non-small-cell lung cancer. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2008]

MAZ Gene

MYC-associated zinc finger protein (purine-binding transcription factor)

TFE3 Gene

transcription factor binding to IGHM enhancer 3

This gene encodes a basic helix-loop-helix domain-containing transcription factor that binds MUE3-type E-box sequences in the promoter of genes. The encoded protein promotes the expression of genes downstream of transforming growth factor beta (TGF-beta) signaling. This gene may be involved in chromosomal translocations in renal cell carcinomas and other cancers, resulting in the production of fusion proteins. Translocation partners include PRCC (papillary renal cell carcinoma), NONO (non-POU domain containing, octamer-binding), and ASPSCR1 (alveolar soft part sarcoma chromosome region, candidate 1), among other genes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

HSF2BP Gene

heat shock transcription factor 2 binding protein

HSF2 binding protein (HSF2BP) associates with HSF2. The interaction occurs between the trimerization domain of HSF2 and the amino terminal hydrophilic region of HSF2BP that comprises two leucine zipper motifs. HSF2BP may therefore be involved in modulating HSF2 activation. [provided by RefSeq, Jul 2008]

GATA1 Gene

GATA binding protein 1 (globin transcription factor 1)

This gene encodes a protein which belongs to the GATA family of transcription factors. The protein plays an important role in erythroid development by regulating the switch of fetal hemoglobin to adult hemoglobin. Mutations in this gene have been associated with X-linked dyserythropoietic anemia and thrombocytopenia. [provided by RefSeq, Jul 2008]

MTF2 Gene

metal response element binding transcription factor 2

HIF1AP1 Gene

hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) pseudogene 1

HIF1A Gene

hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)

This gene encodes the alpha subunit of transcription factor hypoxia-inducible factor-1 (HIF-1), which is a heterodimer composed of an alpha and a beta subunit. HIF-1 functions as a master regulator of cellular and systemic homeostatic response to hypoxia by activating transcription of many genes, including those involved in energy metabolism, angiogenesis, apoptosis, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. HIF-1 thus plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2011]

ELF1 Gene

E74-like factor 1 (ets domain transcription factor)

This gene encodes an E26 transformation-specific related transcription factor. The encoded protein is primarily expressed in lymphoid cells and acts as both an enhancer and a repressor to regulate transcription of various genes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2009]

ELF2 Gene

E74-like factor 2 (ets domain transcription factor)

ELF5 Gene

E74-like factor 5 (ets domain transcription factor)

The protein encoded by this gene is a member of an epithelium-specific subclass of the Ets transcritpion factor family. In addition to its role in regulating the later stages of terminal differentiation of keratinocytes, it appears to regulate a number of epithelium-specific genes found in tissues containing glandular epithelium such as salivary gland and prostate. It has very low affinity to DNA due to its negative regulatory domain at the amino terminus. Several alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2011]

ELF4 Gene

E74-like factor 4 (ets domain transcription factor)

The protein encoded by this gene is a transcriptional activator that binds and activates the promoters of the CSF2, IL3, IL8, and PRF1 genes. The encoded protein is involved in natural killer cell development and function, innate immunity, and induction of cell cycle arrest in naive CD8+ cells. Two transcript variants encoding the same protein have been found for this gene.[provided by RefSeq, Jan 2010]

RBPJL Gene

recombination signal binding protein for immunoglobulin kappa J region-like

This gene encodes a member of the suppressor of hairless protein family. A similar protein in mouse is a transcription factor that binds to DNA sequences almost identical to that bound by the Notch receptor signaling pathway transcription factor recombining binding protein J. The mouse protein has been shown to activate transcription in concert with Epstein-Barr virus nuclear antigen-2. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

LOC100422538 Gene

recombination signal binding protein for immunoglobulin kappa J region pseudogene

RBPJ Gene

recombination signal binding protein for immunoglobulin kappa J region

The protein encoded by this gene is a transcriptional regulator important in the Notch signaling pathway. The encoded protein acts as a repressor when not bound to Notch proteins and an activator when bound to Notch proteins. It is thought to function by recruiting chromatin remodeling complexes containing histone deacetylase or histone acetylase proteins to Notch signaling pathway genes. Several transcript variants encoding different isoforms have been found for this gene, and several pseudogenes of this gene exist on chromosome 9. [provided by RefSeq, Oct 2013]

TARDBPP1 Gene

TAR DNA binding protein pseudogene 1

TARDBPP2 Gene

TAR DNA binding protein pseudogene 2

LOC646044 Gene

single stranded DNA binding protein 4 pseudogene

SSBP4 Gene

single stranded DNA binding protein 4

LOC100132698 Gene

single stranded DNA binding protein 4 pseudogene

CENPBD1 Gene

CENPB DNA-binding domains containing 1

MSANTD2P1 Gene

Myb/SANT-like DNA-binding domain containing 2 pseudogene 1

LOC401002 Gene

single stranded DNA binding protein 3 pseudogene

LOC646674 Gene

single stranded DNA binding protein 4 pseudogene

LOC100996860 Gene

TAR DNA-binding protein 43 pseudogene

ZBP1 Gene

Z-DNA binding protein 1

This gene encodes a Z-DNA binding protein. The encoded protein plays a role in the innate immune response by binding to foreign DNA and inducing type-I interferon production. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Dec 2011]

AHDC1 Gene

AT hook, DNA binding motif, containing 1

This gene encodes a protein containing two AT-hooks, which likely function in DNA binding. Mutations in this gene were found in individuals with Xia-Gibbs syndrome. [provided by RefSeq, Jun 2014]

RFX8 Gene

RFX family member 8, lacking RFX DNA binding domain

LOC643387 Gene

TAR DNA binding protein pseudogene

LOC101060644 Gene

TAR DNA-binding protein 43 pseudogene

WDHD1 Gene

WD repeat and HMG-box DNA binding protein 1

The protein encoded by this gene contains multiple N-terminal WD40 domains and a C-terminal high mobility group (HMG) box. WD40 domains are found in a variety of eukaryotic proteins and may function as adaptor/regulatory modules in signal transduction, pre-mRNA processing and cytoskeleton assembly. HMG boxes are found in many eukaryotic proteins involved in chromatin assembly, transcription and replication. Alternative splicing results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

LOC100132723 Gene

single stranded DNA binding protein 4 pseudogene

LOC100129321 Gene

single stranded DNA binding protein 3 pseudogene

LOC100128540 Gene

TAR DNA-binding protein 43-like

ID2B Gene

inhibitor of DNA binding 2B, dominant negative helix-loop-helix protein (pseudogene)

MSANTD4 Gene

Myb/SANT-like DNA-binding domain containing 4 with coiled-coils

MSANTD1 Gene

Myb/SANT-like DNA-binding domain containing 1

MSANTD2 Gene

Myb/SANT-like DNA-binding domain containing 2

MSANTD3 Gene

Myb/SANT-like DNA-binding domain containing 3

TARDBP Gene

TAR DNA binding protein

HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), contains an RNA genome that produces a chromosomally integrated DNA during the replicative cycle. Activation of HIV-1 gene expression by the transactivator Tat is dependent on an RNA regulatory element (TAR) located downstream of the transcription initiation site. The protein encoded by this gene is a transcriptional repressor that binds to chromosomally integrated TAR DNA and represses HIV-1 transcription. In addition, this protein regulates alternate splicing of the CFTR gene. A similar pseudogene is present on chromosome 20. [provided by RefSeq, Jul 2008]

LOC100420848 Gene

Myb/SANT-like DNA-binding domain containing 3 pseudogene

CHD1L Gene

chromodomain helicase DNA binding protein 1-like

This gene encodes a DNA helicase protein involved in DNA repair. The protein converts ATP to add poly(ADP-ribose) as it regulates chromatin relaxation following DNA damage. Several alternatively spliced transcripts variants have been described for this gene. [provided by RefSeq, Jan 2012]

CHD1 Gene

chromodomain helicase DNA binding protein 1

The CHD family of proteins is characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. CHD genes alter gene expression possibly by modification of chromatin structure thus altering access of the transcriptional apparatus to its chromosomal DNA template. [provided by RefSeq, Jul 2008]

CHD3 Gene

chromodomain helicase DNA binding protein 3

This gene encodes a member of the CHD family of proteins which are characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. This protein is one of the components of a histone deacetylase complex referred to as the Mi-2/NuRD complex which participates in the remodeling of chromatin by deacetylating histones. Chromatin remodeling is essential for many processes including transcription. Autoantibodies against this protein are found in a subset of patients with dermatomyositis. Three alternatively spliced transcripts encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

CHD2 Gene

chromodomain helicase DNA binding protein 2

The CHD family of proteins is characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. CHD genes alter gene expression possibly by modification of chromatin structure thus altering access of the transcriptional apparatus to its chromosomal DNA template. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

CHD5 Gene

chromodomain helicase DNA binding protein 5

This gene encodes a member of the chromodomain helicase DNA-binding protein family. Members of this family are characterized by a chromodomain, a helicase ATP-binding domain and an additional functional domain. This gene encodes a neuron-specific protein that may function in chromatin remodeling and gene transcription. This gene is a potential tumor suppressor gene that may play a role in the development of neuroblastoma. [provided by RefSeq, Feb 2012]

CHD4 Gene

chromodomain helicase DNA binding protein 4

The product of this gene belongs to the SNF2/RAD54 helicase family. It represents the main component of the nucleosome remodeling and deacetylase complex and plays an important role in epigenetic transcriptional repression. Patients with dermatomyositis develop antibodies against this protein. Somatic mutations in this gene are associated with serous endometrial tumors. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2014]

CHD7 Gene

chromodomain helicase DNA binding protein 7

This gene encodes a protein that contains several helicase family domains. Mutations in this gene have been found in some patients with the CHARGE syndrome. [provided by RefSeq, Jul 2008]

CHD6 Gene

chromodomain helicase DNA binding protein 6

This gene encodes a member of the SNF2/RAD54 helicase protein family. The encoded protein contains two chromodomains, a helicase domain, and an ATPase domain. Several multi-subunit protein complexes remodel chromatin to allow patterns of cell type-specific gene expression, and the encoded protein is thought to be a core member of one or more of these chromatin remodeling complexes. The encoded protein may function as a transcriptional repressor and is involved in the cellular repression of influenza virus replication. [provided by RefSeq, Jul 2013]

CHD9 Gene

chromodomain helicase DNA binding protein 9

CHD8 Gene

chromodomain helicase DNA binding protein 8

This gene encodes a DNA helicase that functions as a transcription repressor by remodeling chromatin structure. It binds beta-catenin and negatively regulates Wnt signaling pathway, which plays a pivotal role in vertebrate early development and morphogenesis. Mice lacking this gene exhibit early embryonic death. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2010]

CENPBD1P1 Gene

CENPB DNA-binding domains containing 1 pseudogene 1

LOC100132659 Gene

single-stranded DNA binding protein 2 pseudogene

SON Gene

SON DNA binding protein

This gene encodes a protein that contains multiple simple repeats. The encoded protein binds RNA and promotes pre-mRNA splicing, particularly of transcripts with poor splice sites. The protein also recognizes a specific DNA sequence found in the human hepatitis B virus (HBV) and represses HBV core promoter activity. There is a pseudogene for this gene on chromosome 1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

SSBP1 Gene

single-stranded DNA binding protein 1, mitochondrial

SSBP1 is a housekeeping gene involved in mitochondrial biogenesis (Tiranti et al., 1995 [PubMed 7789991]). It is also a subunit of a single-stranded DNA (ssDNA)-binding complex involved in the maintenance of genome stability (Huang et al., 2009) [PubMed 19683501].[supplied by OMIM, Feb 2010]

SSBP3 Gene

single stranded DNA binding protein 3

SSBP2 Gene

single-stranded DNA binding protein 2

SSBP2 is a subunit of a single-stranded DNA (ssDNA)-binding complex involved in the maintenance of genome stability (Huang et al., 2009) [PubMed 19683501].[supplied by OMIM, Feb 2010]

TOPBP1 Gene

topoisomerase (DNA) II binding protein 1

This gene encodes a binding protein which interacts with the C-terminal region of topoisomerase II beta. This interaction suggests a supportive role for this protein in the catalytic reactions of topoisomerase II beta through transient breakages of DNA strands. [provided by RefSeq, Jul 2008]

ID4 Gene

inhibitor of DNA binding 4, dominant negative helix-loop-helix protein

This gene encodes a member of the inhibitor of DNA binding (ID) protein family. These proteins are basic helix-loop-helix transcription factors which can act as tumor suppressors but lack DNA binding activity. Consequently, the activity of the encoded protein depends on the protein binding partner. [provided by RefSeq, Dec 2011]

ID2 Gene

inhibitor of DNA binding 2, dominant negative helix-loop-helix protein

The protein encoded by this gene belongs to the inhibitor of DNA binding family, members of which are transcriptional regulators that contain a helix-loop-helix (HLH) domain but not a basic domain. Members of the inhibitor of DNA binding family inhibit the functions of basic helix-loop-helix transcription factors in a dominant-negative manner by suppressing their heterodimerization partners through the HLH domains. This protein may play a role in negatively regulating cell differentiation. A pseudogene of this gene is located on chromosome 3. [provided by RefSeq, Aug 2011]

ID3 Gene

inhibitor of DNA binding 3, dominant negative helix-loop-helix protein

The protein encoded by this gene is a helix-loop-helix (HLH) protein that can form heterodimers with other HLH proteins. However, the encoded protein lacks a basic DNA-binding domain and therefore inhibits the DNA binding of any HLH protein with which it interacts. [provided by RefSeq, Aug 2011]

ID1 Gene

inhibitor of DNA binding 1, dominant negative helix-loop-helix protein

The protein encoded by this gene is a helix-loop-helix (HLH) protein that can form heterodimers with members of the basic HLH family of transcription factors. The encoded protein has no DNA binding activity and therefore can inhibit the DNA binding and transcriptional activation ability of basic HLH proteins with which it interacts. This protein may play a role in cell growth, senescence, and differentiation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC400174 Gene

single stranded DNA binding protein 4 pseudogene

PTRF Gene

polymerase I and transcript release factor

This gene encodes a protein that enables the dissociation of paused ternary polymerase I transcription complexes from the 3' end of pre-rRNA transcripts. This protein regulates rRNA transcription by promoting the dissociation of transcription complexes and the reinitiation of polymerase I on nascent rRNA transcripts. This protein also localizes to caveolae at the plasma membrane and is thought to play a critical role in the formation of caveolae and the stabilization of caveolins. This protein translocates from caveolae to the cytoplasm after insulin stimulation. Caveolae contain truncated forms of this protein and may be the site of phosphorylation-dependent proteolysis. This protein is also thought to modify lipid metabolism and insulin-regulated gene expression. Mutations in this gene result in a disorder characterized by generalized lipodystrophy and muscular dystrophy. [provided by RefSeq, Nov 2009]

CDT1 Gene

chromatin licensing and DNA replication factor 1

The protein encoded by this gene is involved in the formation of the pre-replication complex that is necessary for DNA replication. The encoded protein can bind geminin, which prevents replication and may function to prevent this protein from initiating replication at inappropriate origins. Phosphorylation of this protein by cyclin A-dependent kinases results in degradation of the protein. [provided by RefSeq, Mar 2011]

DFFA Gene

DNA fragmentation factor, 45kDa, alpha polypeptide

Apoptosis is a cell death process that removes toxic and/or useless cells during mammalian development. The apoptotic process is accompanied by shrinkage and fragmentation of the cells and nuclei and degradation of the chromosomal DNA into nucleosomal units. DNA fragmentation factor (DFF) is a heterodimeric protein of 40-kD (DFFB) and 45-kD (DFFA) subunits. DFFA is the substrate for caspase-3 and triggers DNA fragmentation during apoptosis. DFF becomes activated when DFFA is cleaved by caspase-3. The cleaved fragments of DFFA dissociate from DFFB, the active component of DFF. DFFB has been found to trigger both DNA fragmentation and chromatin condensation during apoptosis. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

DFFB Gene

DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase)

Apoptosis is a cell death process that removes toxic and/or useless cells during mammalian development. The apoptotic process is accompanied by shrinkage and fragmentation of the cells and nuclei and degradation of the chromosomal DNA into nucleosomal units. DNA fragmentation factor (DFF) is a heterodimeric protein of 40-kD (DFFB) and 45-kD (DFFA) subunits. DFFA is the substrate for caspase-3 and triggers DNA fragmentation during apoptosis. DFF becomes activated when DFFA is cleaved by caspase-3. The cleaved fragments of DFFA dissociate from DFFB, the active component of DFF. DFFB has been found to trigger both DNA fragmentation and chromatin condensation during apoptosis. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene but the biological validity of some of these variants has not been determined. [provided by RefSeq, Sep 2013]

DFFBP1 Gene

DNA fragmentation factor, 40kDa, beta polypeptide pseudogene 1

LOC100130321 Gene

DNA fragmentation factor, 45kDa, alpha polypeptide pseudogene

ELAVL4 Gene

ELAV like neuron-specific RNA binding protein 4

ELAVL2 Gene

ELAV like neuron-specific RNA binding protein 2

The protein encoded by this gene is a neural-specific RNA-binding protein that is known to bind to several 3' UTRs, including its own and also that of FOS and ID. The encoded protein may recognize a GAAA motif in the RNA. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jan 2010]

ELAVL3 Gene

ELAV like neuron-specific RNA binding protein 3

A member of the ELAVL protein family, ELAV-like 3 is a neural-specific RNA-binding protein which contains three RNP-type RNA recognition motifs. The observation that ELAVL3 is one of several Hu antigens (neuronal-specific RNA-binding proteins) recognized by the anti-Hu serum antibody present in sera from patients with paraneoplastic encephalomyelitis and sensory neuronopathy (PEM/PSN) suggests it has a role in neurogenesis. Two alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PWRN1 Gene

Prader-Willi region non-protein coding RNA 1

This gene is located in the Prader-Willi syndrome (PWS) region of chromosome 15, which is known to undergo imprinting. The transcript is believed to be non-coding. It is bi-allelically expressed in testis and kidney, but mono-allelically expressed from the paternal allele in brain. This gene is poly-adenylated and is known to undergo alternative splicing. Transcript variants may represent part of a complex imprinting center-SNURF-SNRPN transcription unit. The contribution of this gene to the PWS phenotype is unknown, but it has been suggested that it may play a role in establishing paternal imprinting in the PWS region, perhaps by maintaining the paternal allele in an open chromatin configuration. [provided by RefSeq, Sep 2009]

PWRN2 Gene

Prader-Willi region non-protein coding RNA 2

PWRN3 Gene

Prader-Willi region non-protein coding RNA 3

PWARSN Gene

Prader Willi/Angelman region RNA, SNRPN neighbor

PWAR6 Gene

Prader Willi/Angelman region RNA 6

PWAR5 Gene

Prader Willi/Angelman region RNA 5

PWAR4 Gene

Prader Willi/Angelman region RNA 4

PWAR1 Gene

Prader Willi/Angelman region RNA 1

PWRN4 Gene

Prader-Willi region non-protein coding RNA 4

LOC101929101 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

RPAP2 Gene

RNA polymerase II associated protein 2

LOC102724525 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

LOC101929749 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

LEO1 Gene

Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)

LEO1, parafibromin (CDC73; MIM 607393), CTR9 (MIM 609366), and PAF1 (MIM 610506) form the PAF protein complex that associates with the RNA polymerase II subunit POLR2A (MIM 180660) and with a histone methyltransferase complex (Rozenblatt-Rosen et al., 2005 [PubMed 15632063]).[supplied by OMIM, Mar 2008]

LOC100131448 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2 pseudogene

SSU72 Gene

SSU72 RNA polymerase II CTD phosphatase homolog (S. cerevisiae)

LOC643605 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2 pseudogene

LOC102724677 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

CTDSP1 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1

This gene encodes a member of the small C-terminal domain phosphatase (SCP) family of nuclear phosphatases. These proteins play a role in transcriptional regulation through specific dephosphorylation of phosphoserine 5 within tandem heptapeptide repeats of the C-terminal domain of RNA polymerase II. The encoded protein plays a role in neuronal gene silencing in non-neuronal cells, and may also inhibit osteoblast differentiation. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Oct 2011]

CTDSP2 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2

CTDSPL Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like

POLR1A Gene

polymerase (RNA) I polypeptide A, 194kDa

POLR1B Gene

polymerase (RNA) I polypeptide B, 128kDa

Eukaryotic RNA polymerase I (pol I) is responsible for the transcription of ribosomal RNA (rRNA) genes and production of rRNA, the primary component of ribosomes. Pol I is a multisubunit enzyme composed of 6 to 14 polypeptides, depending on the species. Most of the mass of the pol I complex derives from the 2 largest subunits, Rpa1 and Rpa2 in yeast. POLR1B is homologous to Rpa2 (Seither and Grummt, 1996 [PubMed 8921381]).[supplied by OMIM, Mar 2008]

POLR1C Gene

polymerase (RNA) I polypeptide C, 30kDa

The protein encoded by this gene is a subunit of both RNA polymerase I and RNA polymerase III complexes. The encoded protein is part of the Pol core element. Defects in this gene have been associated with Treacher Collins syndrome (TCS). [provided by RefSeq, Mar 2011]

POLR1D Gene

polymerase (RNA) I polypeptide D, 16kDa

The protein encoded by this gene is a component of the RNA polymerase I and RNA polymerase III complexes, which function in the synthesis of ribosomal RNA precursors and small RNAs, respectively. Mutations in this gene are a cause of Treacher Collins syndrome (TCS), a craniofacial development disorder. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2011]

POLR1E Gene

polymerase (RNA) I polypeptide E, 53kDa

RPAP2P1 Gene

RNA polymerase II associated protein 2 pseudogene 1

LOC102724822 Gene

carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 pseudogene

CTDP1 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1

This gene encodes a protein which interacts with the carboxy-terminus of the RAP74 subunit of transcription initiation factor TFIIF, and functions as a phosphatase that processively dephosphorylates the C-terminus of POLR2A (a subunit of RNA polymerase II), making it available for initiation of gene expression. Mutations in this gene are associated with congenital cataracts, facial dysmorphism and neuropathy syndrome (CCFDN). Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Feb 2011]

RPAP3 Gene

RNA polymerase II associated protein 3

This gene encodes an RNA polymerase II-associated protein. The encoded protein may function in transcriptional regulation and may also regulate apoptosis. Alternatively spliced transcript variants have been described. [provided by RefSeq, Mar 2009]

RPAP1 Gene

RNA polymerase II associated protein 1

This protein forms part of the RNA polymerase II (RNAPII) enzyme complex and may recruit RNAPII to chromatin through its interaction with acetylated histones. [provided by RefSeq, Jul 2012]

CTR9 Gene

CTR9, Paf1/RNA polymerase II complex component

CTR9, parafibromin (CDC73; MIM 607393), LEO1 (MIM 610507), and PAF1 (MIM 610506) form the PAF protein complex, which associates with the RNA polymerase II subunit POLR2A (MIM 180660) and with a histone methyltransferase complex (Rozenblatt-Rosen et al., 2005 [PubMed 15632063]).[supplied by OMIM, Mar 2008]

LOC100422556 Gene

Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) pseudogene

RTF1 Gene

Rtf1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)

This locus may represent a gene involved in regulation of transcription elongation and chromatin remodeling, based on studies of similar proteins in other organisms. The encoded protein may bind single-stranded DNA. [provided by RefSeq, Sep 2010]

LOC100422645 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2 pseudogene

LOC89844 Gene

mitochondrial RNA polymerase pseudogene

LOC100128056 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2 pseudogene

LOC100422671 Gene

cell division cycle 73, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) pseudogene

CTDSPL2 Gene

CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2

CAMTA2 Gene

calmodulin binding transcription activator 2

The protein encoded by this gene is a member of the calmodulin-binding transcription activator protein family. Members of this family share a common domain structure that consists of a transcription activation domain, a DNA-binding domain, and a calmodulin-binding domain. The encoded protein may be a transcriptional coactivator of genes involved in cardiac growth. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Jan 2010]

CAMTA1 Gene

calmodulin binding transcription activator 1

DR1 Gene

down-regulator of transcription 1, TBP-binding (negative cofactor 2)

This gene encodes a TBP- (TATA box-binding protein) associated phosphoprotein that represses both basal and activated levels of transcription. The encoded protein is phosphorylated in vivo and this phosphorylation affects its interaction with TBP. This protein contains a histone fold motif at the amino terminus, a TBP-binding domain, and a glutamine- and alanine-rich region. The binding of DR1 repressor complexes to TBP-promoter complexes may establish a mechanism in which an altered DNA conformation, together with the formation of higher order complexes, inhibits the assembly of the preinitiation complex and controls the rate of RNA polymerase II transcription. [provided by RefSeq, Jul 2008]

HMCES Gene

5-hydroxymethylcytosine (hmC) binding, ES cell-specific

LOC100422687 Gene

pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1 pseudogene

CABS1 Gene

calcium-binding protein, spermatid-specific 1

PLEKHA4 Gene

pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 4

PLEKHA1 Gene

pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1

This gene encodes a pleckstrin homology domain-containing adapter protein. The encoded protein is localized to the plasma membrane where it specifically binds phosphatidylinositol 3,4-bisphosphate. This protein may be involved in the formation of signaling complexes in the plasma membrane. Polymorphisms in this gene are associated with age-related macular degeneration. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 5.[provided by RefSeq, Sep 2010]

GC Gene

group-specific component (vitamin D binding protein)

The protein encoded by this gene belongs to the albumin gene family. It is a multifunctional protein found in plasma, ascitic fluid, cerebrospinal fluid and on the surface of many cell types. It binds to vitamin D and its plasma metabolites and transports them to target tissues. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Feb 2011]

PLEKHA2 Gene

pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 2

PLEKHA3 Gene

pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 3

PLEKHA8 Gene

pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 8

GTF3AP1 Gene

general transcription factor IIIA pseudogene 1

GTF3AP6 Gene

general transcription factor IIIA pseudogene 6

GTF3AP4 Gene

general transcription factor IIIA pseudogene 4

GTF3AP5 Gene

general transcription factor IIIA pseudogene 5

HSFX2 Gene

heat shock transcription factor family, X linked 2

BCLAF1 Gene

BCL2-associated transcription factor 1

This gene encodes a transcriptional repressor that interacts with several members of the BCL2 family of proteins. Overexpression of this protein induces apoptosis, which can be suppressed by co-expression of BCL2 proteins. The protein localizes to dot-like structures throughout the nucleus, and redistributes to a zone near the nuclear envelope in cells undergoing apoptosis. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GTF2F2P1 Gene

general transcription factor IIF, polypeptide 2 pseudogene 1

GTF2F2P2 Gene

general transcription factor IIF, polypeptide 2 pseudogene 2

LMX1A Gene

LIM homeobox transcription factor 1, alpha

This gene encodes a homeodomain and LIM-domain containing protein. The encoded protein is a transcription factor that acts as a positive regulator of insulin gene transcription. This gene also plays a role in the development of dopamine producing neurons during embryogenesis. Mutations in this gene are associated with an increased risk of developing Parkinson's disease. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2012]

LMX1B Gene

LIM homeobox transcription factor 1, beta

This gene encodes a member of LIM-homeodomain family of proteins containing two N-terminal zinc-binding LIM domains, 1 homeodomain, and a C-terminal glutamine-rich domain. It functions as a transcription factor, and is essential for the normal development of dorsal limb structures, the glomerular basement membrane, the anterior segment of the eye, and dopaminergic and serotonergic neurons. Mutations in this gene are associated with nail-patella syndrome. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]

LOC642929 Gene

general transcription factor II, i pseudogene

HES1 Gene

hes family bHLH transcription factor 1

This protein belongs to the basic helix-loop-helix family of transcription factors. It is a transcriptional repressor of genes that require a bHLH protein for their transcription. The protein has a particular type of basic domain that contains a helix interrupting protein that binds to the N-box rather than the canonical E-box. [provided by RefSeq, Jul 2008]

E2F6P3 Gene

E2F transcription factor 6 pseudogene 3

E2F6P2 Gene

E2F transcription factor 6 pseudogene 2

E2F6P1 Gene

E2F transcription factor 6 pseudogene 1

E2F6P4 Gene

E2F transcription factor 6 pseudogene 4

TCEB1P24 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 24

TCEB1P22 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 22

LOC731605 Gene

bcl-2-associated transcription factor 1 pseudogene

NFYC Gene

nuclear transcription factor Y, gamma

This gene encodes one subunit of a trimeric complex forming a highly conserved transcription factor that binds with high specificity to CCAAT motifs in the promoters of a variety of genes. The encoded protein, subunit C, forms a tight dimer with the B subunit, a prerequisite for subunit A association. The resulting trimer binds to DNA with high specificity and affinity. Subunits B and C each contain a histone-like motif. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2008]

NFYB Gene

nuclear transcription factor Y, beta

The protein encoded by this gene is one subunit of a trimeric complex, forming a highly conserved transcription factor that binds with high specificity to CCAAT motifs in the promoter regions in a variety of genes. This gene product, subunit B, forms a tight dimer with the C subunit, a prerequisite for subunit A association. The resulting trimer binds to DNA with high specificity and affinity. Subunits B and C each contain a histone-like motif. Observation of the histone nature of these subunits is supported by two types of evidence; protein sequence alignments and experiments with mutants. [provided by RefSeq, Jul 2008]

NFYA Gene

nuclear transcription factor Y, alpha

The protein encoded by this gene is one subunit of a trimeric complex, forming a highly conserved transcription factor that binds to CCAAT motifs in the promoter regions in a variety of genes. Subunit A associates with a tight dimer composed of the B and C subunits, resulting in a trimer that binds to DNA with high specificity and affinity. The sequence specific interactions of the complex are made by the A subunit, suggesting a role as the regulatory subunit. In addition, there is evidence of post-transcriptional regulation in this gene product, either by protein degradation or control of translation. Further regulation is represented by alternative splicing in the glutamine-rich activation domain, with clear tissue-specific preferences for the two isoforms. [provided by RefSeq, Jul 2008]

E2F3P2 Gene

E2F transcription factor 3 pseudogene 2

E2F3P1 Gene

E2F transcription factor 3 pseudogene 1

GTF2H3 Gene

general transcription factor IIH, polypeptide 3, 34kDa

This gene encodes a member of the TFB4 family. The encoded protein is a subunit of the core-TFIIH basal transcription factor and localizes to the nucleus. The encoded protein is involved in RNA transcription by RNA polymerase II and nucleotide excision repair and associates with the Cdk-activating kinase complex. Alternative splicing results in multiple transcript variants. A related pseudogene has been identified on chromosome 14. [provided by RefSeq, Dec 2012]

GTF2H2 Gene

general transcription factor IIH, polypeptide 2, 44kDa

This gene is part of a 500 kb inverted duplication on chromosome 5q13. This duplicated region contains at least four genes and repetitive elements which make it prone to rearrangements and deletions. The repetitiveness and complexity of the sequence have also caused difficulty in determining the organization of this genomic region. This gene is within the telomeric copy of the duplication. Deletion of this gene sometimes accompanies deletion of the neighboring SMN1 gene in spinal muscular atrophy (SMA) patients but it is unclear if deletion of this gene contributes to the SMA phenotype. This gene encodes the 44 kDa subunit of RNA polymerase II transcription initiation factor IIH which is involved in basal transcription and nucleotide excision repair. Transcript variants for this gene have been described, but their full length nature has not been determined. A second copy of this gene within the centromeric copy of the duplication has been described in the literature. It is reported to be different by either two or four base pairs; however, no sequence data is currently available for the centromeric copy of the gene. [provided by RefSeq, Jul 2008]

GTF2H1 Gene

general transcription factor IIH, polypeptide 1, 62kDa

GTF2H5 Gene

general transcription factor IIH, polypeptide 5

This gene encodes a subunit of transcription/repair factor TFIIH, which functions in gene transcription and DNA repair. This protein stimulates ERCC3/XPB ATPase activity to trigger DNA opening during DNA repair, and is implicated in regulating cellular levels of TFIIH. Mutations in this gene result in trichothiodystrophy, complementation group A. [provided by RefSeq, Mar 2009]

GTF2H4 Gene

general transcription factor IIH, polypeptide 4, 52kDa

BTF3P8 Gene

basic transcription factor 3 pseudogene 8

BTF3P4 Gene

basic transcription factor 3 pseudogene 4

BTF3P7 Gene

basic transcription factor 3 pseudogene 7

BTF3P1 Gene

basic transcription factor 3, pseudogene 1

BTF3P3 Gene

basic transcription factor 3, pseudogene 3

LOC105377135 Gene

transcription initiation factor TFIID subunit 4-like

LOC102724865 Gene

transcription factor E2F6 pseudogene

DMRT1 Gene

doublesex and mab-3 related transcription factor 1

This gene is found in a cluster with two other members of the gene family, having in common a zinc finger-like DNA-binding motif (DM domain). The DM domain is an ancient, conserved component of the vertebrate sex-determining pathway that is also a key regulator of male development in flies and nematodes. This gene exhibits a gonad-specific and sexually dimorphic expression pattern. Defective testicular development and XY feminization occur when this gene is hemizygous. [provided by RefSeq, Jul 2008]

DMRT2 Gene

doublesex and mab-3 related transcription factor 2

The protein encoded by this gene belongs to the DMRT gene family, sharing a DM DNA-binding domain with Drosophila 'doublesex' (dsx) and C. elegans mab3, genes involved in sex determination in these organisms. Also, this gene is located in a region of the human genome (chromosome 9p24.3) associated with gonadal dysgenesis and XY sex reversal. Hence this gene is one of the candidates for sex-determining gene(s) on chr 9. [provided by RefSeq, Apr 2010]

DMRT3 Gene

doublesex and mab-3 related transcription factor 3

LOC646120 Gene

Spi-C transcription factor (Spi-1/PU.1 related) pseudogene

BTF3P5 Gene

basic transcription factor 3 pseudogene 5

ATF6B Gene

activating transcription factor 6 beta

The protein encoded by this gene is a transcription factor in the unfolded protein response (UPR) pathway during ER stress. Either as a homodimer or as a heterodimer with ATF6-alpha, the encoded protein binds to the ER stress response element, interacting with nuclear transcription factor Y to activate UPR target genes. The protein is normally found in the membrane of the endoplasmic reticulum; however, under ER stress, the N-terminal cytoplasmic domain is cleaved from the rest of the protein and translocates to the nucleus. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2008]

BTF3P6 Gene

basic transcription factor 3 pseudogene 6

BTF3P2 Gene

basic transcription factor 3, pseudogene 2

TEFM Gene

transcription elongation factor, mitochondrial

MESP1 Gene

mesoderm posterior basic helix-loop-helix transcription factor 1

MESP2 Gene

mesoderm posterior basic helix-loop-helix transcription factor 2

This gene encodes a member of the bHLH family of transcription factors and plays a key role in defining the rostrocaudal patterning of somites via interactions with multiple Notch signaling pathways. This gene is expressed in the anterior presomitic mesoderm and is downregulated immediately after the formation of segmented somites. This gene also plays a role in the formation of epithelial somitic mesoderm and cardiac mesoderm. Mutations in the MESP2 gene cause autosomal recessive spondylocostal dystosis 2 (SCD02). [provided by RefSeq, Oct 2008]

HSFX1 Gene

heat shock transcription factor family, X linked 1

GTF2A1L Gene

general transcription factor IIA, 1-like

The assembly and stability of the RNA polymerase II transcription pre-initiation complex on a eukaryotic core promoter involve the effects of transcription factor IIA (TFIIA) on the interaction between TATA-binding protein (TBP) and DNA. This gene encodes a germ cell-specific counterpart of the large (alpha/beta) subunit of general transcription factor TFIIA that is able to stabilize the binding of TBP to DNA and may be uniquely important to testis biology. Alternative splicing for this locus has been observed and two variants, encoding distinct isoforms, have been identified. Co-transcription of this gene and the neighboring upstream gene generates a rare transcript (SALF), which encodes a fusion protein comprised of sequence sharing identity with each individual gene product. [provided by RefSeq, Mar 2014]

LOC100420944 Gene

nuclear transcription factor Y, beta pseudogene

TCEB1P19 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 19

TCEB1P10 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 10

TCEB1P16 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 16

TCEB1P15 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 15

HELT Gene

helt bHLH transcription factor

TCEANC2 Gene

transcription elongation factor A (SII) N-terminal and central domain containing 2

SALL4P3 Gene

spalt-like transcription factor 4 pseudogene 3

SALL4P1 Gene

spalt-like transcription factor 4 pseudogene 1

SALL4P7 Gene

spalt-like transcription factor 4 pseudogene 7

SALL4P5 Gene

spalt-like transcription factor 4 pseudogene 5

ATF1P1 Gene

activating transcription factor 1 pseudogene 1

GTF3C1 Gene

general transcription factor IIIC, polypeptide 1, alpha 220kDa

GTF3C6 Gene

general transcription factor IIIC, polypeptide 6, alpha 35kDa

RNA polymerases are unable to initiate RNA synthesis in the absence of additional proteins called general transcription factors (GTFs). GTFs assemble in a complex on the DNA promoter and recruit the RNA polymerase. GTF3C family proteins (e.g., GTF3C1, MIM 603246) are essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA (MIM 180420), tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin.[supplied by OMIM, Mar 2008]

GTF3C5 Gene

general transcription factor IIIC, polypeptide 5, 63kDa

GTF3C4 Gene

general transcription factor IIIC, polypeptide 4, 90kDa

AHCTF1 Gene

AT hook containing transcription factor 1

SCX Gene

scleraxis basic helix-loop-helix transcription factor

REST Gene

RE1-silencing transcription factor

This gene encodes a transcriptional repressor that represses neuronal genes in non-neuronal tissues. It is a member of the Kruppel-type zinc finger transcription factor family. It represses transcription by binding a DNA sequence element called the neuron-restrictive silencer element. The protein is also found in undifferentiated neuronal progenitor cells and it is thought that this repressor may act as a master negative regular of neurogenesis. Alternatively spliced transcript variants have been described [provided by RefSeq, Jul 2010]

SALL4 Gene

spalt-like transcription factor 4

The protein encoded by this gene may be a zinc finger transcription factor. Defects in this gene are a cause of Duane-radial ray syndrome (DRRS). [provided by RefSeq, Jul 2008]

SALL1 Gene

spalt-like transcription factor 1

The protein encoded by this gene is a zinc finger transcriptional repressor and may be part of the NuRD histone deacetylase complex (HDAC). Defects in this gene are a cause of Townes-Brocks syndrome (TBS) as well as bronchio-oto-renal syndrome (BOR). Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

SALL3 Gene

spalt-like transcription factor 3

This gene encodes a sal-like C2H2-type zinc-finger protein, and belongs to a family of evolutionarily conserved genes found in species as diverse as Drosophila, C. elegans, and vertebrates. Mutations in some of these genes are associated with congenital disorders in human, suggesting their importance in embryonic development. This protein binds to DNA methyltransferase 3 alpha (DNMT3A), and reduces DNMT3A-mediated CpG island methylation. It is suggested that silencing of this gene, resulting in acceleration of DNA methylation, may have a role in oncogenesis. [provided by RefSeq, Oct 2011]

SALL2 Gene

spalt-like transcription factor 2

HBP1 Gene

HMG-box transcription factor 1

LOC260339 Gene

transcription factor A, mitochondrial pseudogene

MYPOP Gene

Myb-related transcription factor, partner of profilin

BCLAF1P1 Gene

BCL2-associated transcription factor 1 pseudogene 1

TCEANC Gene

transcription elongation factor A (SII) N-terminal and central domain containing

TFB2M Gene

transcription factor B2, mitochondrial

GTF2IP1 Gene

general transcription factor IIi pseudogene 1

GTF2IP3 Gene

general transcription factor IIi pseudogene 3

GTF2IP2 Gene

general transcription factor IIi pseudogene 2

GTF2IP5 Gene

general transcription factor IIi pseudogene 5

GTF2IP4 Gene

general transcription factor IIi, pseudogene 4

GTF2IP6 Gene

general transcription factor IIi pseudogene 6

TCEA2 Gene

transcription elongation factor A (SII), 2

The protein encoded by this gene is found in the nucleus, where it functions as an SII class transcription elongation factor. Elongation factors in this class are responsible for releasing RNA polymerase II ternary complexes from transcriptional arrest at template-encoded arresting sites. The encoded protein has been shown to interact with general transcription factor IIB, a basal transcription factor. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

TCEA3 Gene

transcription elongation factor A (SII), 3

TCEA1 Gene

transcription elongation factor A (SII), 1

GTF2F1 Gene

general transcription factor IIF, polypeptide 1, 74kDa

GTF2F2 Gene

general transcription factor IIF, polypeptide 2, 30kDa

LOC100129001 Gene

general transcription factor IIIC, polypeptide 6, alpha 35kDa pseudogene

GFI1B Gene

growth factor independent 1B transcription repressor

This gene encodes a zinc-finger containing transcriptional regulator that is primarily expressed in cells of hematopoietic lineage. The encoded protein complexes with numerous other transcriptional regulatory proteins including GATA-1, runt-related transcription factor 1 and histone deacetylases to control expression of genes involved in the development and maturation of erythrocytes and megakaryocytes. Mutations in this gene are the cause of the autosomal dominant platelet disorder, platelet-type bleeding disorder-17. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Aug 2014]

HLTF Gene

helicase-like transcription factor

This gene encodes a member of the SWI/SNF family. Members of this family have helicase and ATPase activities and are thought to regulate transcription of certain genes by altering the chromatin structure around those genes. The encoded protein contains a RING finger DNA binding motif. Two transcript variants encoding the same protein have been found for this gene. However, use of an alternative translation start site produces an isoform that is truncated at the N-terminus compared to the full-length protein. [provided by RefSeq, Jul 2008]

RUNX1T1 Gene

runt-related transcription factor 1; translocated to, 1 (cyclin D-related)

This gene encodes a member of the myeloid translocation gene family which interact with DNA-bound transcription factors and recruit a range of corepressors to facilitate transcriptional repression. The t(8;21)(q22;q22) translocation is one of the most frequent karyotypic abnormalities in acute myeloid leukemia. The translocation produces a chimeric gene made up of the 5'-region of the runt-related transcription factor 1 gene fused to the 3'-region of this gene. The chimeric protein is thought to associate with the nuclear corepressor/histone deacetylase complex to block hematopoietic differentiation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2010]

LOC100421023 Gene

nuclear transcription factor Y, gamma pseudogene

TCEB1P31 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 31

LOC105370554 Gene

transcription factor NF-E4-like

GTF2IP20 Gene

general transcription factor IIi pseudogene 20

HSF1 Gene

heat shock transcription factor 1

The product of this gene is a heat-shock transcription factor. Transcription of heat-shock genes is rapidly induced after temperature stress. Hsp90, by itself and/or associated with multichaperone complexes, is a major repressor of this gene. [provided by RefSeq, Jul 2008]

HSF2 Gene

heat shock transcription factor 2

The protein encoded by this gene belongs to the HSF family of transcription factors that bind specifically to the heat-shock promoter element and activate transcription. Heat shock transcription factors activate heat-shock response genes under conditions of heat or other stresses. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2011]

HSF5 Gene

heat shock transcription factor family member 5

HSF4 Gene

heat shock transcription factor 4

Heat-shock transcription factors (HSFs) activate heat-shock response genes under conditions of heat or other stresses. HSF4 lacks the carboxyl-terminal hydrophobic repeat which is shared among all vertebrate HSFs and has been suggested to be involved in the negative regulation of DNA binding activity. Two alternatively spliced transcripts encoding distinct isoforms and possessing different transcriptional activity have been described. [provided by RefSeq, Jul 2008]

TCF21 Gene

transcription factor 21

TCF21 encodes a transcription factor of the basic helix-loop-helix family. The TCF21 product is mesoderm specific, and expressed in embryonic epicardium, mesenchyme-derived tissues of lung, gut, gonad, and both mesenchymal and glomerular epithelial cells in the kidney. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

BTF3P11 Gene

basic transcription factor 3 pseudogene 11

BTF3P10 Gene

basic transcription factor 3 pseudogene 10

BTF3P13 Gene

basic transcription factor 3 pseudogene 13

This locus defines a putative member of the BTF3 family of transcription factors and is thought to represent a pseudogene. [provided by RefSeq, Jul 2008]

AHCTF1P1 Gene

AT hook containing transcription factor 1 pseudogene 1

GTF3A Gene

general transcription factor IIIA

The product of this gene is a zinc finger protein with nine Cis[2]-His[2] zinc finger domains. It functions as an RNA polymerase III transcription factor to induce transcription of the 5S rRNA genes. The protein binds to a 50 bp internal promoter in the 5S genes called the internal control region (ICR), and nucleates formation of a stable preinitiation complex. This complex recruits the TFIIIC and TFIIIB transcription factors and RNA polymerase III to form the complete transcription complex. The protein is thought to be translated using a non-AUG translation initiation site in mammals based on sequence analysis, protein homology, and the size of the purified protein. [provided by RefSeq, Jul 2008]

BATF2 Gene

basic leucine zipper transcription factor, ATF-like 2

TFAMP2 Gene

transcription factor A, mitochondrial pseudogene 2

TFAMP1 Gene

transcription factor A, mitochondrial pseudogene 1

TFAM Gene

transcription factor A, mitochondrial

This gene encodes a key mitochondrial transcription factor containing two high mobility group motifs. The encoded protein also functions in mitochondrial DNA replication and repair. Sequence polymorphisms in this gene are associated with Alzheimer's and Parkinson's diseases. There are pseudogenes for this gene on chromosomes 6, 7, and 11. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

GTF2H2B Gene

general transcription factor IIH, polypeptide 2B (pseudogene)

TFDP3 Gene

transcription factor Dp family, member 3

This gene encodes a member of the DP family of transcription factors. These factors heterodimerize with E2F proteins to enhance their DNA-binding activity and promote transcription from E2F target genes. This protein functions as a negative regulator and inhibits the DNA binding and transcriptional activities of E2F factors.[provided by RefSeq, May 2010]

TFDP2 Gene

transcription factor Dp-2 (E2F dimerization partner 2)

The gene is a member of the transcription factor DP family. The encoded protein forms heterodimers with the E2F transcription factors resulting in transcriptional activation of cell cycle regulated genes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

TFDP1 Gene

transcription factor Dp-1

This gene encodes a member of a family of transcription factors that heterodimerize with E2F proteins to enhance their DNA-binding activity and promote transcription from E2F target genes. The encoded protein functions as part of this complex to control the transcriptional activity of numerous genes involved in cell cycle progression from G1 to S phase. Alternative splicing results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 1, 15, and X.[provided by RefSeq, Jan 2009]

LOC101929748 Gene

transcription initiation factor TFIID subunit 4-like

TCEB1P18 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 18

TCEB1P14 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 14

BTF3 Gene

basic transcription factor 3

This gene encodes the basic transcription factor 3. This protein forms a stable complex with RNA polymerase IIB and is required for transcriptional initiation. Alternative splicing results in multiple transcript variants encoding different isoforms. This gene has multiple pseudogenes. [provided by RefSeq, Jul 2008]

LOC440973 Gene

nuclear transcription factor Y, beta pseudogene

TCEB3CL Gene

transcription elongation factor B polypeptide 3C-like

HSFY1 Gene

heat shock transcription factor, Y-linked 1

This gene encodes a member of the heat shock factor (HSF) family of transcriptional activators for heat shock proteins. This gene is a candidate gene for azoospermia, since it localizes to a region of chromosome Y that is sometimes deleted in infertile males. The genome has two identical copies of this gene within a palindromic region; this record represents the more centromeric copy. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

HSFY2 Gene

heat shock transcription factor, Y linked 2

This gene encodes a member of the heat shock factor (HSF) family of transcriptional activators for heat shock proteins. This gene is a candidate gene for azoospermia, since it localizes to a region of chromosome Y that is sometimes deleted in infertile males. The genome has two identical copies of this gene within a palindromic region; this record represents the more telomeric copy. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

POU5F2 Gene

POU domain class 5, transcription factor 2

LOC101929578 Gene

transcription factor CP2-like

GTF2A1 Gene

general transcription factor IIA, 1, 19/37kDa

Accurate transcription initiation on TATA-containing class II genes involves the ordered assembly of RNA polymerase II (POLR2A; MIM 180660) and several general initiation factors (summarized by DeJong and Roeder, 1993 [PubMed 8224848]). One of these factors is TFIIA, which when purified from HeLa extracts consists of 35-, 19-, and 12-kD subunits.[supplied by OMIM, Jul 2010]

GTF2A2 Gene

general transcription factor IIA, 2, 12kDa

Accurate transcription initiation on TATA-containing class II genes involves the ordered assembly of RNA polymerase II (POLR2A; MIM 180660) and the general initiation factors TFIIA, TFIIB (MIM 189963), TFIID (MIM 313650), TFIIE (MIM 189962), TFIIF (MIM 189968), TFIIG/TFIIJ, and TFIIH (MIM 189972). The first step involves recognition of the TATA element by the TATA-binding subunit (TBP; MIM 600075) and may be regulated by TFIIA, a factor that interacts with both TBP and a TBP-associated factor (TAF; MIM 600475) in TFIID. TFIIA has 2 subunits (43 and 12 kD) in yeast and 3 subunits in higher eukaryotes. In HeLa extracts, it consists of a 35-kD alpha subunit and a 19-kD beta subunit encoded by the N- and C-terminal regions of GTF2A1 (MIM 600520), respectively, and a 12-kD gamma subunit encoded by GTF2A2 (DeJong et al., 1995 [PubMed 7724559]).[supplied by OMIM, Mar 2008]

BPTF Gene

bromodomain PHD finger transcription factor

This gene was identified by the reactivity of its encoded protein to a monoclonal antibody prepared against brain homogenates from patients with Alzheimer's disease. Analysis of the original protein (fetal Alz-50 reactive clone 1, or FAC1), identified as an 810 aa protein containing a DNA-binding domain and a zinc finger motif, suggested it might play a role in the regulation of transcription. High levels of FAC1 were detected in fetal brain and in patients with neurodegenerative diseases. The protein encoded by this gene is actually much larger than originally thought, and it also contains a C-terminal bromodomain characteristic of proteins that regulate transcription during proliferation. The encoded protein is highly similar to the largest subunit of the Drosophila NURF (nucleosome remodeling factor) complex. In Drosophila, the NURF complex, which catalyzes nucleosome sliding on DNA and interacts with sequence-specific transcription factors, is necessary for the chromatin remodeling required for transcription. Two alternative transcripts encoding different isoforms have been described completely. [provided by RefSeq, Jul 2008]

TCEB1P13 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 13

YY1P1 Gene

YY1 transcription factor pseudogene 1

TCF15 Gene

transcription factor 15 (basic helix-loop-helix)

The protein encoded by this gene is found in the nucleus and may be involved in the early transcriptional regulation of patterning of the mesoderm. The encoded basic helix-loop-helix protein requires dimerization with another basic helix-loop-helix protein for efficient DNA binding. [provided by RefSeq, Jul 2008]

TCF12 Gene

transcription factor 12

The protein encoded by this gene is a member of the basic helix-loop-helix (bHLH) E-protein family that recognizes the consensus binding site (E-box) CANNTG. This encoded protein is expressed in many tissues, among them skeletal muscle, thymus, B- and T-cells, and may participate in regulating lineage-specific gene expression through the formation of heterodimers with other bHLH E-proteins. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Jul 2008]

TCF19 Gene

transcription factor 19

This gene encodes a protein that belongs to the Plant Homeo Domain finger family of transcription factors. The encoded protein is thought to function during the G1/S transition in the cell cycle. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

ASCL2 Gene

achaete-scute family bHLH transcription factor 2

This gene is a member of the basic helix-loop-helix (BHLH) family of transcription factors. It activates transcription by binding to the E box (5'-CANNTG-3'). Dimerization with other BHLH proteins is required for efficient DNA binding. Involved in the determination of the neuronal precursors in the peripheral nervous system and the central nervous system. [provided by RefSeq, Jul 2008]

ASCL3 Gene

achaete-scute family bHLH transcription factor 3

Basic helix-loop-helix transcription factors, such as ASCL3, are essential for the determination of cell fate and the development and differentiation of numerous tissues (Jonsson et al., 2004 [PubMed 15475265]).[supplied by OMIM, Mar 2008]

ASCL1 Gene

achaete-scute family bHLH transcription factor 1

This gene encodes a member of the basic helix-loop-helix (BHLH) family of transcription factors. The protein activates transcription by binding to the E box (5'-CANNTG-3'). Dimerization with other BHLH proteins is required for efficient DNA binding. This protein plays a role in the neuronal commitment and differentiation and in the generation of olfactory and autonomic neurons. Mutations in this gene may contribute to the congenital central hypoventilation syndrome (CCHS) phenotype in rare cases. [provided by RefSeq, Jul 2008]

ASCL4 Gene

achaete-scute family bHLH transcription factor 4

Basic helix-loop-helix transcription factors, such as ASCL4, are essential for the determination of cell fate and the development and differentiation of numerous tissues (Jonsson et al., 2004 [PubMed 15475265]).[supplied by OMIM, Mar 2008]

ASCL5 Gene

achaete-scute family bHLH transcription factor 5

TCEA1P2 Gene

transcription elongation factor A (SII), 1 pseudogene 2

TFCP2L1 Gene

transcription factor CP2-like 1

TFCP2 Gene

transcription factor CP2

This gene encodes a transcription factor that binds the alpha-globin promoter and activates transcription of the alpha-globin gene. The encoded protein regulates erythroid gene expression, plays a role in the transcriptional switch of globin gene promoters, and it activates many other cellular and viral gene promoters. The gene product interacts with certain inflammatory response factors, and polymorphisms of this gene may be involved in the pathogenesis of Alzheimer's disease. [provided by RefSeq, Mar 2010]

HSFY3P Gene

heat shock transcription factor, Y-linked 3, pseudogene

TCF4 Gene

transcription factor 4

This gene encodes transcription factor 4, a basic helix-loop-helix transcription factor. The encoded protein recognizes an Ephrussi-box ('E-box') binding site ('CANNTG') - a motif first identified in immunoglobulin enhancers. This gene is broadly expressed, and may play an important role in nervous system development. Defects in this gene are a cause of Pitt-Hopkins syndrome. Multiple alternatively spliced transcript variants that encode different proteins have been described. [provided by RefSeq, Aug 2011]

TCF3 Gene

transcription factor 3

This gene encodes a member of the E protein (class I) family of helix-loop-helix transcription factors. E proteins activate transcription by binding to regulatory E-box sequences on target genes as heterodimers or homodimers, and are inhibited by heterodimerization with inhibitor of DNA-binding (class IV) helix-loop-helix proteins. E proteins play a critical role in lymphopoiesis, and the encoded protein is required for B and T lymphocyte development. Deletion of this gene or diminished activity of the encoded protein may play a role in lymphoid malignancies. This gene is also involved in several chromosomal translocations that are associated with lymphoid malignancies including pre-B-cell acute lymphoblastic leukemia (t(1;19), with PBX1), childhood leukemia (t(19;19), with TFPT) and acute leukemia (t(12;19), with ZNF384). Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of this gene is located on the short arm of chromosome 9. [provided by RefSeq, Sep 2011]

LOC390617 Gene

transcription factor Dp-1 pseudogene

SPDEF Gene

SAM pointed domain containing ETS transcription factor

The protein encoded by this gene belongs to the ETS family of transcription factors. It is highly expressed in the prostate epithelial cells, and functions as an androgen-independent transactivator of prostate-specific antigen (PSA) promoter. Higher expression of this protein has also been reported in brain, breast, lung and ovarian tumors, compared to the corresponding normal tissues, and it shows better tumor-association than other cancer-associated molecules, making it a more suitable target for developing specific cancer therapies. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2011]

TWIST1 Gene

twist family bHLH transcription factor 1

Basic helix-loop-helix (bHLH) transcription factors have been implicated in cell lineage determination and differentiation. The protein encoded by this gene is a bHLH transcription factor and shares similarity with another bHLH transcription factor, Dermo1. The strongest expression of this mRNA is in placental tissue; in adults, mesodermally derived tissues express this mRNA preferentially. Mutations in this gene have been found in patients with Saethre-Chotzen syndrome. [provided by RefSeq, Jul 2008]

TWIST2 Gene

twist family bHLH transcription factor 2

The protein encoded by this gene is a basic helix-loop-helix type transcription factor and shares similarity with Twist. This protein may inhibit osteoblast maturation and maintain cells in a preosteoblast phenotype during osteoblast development. This gene may be upregulated in certain cancers. Mutations in this gene cause focal facial dermal dysplasia 3, Setleis type. Two transcript variants encoding the same protein have been found. [provided by RefSeq, Apr 2014]

DEAF1 Gene

DEAF1 transcription factor

This gene encodes a zinc finger domain-containing protein that functions as a regulator of transcription. The encoded proteins binds to its own promoter as well as to that of several target genes. Activity of this protein is important in the regulation of embryonic development. Mutations in this gene have been found in individuals with autosomal dominant mental retardation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2014]

BTF3P9 Gene

basic transcription factor 3 pseudogene 9

LOC100422440 Gene

general transcription factor IIE, polypeptide 2, beta 34kDa pseudogene

HES2 Gene

hes family bHLH transcription factor 2

TCEB1P26 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 26

BTF3L4 Gene

basic transcription factor 3-like 4

TCEAL3 Gene

transcription elongation factor A (SII)-like 3

This gene encodes a member of the transcription elongation factor A (SII)-like (TCEAL) gene family. Members of this family contain TFA domains and may function as nuclear phosphoproteins that modulate transcription in a promoter context-dependent manner. Multiple family members are located on the X chromosome. Alternative splicing results in multiple transcript variants encoding a single isoform. [provided by RefSeq, Jul 2008]

TCEAL2 Gene

transcription elongation factor A (SII)-like 2

This gene encodes a member of the transcription elongation factor A (SII)-like (TCEAL) gene family. Members of this family contain TFA domains and may function as nuclear phosphoproteins that modulate transcription in a promoter context-dependent manner. Multiple family members are located on the X chromosome. [provided by RefSeq, Jul 2008]

TCEAL1 Gene

transcription elongation factor A (SII)-like 1

This gene encodes a member of the transcription elongation factor A (SII)-like (TCEAL) gene family. Members of this family may function as nuclear phosphoproteins that modulate transcription in a promoter context-dependent manner. The encoded protein is similar to transcription elongation factor A/transcription factor SII and contains a zinc finger-like motif as well as a sequence related to the transcription factor SII Pol II-binding region. It may exert its effects via protein-protein interactions with other transcriptional regulators rather than via direct binding of DNA. Multiple family members are located on the X chromosome. Alternative splicing results in multiple transcript variants encoding a single isoform. [provided by RefSeq, Jul 2008]

TCEAL7 Gene

transcription elongation factor A (SII)-like 7

TCEAL6 Gene

transcription elongation factor A (SII)-like 6

TCEAL5 Gene

transcription elongation factor A (SII)-like 5

This gene, which is located on the X chromosome, encodes a protein which contains a BEX (brain expressed X-liked like family) domain. This domain is found in proteins encoded by the TCEAL elongation factor (transcription elongation factor A (SII)-like) gene family also located on the X chromosome. The coding region for this gene is located entirely in the terminal exon. [provided by RefSeq, Sep 2011]

TCEAL4 Gene

transcription elongation factor A (SII)-like 4

This gene encodes a member of the transcription elongation factor A (SII)-like (TCEAL) gene family. This family is comprised of nuclear phosphoproteins that modulate transcription in a promoter context-dependent manner. Multiple family members are located on the X chromosome. Alternatively splicing results in multiple transcript variants. There is a pseudogene for this gene on chromosome 13. [provided by RefSeq, Apr 2015]

TCEAL8 Gene

transcription elongation factor A (SII)-like 8

This gene encodes a member of the transcription elongation factor A (SII)-like (TCEAL) gene family. Members of this family contain TFA domains and may function as nuclear phosphoproteins that modulate transcription in a promoter context-dependent manner. Multiple family members are located on the X chromosome. Alternative splicing results in multiple transcript variants encoding a single isoform. [provided by RefSeq, Jul 2008]

GTF2IP8 Gene

general transcription factor IIi pseudogene 8

SP8 Gene

Sp8 transcription factor

The protein encoded by this gene is an SP family transcription factor that in mouse has been shown to be essential for proper limb development. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2011]

SP9 Gene

Sp9 transcription factor

SP1 Gene

Sp1 transcription factor

The protein encoded by this gene is a zinc finger transcription factor that binds to GC-rich motifs of many promoters. The encoded protein is involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. Post-translational modifications such as phosphorylation, acetylation, glycosylation, and proteolytic processing significantly affect the activity of this protein, which can be an activator or a repressor. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2014]

SP2 Gene

Sp2 transcription factor

This gene encodes a member of the Sp subfamily of Sp/XKLF transcription factors. Sp family proteins are sequence-specific DNA-binding proteins characterized by an amino-terminal trans-activation domain and three carboxy-terminal zinc finger motifs. This protein contains the least conserved DNA-binding domain within the Sp subfamily of proteins, and its DNA sequence specificity differs from the other Sp proteins. It localizes primarily within subnuclear foci associated with the nuclear matrix, and can activate or in some cases repress expression from different promoters. [provided by RefSeq, Jul 2008]

SP3 Gene

Sp3 transcription factor

This gene belongs to a family of Sp1 related genes that encode transcription factors that regulate transcription by binding to consensus GC- and GT-box regulatory elements in target genes. This protein contains a zinc finger DNA-binding domain and several transactivation domains, and has been reported to function as a bifunctional transcription factor that either stimulates or represses the transcription of numerous genes. Transcript variants encoding different isoforms have been described for this gene, and one has been reported to initiate translation from a non-AUG (AUA) start codon. Additional isoforms, resulting from the use of alternate downstream translation initiation sites, have also been noted. A related pseudogene has been identified on chromosome 13. [provided by RefSeq, Feb 2010]

SP4 Gene

Sp4 transcription factor

SP5 Gene

Sp5 transcription factor

SP6 Gene

Sp6 transcription factor

SP6 belongs to a family of transcription factors that contain 3 classical zinc finger DNA-binding domains consisting of a zinc atom tetrahedrally coordinated by 2 cysteines and 2 histidines (C2H2 motif). These transcription factors bind to GC-rich sequences and related GT and CACCC boxes (Scohy et al., 2000 [PubMed 11087666]).[supplied by OMIM, Mar 2008]

TCEB1P23 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 23

TCEB1P21 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 21

TCEB1P20 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 20

TCEB1P29 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 29

TCEB1P28 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 28

LOC105377637 Gene

transcription initiation factor TFIID subunit 4-like

YY1P2 Gene

YY1 transcription factor pseudogene 2

LOC101928917 Gene

heat shock transcription factor, X-linked-like

FERD3L Gene

Fer3-like bHLH transcription factor

TCFL5 Gene

transcription factor-like 5 (basic helix-loop-helix)

YY1 Gene

YY1 transcription factor

YY1 is a ubiquitously distributed transcription factor belonging to the GLI-Kruppel class of zinc finger proteins. The protein is involved in repressing and activating a diverse number of promoters. YY1 may direct histone deacetylases and histone acetyltransferases to a promoter in order to activate or repress the promoter, thus implicating histone modification in the function of YY1. [provided by RefSeq, Jul 2008]

YY2 Gene

YY2 transcription factor

The protein encoded by this gene is a transcription factor that includes several Kruppel-like zinc fingers in its C-terminal region. It possesses both activation and repression domains, and it can therefore have both positive and negative effects on the transcription of target genes. This gene has an intronless coding region, and it appears to have arisen by retrotransposition of the related YY1 transcription factor gene, which is located on chromosome 14. [provided by RefSeq, May 2010]

BACH2 Gene

BTB and CNC homology 1, basic leucine zipper transcription factor 2

BACH1 Gene

BTB and CNC homology 1, basic leucine zipper transcription factor 1

This gene encodes a transcription factor that belongs to the cap'n'collar type of basic region leucine zipper factor family (CNC-bZip). The encoded protein contains broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) domains, which is atypical of CNC-bZip family members. These BTB/POZ domains facilitate protein-protein interactions and formation of homo- and/or hetero-oligomers. When this encoded protein forms a heterodimer with MafK, it functions as a repressor of Maf recognition element (MARE) and transcription is repressed. Multiple alternatively spliced transcript variants have been identified for this gene. [provided by RefSeq, May 2009]

TUB Gene

tubby bipartite transcription factor

This gene encodes a member of the Tubby family of bipartite transcription factors. The encoded protein may play a role in obesity and sensorineural degradation. The crystal structure has been determined for a similar protein in mouse, and it functions as a membrane-bound transcription regulator that translocates to the nucleus in response to phosphoinositide hydrolysis. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

MBTPS2 Gene

membrane-bound transcription factor peptidase, site 2

This gene encodes a intramembrane zinc metalloprotease, which is essential in development. This protease functions in the signal protein activation involved in sterol control of transcription and the ER stress response. Mutations in this gene have been associated with ichthyosis follicularis with atrichia and photophobia (IFAP syndrome); IFAP syndrome has been quantitatively linked to a reduction in cholesterol homeostasis and ER stress response.[provided by RefSeq, Aug 2009]

MBTPS1 Gene

membrane-bound transcription factor peptidase, site 1

This gene encodes a member of the subtilisin-like proprotein convertase family, which includes proteases that process protein and peptide precursors trafficking through regulated or constitutive branches of the secretory pathway. The encoded protein undergoes an initial autocatalytic processing event in the ER to generate a heterodimer which exits the ER and sorts to the cis/medial-Golgi where a second autocatalytic event takes place and the catalytic activity is acquired. It encodes a type 1 membrane bound protease which is ubiquitously expressed and regulates cholesterol or lipid homeostasis via cleavage of substrates at non-basic residues. Mutations in this gene may be associated with lysosomal dysfunction. [provided by RefSeq, Feb 2014]

ATF5 Gene

activating transcription factor 5

ATF4 Gene

activating transcription factor 4

This gene encodes a transcription factor that was originally identified as a widely expressed mammalian DNA binding protein that could bind a tax-responsive enhancer element in the LTR of HTLV-1. The encoded protein was also isolated and characterized as the cAMP-response element binding protein 2 (CREB-2). The protein encoded by this gene belongs to a family of DNA-binding proteins that includes the AP-1 family of transcription factors, cAMP-response element binding proteins (CREBs) and CREB-like proteins. These transcription factors share a leucine zipper region that is involved in protein-protein interactions, located C-terminal to a stretch of basic amino acids that functions as a DNA binding domain. Two alternative transcripts encoding the same protein have been described. Two pseudogenes are located on the X chromosome at q28 in a region containing a large inverted duplication. [provided by RefSeq, Sep 2011]

ATF7 Gene

activating transcription factor 7

ATF6 Gene

activating transcription factor 6

This gene encodes a transcription factor that activates target genes for the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. Although it is a transcription factor, this protein is unusual in that it is synthesized as a transmembrane protein that is embedded in the ER. It functions as an ER stress sensor/transducer, and following ER stress-induced proteolysis, it functions as a nuclear transcription factor via a cis-acting ER stress response element (ERSE) that is present in the promoters of genes encoding ER chaperones. This protein has been identified as a survival factor for quiescent but not proliferative squamous carcinoma cells. There have been conflicting reports about the association of polymorphisms in this gene with diabetes in different populations, but another polymorphism has been associated with increased plasma cholesterol levels. This gene is also thought to be a potential therapeutic target for cystic fibrosis. [provided by RefSeq, Aug 2011]

ATF1 Gene

activating transcription factor 1

This gene encodes an activating transcription factor, which belongs to the ATF subfamily and bZIP (basic-region leucine zipper) family. It influences cellular physiologic processes by regulating the expression of downstream target genes, which are related to growth, survival, and other cellular activities. This protein is phosphorylated at serine 63 in its kinase-inducible domain by serine/threonine kinases, cAMP-dependent protein kinase A, calmodulin-dependent protein kinase I/II, mitogen- and stress-activated protein kinase and cyclin-dependent kinase 3 (cdk-3). Its phosphorylation enhances its transactivation and transcriptional activities, and enhances cell transformation. Fusion of this gene and FUS on chromosome 16 or EWSR1 on chromosome 22 induced by translocation generates chimeric proteins in angiomatoid fibrous histiocytoma and clear cell sarcoma. This gene has a pseudogene on chromosome 6. [provided by RefSeq, Aug 2010]

ATF3 Gene

activating transcription factor 3

This gene encodes a member of the mammalian activation transcription factor/cAMP responsive element-binding (CREB) protein family of transcription factors. This gene is induced by a variety of signals, including many of those encountered by cancer cells, and is involved in the complex process of cellular stress response. Multiple transcript variants encoding different isoforms have been found for this gene. It is possible that alternative splicing of this gene may be physiologically important in the regulation of target genes. [provided by RefSeq, Apr 2011]

ATF2 Gene

activating transcription factor 2

This gene encodes a transcription factor that is a member of the leucine zipper family of DNA binding proteins. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct functions This protein binds to the cAMP-responsive element (CRE), an octameric palindrome. It forms a homodimer or a heterodimer with c-Jun and stimulates CRE-dependent transcription. This protein is also a histone acetyltransferase (HAT) that specifically acetylates histones H2B and H4 in vitro; thus it may represent a class of sequence-specific factors that activate transcription by direct effects on chromatin components. The encoded protein may also be involved in cell's DNA damage response independent of its role in transcriptional regulation. Several alternatively spliced transcript variants have been found for this gene [provided by RefSeq, Jan 2014]

TFDP1P Gene

transcription factor Dp-1 pseudogene

TCEB3B Gene

transcription elongation factor B polypeptide 3B (elongin A2)

This gene encodes the transcriptionally active subunit of the SIII (or elongin) transcription elongation factor complex, which also includes two regulatory subunits, elongins B and C. This complex acts to increase the rate of RNA chain elongation by RNA polymerase II by suppressing transient pausing of the polymerase at many sites along the DNA template. Whereas a related protein with similar function, elongin A, is ubiquitously expressed, the encoded protein is specifically expressed in the testis, suggesting it may have a role in spermatogenesis. [provided by RefSeq, Jul 2008]

LOC100128441 Gene

general transcription factor IIA, 2, 12kDa pseudogene

LOC441488 Gene

transcription factor Dp-1-like pseudogene

GFI1 Gene

growth factor independent 1 transcription repressor

This gene encodes a nuclear zinc finger protein that functions as a transcriptional repressor. This protein plays a role in diverse developmental contexts, including hematopoiesis and oncogenesis. It functions as part of a complex along with other cofactors to control histone modifications that lead to silencing of the target gene promoters. Mutations in this gene cause autosomal dominant severe congenital neutropenia, and also dominant nonimmune chronic idiopathic neutropenia of adults, which are heterogeneous hematopoietic disorders that cause predispositions to leukemias and infections. Multiple alternatively spliced variants, encoding the same protein, have been identified for this gene. [provided by RefSeq, Jul 2008]

HINFP Gene

histone H4 transcription factor

This gene encodes a transcription factor that interacts with methyl-CpG-binding protein-2 (MBD2), a component of the MeCP1 histone deacetylase (HDAC) complex, and plays a role in DNA methylation and transcription repression. Alternatively spliced transcript variants have been found for this gene.[provided by RefSeq, Aug 2011]

SP7 Gene

Sp7 transcription factor

This gene encodes a member of the Sp subfamily of Sp/XKLF transcription factors. Sp family proteins are sequence-specific DNA-binding proteins characterized by an amino-terminal trans-activation domain and three carboxy-terminal zinc finger motifs. This protein is a bone specific transcription factor and is required for osteoblast differentiation and bone formation.[provided by RefSeq, Jul 2010]

TCEA1P4 Gene

transcription elongation factor A (SII), 1 pseudogene 4

TCEA1P1 Gene

transcription elongation factor A (SII), 1 pseudogene 1

TCEA1P3 Gene

transcription elongation factor A (SII), 1 pseudogene 3

MTERF2 Gene

mitochondrial transcription termination factor 2

MTERF3 Gene

mitochondrial transcription termination factor 3

MTERF1 Gene

mitochondrial transcription termination factor 1

This gene encodes a mitochondrial transcription termination factor. This protein participates in attenuating transcription from the mitochondrial genome; this attenuation allows higher levels of expression of 16S ribosomal RNA relative to the tRNA gene downstream. The product of this gene has three leucine zipper motifs bracketed by two basic domains that are all required for DNA binding. There is evidence that, for this protein, the zippers participate in intramolecular interactions that establish the three-dimensional structure required for DNA binding. [provided by RefSeq, Jul 2008]

MTERF4 Gene

mitochondrial transcription termination factor 4

LOC105376549 Gene

activating transcription factor 7-interacting protein 2 pseudogene

LZTFL1 Gene

leucine zipper transcription factor-like 1

This gene encodes a ubiquitously expressed protein that localizes to the cytoplasm. This protein interacts with Bardet-Biedl Syndrome (BBS) proteins and, through its interaction with BBS protein complexes, regulates protein trafficking to the ciliary membrane. Nonsense mutations in this gene cause a form of Bardet-Biedl Syndrome; a ciliopathy characterized in part by polydactyly, obesity, cognitive impairment, hypogonadism, and kidney failure. This gene may also function as a tumor suppressor; possibly by interacting with E-cadherin and the actin cytoskeleton and thereby regulating the transition of epithelial cells to mesenchymal cells. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Feb 2013]

FLI1 Gene

Fli-1 proto-oncogene, ETS transcription factor

This gene encodes a transcription factor containing an ETS DNA-binding domain. The gene can undergo a t(11;22)(q24;q12) translocation with the Ewing sarcoma gene on chromosome 22, which results in a fusion gene that is present in the majority of Ewing sarcoma cases. An acute lymphoblastic leukemia-associated t(4;11)(q21;q23) translocation involving this gene has also been identified. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

TCEB2P3 Gene

transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B) pseudogene 3

TCEB2P2 Gene

transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B) pseudogene 2

TCEB2P1 Gene

transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B) pseudogene 1

TCEB2P4 Gene

transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B) pseudogene 4

LOC100421664 Gene

Spi-C transcription factor (Spi-1/PU.1 related) pseudogene

TFB1M Gene

transcription factor B1, mitochondrial

The protein encoded by this gene is a dimethyltransferase that methylates the conserved stem loop of mitochondrial 12S rRNA. The encoded protein also is part of the basal mitochondrial transcription complex and is necessary for mitochondrial gene expression. The methylation and transcriptional activities of this protein are independent of one another. Variations in this gene may influence the severity of aminoglycoside-induced deafness (AID).[provided by RefSeq, Aug 2010]

BATF Gene

basic leucine zipper transcription factor, ATF-like

The protein encoded by this gene is a nuclear basic leucine zipper protein that belongs to the AP-1/ATF superfamily of transcription factors. The leucine zipper of this protein mediates dimerization with members of the Jun family of proteins. This protein is thought to be a negative regulator of AP-1/ATF transcriptional events. [provided by RefSeq, Jul 2008]

OLIG2 Gene

oligodendrocyte lineage transcription factor 2

This gene encodes a basic helix-loop-helix transcription factor which is expressed in oligodendroglial tumors of the brain. The protein is an essential regulator of ventral neuroectodermal progenitor cell fate. The gene is involved in a chromosomal translocation t(14;21)(q11.2;q22) associated with T-cell acute lymphoblastic leukemia. Its chromosomal location is within a region of chromosome 21 which has been suggested to play a role in learning deficits associated with Down syndrome. [provided by RefSeq, Jul 2008]

OLIG3 Gene

oligodendrocyte transcription factor 3

OLIG1 Gene

oligodendrocyte transcription factor 1

LOC101060206 Gene

transcription termination factor 1, mitochondrial-like

USF2 Gene

upstream transcription factor 2, c-fos interacting

This gene encodes a member of the basic helix-loop-helix leucine zipper family, and can function as a cellular transcription factor. The encoded protein can activate transcription through pyrimidine-rich initiator (Inr) elements and E-box motifs. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

USF1 Gene

upstream transcription factor 1

This gene encodes a member of the basic helix-loop-helix leucine zipper family, and can function as a cellular transcription factor. The encoded protein can activate transcription through pyrimidine-rich initiator (Inr) elements and E-box motifs. This gene has been linked to familial combined hyperlipidemia (FCHL). Alternative splicing of this gene results in multiple transcript variants. A related pseudogene has been defined on chromosome 21. [provided by RefSeq, Feb 2013]

HSFY4P Gene

heat shock transcription factor, Y-linked 4, pseudogene

LOC100420794 Gene

RE1-silencing transcription factor pseudogene

HES3 Gene

hes family bHLH transcription factor 3

HES4 Gene

hes family bHLH transcription factor 4

HES5 Gene

hes family bHLH transcription factor 5

This gene encodes a member of a family of basic helix-loop-helix transcriptional repressors. The protein product of this gene, which is activated downstream of the Notch pathway, regulates cell differentiation in multiple tissues. Disruptions in the normal expression of this gene have been associated with developmental diseases and cancer. [provided by RefSeq, Dec 2008]

HES6 Gene

hes family bHLH transcription factor 6

This gene encodes a member of a subfamily of basic helix-loop-helix transcription repressors that have homology to the Drosophila enhancer of split genes. Members of this gene family regulate cell differentiation in numerous cell types. The protein encoded by this gene functions as a cofactor, interacting with other transcription factors through a tetrapeptide domain in its C-terminus. Alternatively spliced transcript variants encoding different isoforms have been described.[provided by RefSeq, Dec 2008]

HES7 Gene

hes family bHLH transcription factor 7

This gene encodes a member of the hairy and enhancer of split family of bHLH transcription factors. The mouse ortholog of this gene is regulated by Notch signaling. The protein functions as a transcriptional repressor, and is implicated in correct patterning of the axial skeleton. A mutation in this gene has been shown to result in spondylocostal dysostosis. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Sep 2009]

MITF Gene

microphthalmia-associated transcription factor

This gene encodes a transcription factor that contains both basic helix-loop-helix and leucine zipper structural features. It regulates the differentiation and development of melanocytes retinal pigment epithelium and is also responsible for pigment cell-specific transcription of the melanogenesis enzyme genes. Heterozygous mutations in the this gene cause auditory-pigmentary syndromes, such as Waardenburg syndrome type 2 and Tietz syndrome. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

LOC442155 Gene

transcription factor B2, mitochondrial pseudogene

DACH1 Gene

dachshund family transcription factor 1

This gene encodes a chromatin-associated protein that associates with other DNA-binding transcription factors to regulate gene expression and cell fate determination during development. The protein contains a Ski domain that is highly conserved from Drosophila to human. Expression of this gene is lost in some forms of metastatic cancer, and is correlated with poor prognosis. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

DACH2 Gene

dachshund family transcription factor 2

This gene is one of two genes which encode a protein similar to the Drosophila protein dachshund, a transcription factor involved in cell fate determination in the eye, limb and genital disc of the fly. The encoded protein contains two characteristic dachshund domains: an N-terminal domain responsible for DNA binding and a C-terminal domain responsible for protein-protein interactions. This gene is located on the X chromosome and is subject to inactivation by DNA methylation. The encoded protein may be involved in regulation of organogenesis and myogenesis, and may play a role in premature ovarian failure. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2008]

LOC100288365 Gene

activating transcription factor 7 interacting protein 2 pseudogene

LOC102724563 Gene

transcription factor E2F6 pseudogene

E2F7 Gene

E2F transcription factor 7

E2F transcription factors, such as E2F7, play an essential role in the regulation of cell cycle progression (Di Stefano et al., 2003 [PubMed 14633988]).[supplied by OMIM, May 2008]

E4F1 Gene

E4F transcription factor 1

The zinc finger protein encoded by this gene is one of several cellular transcription factors whose DNA-binding activities are regulated through the action of adenovirus E1A. A 50-kDa amino-terminal product is generated from the full-length protein through proteolytic cleavage. The protein is differentially regulated by E1A-induced phosphorylation. The full-length gene product represses transcription from the E4 promoter in the absence of E1A, while the 50-kDa form acts as a transcriptional activator in its presence. Alternative splicing results in multiple transcripts encoding different proteins. [provided by RefSeq, Jan 2014]

HSFY1P1 Gene

heat shock transcription factor, Y-linked 1 pseudogene 1

LOC342784 Gene

general transcription factor IIH, polypeptide 1, 62kDa pseudogene

LOC644563 Gene

general transcription factor IIIC, polypeptide 6, alpha 35kDa pseudogene

TCEB3CL2 Gene

transcription elongation factor B polypeptide 3C-like 2

MYT1L Gene

myelin transcription factor 1-like

LOC100128007 Gene

Spi-C transcription factor (Spi-1/PU.1 related) pseudogene

TCEB3C Gene

transcription elongation factor B polypeptide 3C (elongin A3)

The SIII (or elongin) transcription elongation factor complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. This complex is a heterotrimer, composed of the transcriptionally active subunit A, A2 or A3 (or elongin A, A2 or A3) and two regulatory subunits, B and C (or elongin B and C). This gene encodes subunit A3. A3 and A are ubiquitously expressed, whereas A2 is specifically expressed in the testis. [provided by RefSeq, Mar 2010]

E2F6 Gene

E2F transcription factor 6

This gene encodes a member of a family of transcription factors that play a crucial role in the control of the cell cycle. The protein encoded by this gene lacks the transactivation and tumor suppressor protein association domains found in other family members, and contains a modular suppression domain that functions in the inhibition of transcription. It interacts in a complex with chromatin modifying factors. There are pseudogenes for this gene on chromosomes 22 and X. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2013]

E2F3 Gene

E2F transcription factor 3

This gene encodes a member of a small family of transcription factors that function through binding of DP interaction partner proteins. The encoded protein recognizes a specific sequence motif in DNA and interacts directly with the retinoblastoma protein (pRB) to regulate the expression of genes involved in the cell cycle. Altered copy number and activity of this gene have been observed in a number of human cancers. There are pseudogenes for this gene on chromosomes 2 and 17. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2013]

E2F2 Gene

E2F transcription factor 2

The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein and another 2 members, E2F1 and E2F3, have an additional cyclin binding domain. This protein binds specifically to retinoblastoma protein pRB in a cell-cycle dependent manner, and it exhibits overall 46% amino acid identity to E2F1. [provided by RefSeq, Jul 2008]

E2F1 Gene

E2F transcription factor 1

The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein and another 2 members, E2F2 and E2F3, have an additional cyclin binding domain. This protein binds preferentially to retinoblastoma protein pRB in a cell-cycle dependent manner. It can mediate both cell proliferation and p53-dependent/independent apoptosis. [provided by RefSeq, Jul 2008]

E2F8 Gene

E2F transcription factor 8

This gene encodes a member of a family of transcription factors which regulate the expression of genes required for progression through the cell cycle. The encoded protein regulates progression from G1 to S phase by ensuring the nucleus divides at the proper time. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jan 2012]

GTF3C3 Gene

general transcription factor IIIC, polypeptide 3, 102kDa

The protein encoded by this gene is part of the TFIIIC2 complex, which binds to the promoters of small nuclear and cytoplasmic RNA genes in order to recruit RNA polymerase III. The TFIIIC2 complex is composed of six subunits. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

GTF3C2 Gene

general transcription factor IIIC, polypeptide 2, beta 110kDa

BTF3L4P3 Gene

basic transcription factor 3-like 4 pseudogene 3

BTF3L4P1 Gene

basic transcription factor 3-like 4 pseudogene 1

BTF3L4P2 Gene

basic transcription factor 3-like 4 pseudogene 2

BTF3L4P4 Gene

basic transcription factor 3-like 4 pseudogene 4

SALL1P1 Gene

spalt-like transcription factor 1 pseudogene 1

NFYAP1 Gene

nuclear transcription factor Y, alpha pseudogene 1

SALL4P4 Gene

spalt-like transcription factor 4 pseudogene 4

TCEB1P12 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 12

TCEB1P11 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 11

TCEB1P17 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 17

SIM2 Gene

single-minded family bHLH transcription factor 2

This gene represents a homolog of the Drosophila single-minded (sim) gene, which encodes a transcription factor that is a master regulator of neurogenesis. The encoded protein is ubiquitinated by RING-IBR-RING-type E3 ubiquitin ligases, including the parkin RBR E3 ubiquitin protein ligase. This gene maps within the so-called Down syndrome chromosomal region, and is thus thought to contribute to some specific Down syndrome phenotypes. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Sep 2014]

TFEC Gene

transcription factor EC

This gene encodes a member of the micropthalmia (MiT) family of basic helix-loop-helix leucine zipper transcription factors. MiT transcription factors regulate the expression of target genes by binding to E-box recognition sequences as homo- or heterodimers, and play roles in multiple cellular processes including survival, growth and differentiation. The encoded protein is a transcriptional activator of the nonmuscle myosin II heavy chain-A gene, and may also co-regulate target genes in osteoclasts as a heterodimer with micropthalmia-associated transcription factor. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Sep 2011]

TFEB Gene

transcription factor EB

CREBZF Gene

CREB/ATF bZIP transcription factor

RUNX2 Gene

runt-related transcription factor 2

This gene is a member of the RUNX family of transcription factors and encodes a nuclear protein with an Runt DNA-binding domain. This protein is essential for osteoblastic differentiation and skeletal morphogenesis and acts as a scaffold for nucleic acids and regulatory factors involved in skeletal gene expression. The protein can bind DNA both as a monomer or, with more affinity, as a subunit of a heterodimeric complex. Mutations in this gene have been associated with the bone development disorder cleidocranial dysplasia (CCD). Transcript variants that encode different protein isoforms result from the use of alternate promoters as well as alternate splicing. [provided by RefSeq, Jul 2008]

RUNX3 Gene

runt-related transcription factor 3

This gene encodes a member of the runt domain-containing family of transcription factors. A heterodimer of this protein and a beta subunit forms a complex that binds to the core DNA sequence 5'-PYGPYGGT-3' found in a number of enhancers and promoters, and can either activate or suppress transcription. It also interacts with other transcription factors. It functions as a tumor suppressor, and the gene is frequently deleted or transcriptionally silenced in cancer. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

RUNX1 Gene

runt-related transcription factor 1

Core binding factor (CBF) is a heterodimeric transcription factor that binds to the core element of many enhancers and promoters. The protein encoded by this gene represents the alpha subunit of CBF and is thought to be involved in the development of normal hematopoiesis. Chromosomal translocations involving this gene are well-documented and have been associated with several types of leukemia. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

ATF7IP2 Gene

activating transcription factor 7 interacting protein 2

MYT1 Gene

myelin transcription factor 1

The protein encoded by this gene is a member of a family of neural specific, zinc finger-containing DNA-binding proteins. The protein binds to the promoter regions of proteolipid proteins of the central nervous system and plays a role in the developing nervous system. [provided by RefSeq, Jul 2008]

TCF24 Gene

transcription factor 24

TCF25 Gene

transcription factor 25 (basic helix-loop-helix)

TCF25 is a member of the basic helix-loop-helix (bHLH) family of transcription factors that are important in embryonic development (Steen and Lindholm, 2008 [PubMed 18068114]).[supplied by OMIM, Sep 2008]

TCF20 Gene

transcription factor 20 (AR1)

This gene encodes a transcription factor that recognizes the platelet-derived growth factor-responsive element in the matrix metalloproteinase 3 promoter. The encoded protein is thought to be a transcriptional coactivator, enhancing the activity of transcription factors such as JUN and SP1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

TCF23 Gene

transcription factor 23

The gene encodes a member of the basic helix-loop-helix transcription factor family. Studies of the orthologous gene in mouse have shown the encoded protein does not bind DNA but may negatively regulate other basic helix-loop-helix factors via the formation of a functionally inactive heterodimeric complex. [provided by RefSeq, May 2010]

TCEAL4P1 Gene

transcription elongation factor A (SII)-like 4 pseudogene 1

LOC100422334 Gene

general transcription factor IIH, polypeptide 3, 34kDa pseudogene

LOC100128803 Gene

Spi-C transcription factor (Spi-1/PU.1 related) pseudogene

TCEB1P33 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 33

TCEB3 Gene

transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A)

This gene encodes the protein elongin A, which is a subunit of the transcription factor B (SIII) complex. The SIII complex is composed of elongins A/A2, B and C. It activates elongation by RNA polymerase II by suppressing transient pausing of the polymerase at many sites within transcription units. Elongin A functions as the transcriptionally active component of the SIII complex, whereas elongins B and C are regulatory subunits. Elongin A2 is specifically expressed in the testis, and capable of forming a stable complex with elongins B and C. The von Hippel-Lindau tumor suppressor protein binds to elongins B and C, and thereby inhibits transcription elongation. [provided by RefSeq, Jul 2008]

TCEB2 Gene

transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin B)

This gene encodes the protein elongin B, which is a subunit of the transcription factor B (SIII) complex. The SIII complex is composed of elongins A/A2, B and C. It activates elongation by RNA polymerase II by suppressing transient pausing of the polymerase at many sites within transcription units. Elongin A functions as the transcriptionally active component of the SIII complex, whereas elongins B and C are regulatory subunits. Elongin A2 is specifically expressed in the testis, and capable of forming a stable complex with elongins B and C. The von Hippel-Lindau tumor suppressor protein binds to elongins B and C, and thereby inhibits transcription elongation. Two alternatively spliced transcript variants encoding different isoforms have been described for this gene. Pseudogenes have been identified on chromosomes 11 and 13. [provided by RefSeq, Aug 2008]

TCEB1 Gene

transcription elongation factor B (SIII), polypeptide 1 (15kDa, elongin C)

This gene encodes the protein elongin C, which is a subunit of the transcription factor B (SIII) complex. The SIII complex is composed of elongins A/A2, B and C. It activates elongation by RNA polymerase II by suppressing transient pausing of the polymerase at many sites within transcription units. Elongin A functions as the transcriptionally active component of the SIII complex, whereas elongins B and C are regulatory subunits. Elongin A2 is specifically expressed in the testis, and capable of forming a stable complex with elongins B and C. The von Hippel-Lindau tumor suppressor protein binds to elongins B and C, and thereby inhibits transcription elongation. Multiple alternatively spliced transcript variants encoding two distinct isoforms have been identified. [provided by RefSeq, Mar 2011]

LOC101930122 Gene

general transcription factor II-I-like

ATF4P2 Gene

activating transcription factor 4 pseudogene 2

ATF4P4 Gene

activating transcription factor 4 pseudogene 4

LOC100422580 Gene

transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A) pseudogene

GTF2E1 Gene

general transcription factor IIE, polypeptide 1, alpha 56kDa

GTF2E2 Gene

general transcription factor IIE, polypeptide 2, beta 34kDa

ATF7IP Gene

activating transcription factor 7 interacting protein

ATF7IP is a multifunctional nuclear protein that associates with heterochromatin. It can act as a transcriptional coactivator or corepressor depending upon its binding partners (summary by Liu et al., 2009 [PubMed 19106100]).[supplied by OMIM, Nov 2010]

PHTF2 Gene

putative homeodomain transcription factor 2

PHTF1 Gene

putative homeodomain transcription factor 1

BTF3P12 Gene

basic transcription factor 3 pseudogene 12

This locus represents a putative member of the BTF3 family of transcription factors. With no transcription yet documented, it is thought that this locus represents a pseudogene. [provided by RefSeq]

BTF3P15 Gene

basic transcription factor 3 pseudogene 15

BTF3P14 Gene

basic transcription factor 3 pseudogene 14

BTF3P16 Gene

basic transcription factor 3 pseudogene 16

SP3P Gene

Sp3 transcription factor pseudogene

LOC101927685 Gene

heat shock transcription factor, X-linked-like

LOC646745 Gene

general transcription factor IIIC, polypeptide 6, alpha 35kDa pseudogene

USF1P1 Gene

upstream transcription factor 1 pseudogene 1

AATF Gene

apoptosis antagonizing transcription factor

The protein encoded by this gene was identified on the basis of its interaction with MAP3K12/DLK, a protein kinase known to be involved in the induction of cell apoptosis. This gene product contains a leucine zipper, which is a characteristic motif of transcription factors, and was shown to exhibit strong transactivation activity when fused to Gal4 DNA binding domain. Overexpression of this gene interfered with MAP3K12 induced apoptosis. [provided by RefSeq, Jul 2008]

LOC100128345 Gene

nuclear transcription factor Y, gamma pseudogene

LOC644383 Gene

heat shock transcription factor 2 pseudogene

ATF4P3 Gene

activating transcription factor 4 pseudogene 3

ATF4P1 Gene

activating transcription factor 4 pseudogene 1

SALL4P2 Gene

spalt-like transcription factor 4 pseudogene 2

SALL4P6 Gene

spalt-like transcription factor 4 pseudogene 6

TCF3P1 Gene

transcription factor 3 pseudogene 1

GTF2B Gene

general transcription factor IIB

This gene encodes the general transcription factor IIB, one of the ubiquitous factors required for transcription initiation by RNA polymerase II. The protein localizes to the nucleus where it forms a complex (the DAB complex) with transcription factors IID and IIA. Transcription factor IIB serves as a bridge between IID, the factor which initially recognizes the promoter sequence, and RNA polymerase II. [provided by RefSeq, Jul 2008]

GTF2I Gene

general transcription factor IIi

This gene encodes a phosphoprotein containing six characteristic repeat motifs. The encoded protein binds to the initiator element (Inr) and E-box element in promoters and functions as a regulator of transcription. This locus, along with several other neighboring genes, is deleted in Williams-Beuren syndrome. There are many closely related genes and pseudogenes for this gene on chromosome 7. This gene also has pseudogenes on chromosomes 9, 13, and 21. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Jul 2013]

UTF1 Gene

undifferentiated embryonic cell transcription factor 1

BATF3 Gene

basic leucine zipper transcription factor, ATF-like 3

This gene encodes a member of the basic leucine zipper protein family. The encoded protein functions as a transcriptional repressor when heterodimerizing with JUN. The protein may play a role in repression of interleukin-2 and matrix metalloproteinase-1 transcription.[provided by RefSeq, Feb 2009]

AKNA Gene

AT-hook transcription factor

TCEB1P2 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 2

TCEB1P3 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 3

TCEB1P4 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 4

TCEB1P5 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 5

TCEB1P6 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 6

TCEB1P7 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 7

TCEB1P8 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 8

TCEB1P9 Gene

transcription elongation factor B (SIII), polypeptide 1 pseudogene 9

HEYL Gene

hes-related family bHLH transcription factor with YRPW motif-like

This gene encodes a member of the hairy and enhancer of split-related (HESR) family of basic helix-loop-helix (bHLH)-type transcription factors. The sequence of the encoded protein contains a conserved bHLH and orange domain, but its YRPW motif has diverged from other HESR family members. It is thought to be an effector of Notch signaling and a regulator of cell fate decisions. Alternatively spliced transcript variants have been found, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

HEY2 Gene

hes-related family bHLH transcription factor with YRPW motif 2

This gene encodes a member of the hairy and enhancer of split-related (HESR) family of basic helix-loop-helix (bHLH)-type transcription factors. The encoded protein forms homo- or hetero-dimers that localize to the nucleus and interact with a histone deacetylase complex to repress transcription. Expression of this gene is induced by the Notch signal transduction pathway. Two similar and redundant genes in mouse are required for embryonic cardiovascular development, and are also implicated in neurogenesis and somitogenesis. Alternatively spliced transcript variants have been found, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

HEY1 Gene

hes-related family bHLH transcription factor with YRPW motif 1

This gene encodes a nuclear protein belonging to the hairy and enhancer of split-related (HESR) family of basic helix-loop-helix (bHLH)-type transcriptional repressors. Expression of this gene is induced by the Notch and c-Jun signal transduction pathways. Two similar and redundant genes in mouse are required for embryonic cardiovascular development, and are also implicated in neurogenesis and somitogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2008]

MTF1 Gene

metal-regulatory transcription factor 1

This gene encodes a transcription factor that induces expression of metallothioneins and other genes involved in metal homeostasis in response to heavy metals such as cadmium, zinc, copper, and silver. The protein is a nucleocytoplasmic shuttling protein that accumulates in the nucleus upon heavy metal exposure and binds to promoters containing a metal-responsive element (MRE). [provided by RefSeq, Jul 2008]

LOC100130114 Gene

Spi-C transcription factor (Spi-1/PU.1 related) pseudogene

CARF Gene

calcium responsive transcription factor

SPIB Gene

Spi-B transcription factor (Spi-1/PU.1 related)

The protein encoded by this gene is a transcriptional activator that binds to the PU-box (5'-GAGGAA-3') and acts as a lymphoid-specific enhancer. Four transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

SPIC Gene

Spi-C transcription factor (Spi-1/PU.1 related)

SIM1 Gene

single-minded family bHLH transcription factor 1

SIM1 and SIM2 genes are Drosophila single-minded (sim) gene homologs. SIM1 transcript was detected only in fetal kidney out of various adult and fetal tissues tested. Since the sim gene plays an important role in Drosophila development and has peak levels of expression during the period of neurogenesis,it was proposed that the human SIM gene is a candidate for involvement in certain dysmorphic features (particularly the facial and skull characteristics), abnormalities of brain development, and/or mental retardation of Down syndrome. [provided by RefSeq, Jul 2008]

LOC100419912 Gene

spalt-like transcription factor 4 pseudogene

TCEAL8P1 Gene

transcription elongation factor A (SII)-like 8 pseudogene 1

STAT3 Gene

signal transducer and activator of transcription 3 (acute-phase response factor)

The protein encoded by this gene is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. This protein is activated through phosphorylation in response to various cytokines and growth factors including IFNs, EGF, IL5, IL6, HGF, LIF and BMP2. This protein mediates the expression of a variety of genes in response to cell stimuli, and thus plays a key role in many cellular processes such as cell growth and apoptosis. The small GTPase Rac1 has been shown to bind and regulate the activity of this protein. PIAS3 protein is a specific inhibitor of this protein. Three alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

LOC100129135 Gene

selenocysteine insertion sequence-binding protein 2-like

CPSF3L Gene

cleavage and polyadenylation specific factor 3-like

The Integrator complex contains at least 12 subunits and associates with the C-terminal domain of RNA polymerase II large subunit (POLR2A; MIM 180660) and mediates the 3-prime end processing of small nuclear RNAs U1 (RNU1; MIM 180680) and U2 (RNU2; MIM 180690). INTS11, or CPSF3L, is the catalytic subunit of the Integrator complex (Baillat et al., 2005 [PubMed 16239144]).[supplied by OMIM, Mar 2008]

CPSF4L Gene

cleavage and polyadenylation specific factor 4-like

GTSF1L Gene

gametocyte specific factor 1-like

RASGRF1 Gene

Ras protein-specific guanine nucleotide-releasing factor 1

The protein encoded by this gene is a guanine nucleotide exchange factor (GEF) similar to the Saccharomyces cerevisiae CDC25 gene product. Functional analysis has demonstrated that this protein stimulates the dissociation of GDP from RAS protein. The studies of the similar gene in mouse suggested that the Ras-GEF activity of this protein in brain can be activated by Ca2+ influx, muscarinic receptors, and G protein beta-gamma subunit. Mouse studies also indicated that the Ras-GEF signaling pathway mediated by this protein may be important for long-term memory. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Mar 2009]

RASGRF2 Gene

Ras protein-specific guanine nucleotide-releasing factor 2

RAS GTPases cycle between an inactive GDP-bound state and an active GTP-bound state. This gene encodes a calcium-regulated nucleotide exchange factor activating both RAS and RAS-related protein, RAC1, through the exchange of bound GDP for GTP, thereby, coordinating the signaling of distinct mitogen-activated protein kinase pathways. [provided by RefSeq, Oct 2011]

CPSF7 Gene

cleavage and polyadenylation specific factor 7, 59kDa

CPSF6 Gene

cleavage and polyadenylation specific factor 6, 68kDa

The protein encoded by this gene is one subunit of a cleavage factor required for 3' RNA cleavage and polyadenylation processing. The interaction of the protein with the RNA is one of the earliest steps in the assembly of the 3' end processing complex and facilitates the recruitment of other processing factors. The cleavage factor complex is composed of four polypeptides. This gene encodes the 68kD subunit. It has a domain organization reminiscent of spliceosomal proteins. [provided by RefSeq, Jul 2008]

CPSF4 Gene

cleavage and polyadenylation specific factor 4, 30kDa

Inhibition of the nuclear export of poly(A)-containing mRNAs caused by the influenza A virus NS1 protein requires its effector domain. The NS1 effector domain functionally interacts with the cellular 30 kDa subunit of cleavage and polyadenylation specific factor 4, an essential component of the 3' end processing machinery of cellular pre-mRNAs. In influenza virus-infected cells, the NS1 protein is physically associated with cleavage and polyadenylation specific factor 4, 30kD subunit. Binding of the NS1 protein to the 30 kDa protein in vitro prevents CPSF binding to the RNA substrate and inhibits 3' end cleavage and polyadenylation of host pre-mRNAs. Thus the NS1 protein selectively inhibits the nuclear export of cellular, and not viral, mRNAs. Multiple alternatively spliced transcript variants that encode different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

CPSF3 Gene

cleavage and polyadenylation specific factor 3, 73kDa

This gene encodes a member of the metallo-beta-lactamase family. The encoded protein is a 73kDa subunit of the cleavage and polyadenylation specificity factor and functions as an endonuclease that recognizes the pre-mRNA 3'-cleavage site AAUAAA prior to polyadenylation. It also cleaves after the pre-mRNA sequence ACCCA during histone 3'-end pre-mRNA processing. [provided by RefSeq, Oct 2012]

CPSF2 Gene

cleavage and polyadenylation specific factor 2, 100kDa

CPSF1 Gene

cleavage and polyadenylation specific factor 1, 160kDa

Cleavage and polyadenylation specificity factor (CPSF) is a multisubunit complex that plays a central role in 3-prime processing of pre-mRNAs. CPSF recognizes the AAUAAA signal in the pre-mRNA and interacts with other proteins to facilitate both RNA cleavage and poly(A) synthesis. CPSF1 is the largest subunit of the CPSF complex (Murthy and Manley, 1995 [PubMed 7590244]).[supplied by OMIM, Mar 2008]

POSTN Gene

periostin, osteoblast specific factor

CPSF1P1 Gene

cleavage and polyadenylation specific factor 1, 160kDa pseudogene 1

EEFSEC Gene

eukaryotic elongation factor, selenocysteine-tRNA-specific

HTATSF1P1 Gene

HIV-1 Tat specific factor 1 pseudogene 1

HTATSF1P2 Gene

HIV-1 Tat specific factor 1 pseudogene 2

GTSF1 Gene

gametocyte specific factor 1

LOC100422285 Gene

cleavage and polyadenylation specific factor 1, 160kDa pseudogene

HTATSF1 Gene

HIV-1 Tat specific factor 1

The protein encoded by this gene functions as a cofactor for the stimulation of transcriptional elongation by HIV-1 Tat, which binds to the HIV-1 promoter through Tat-TAR interaction. This protein may also serve as a dual-function factor to couple transcription and splicing and to facilitate their reciprocal activation. Alternatively spliced transcript variants have been found for this gene.[provided by RefSeq, Sep 2009]

LOC651959 Gene

FSHD region gene 2-like

LOC101926986 Gene

glioma tumor suppressor candidate region gene 1 protein-like

LOC283788 Gene

FSHD region gene 1 pseudogene

FRG2EP Gene

FSHD region gene 2 family, member E, pseudogene

LOC105379419 Gene

Ig kappa chain V-I region Walker-like

LOC105371478 Gene

breakpoint cluster region protein-like

LOC285299 Gene

FSHD region gene 2 family, member C-like

HAR1A Gene

highly accelerated region 1A (non-protein coding)

LOC642236 Gene

FSHD region gene 1 pseudogene

LOC105371176 Gene

Ig heavy chain V-III region VH26-like

DCR Gene

Down syndrome chromosome region

Down syndrome, the most frequent form of mental retardation caused by a microscopically demonstrable chromosomal aberration, is characterized by well-defined and distinctive phenotypic features and natural history. It is caused by triplicate state (trisomy) of all or a critical portion of chromosome 21.[supplied by OMIM, Apr 2005]

AMMECR1 Gene

Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis chromosomal region gene 1

The exact function of this gene is not known, however, submicroscopic deletion of the X chromosome including this gene, COL4A5, and FACL4 genes, result in a contiguous gene deletion syndrome, the AMME complex (Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2010]

LOC100996586 Gene

Ig lambda chain V region 4A-like

DPCR1 Gene

diffuse panbronchiolitis critical region 1

C3CER1 Gene

chromosome 3 common eliminated region 1

CDRT15L2 Gene

CMT1A duplicated region transcript 15-like 2

CDRT4 Gene

CMT1A duplicated region transcript 4

CDRT5 Gene

CMT1A duplicated region transcript 5

CDRT7 Gene

CMT1A duplicated region transcript 7 (non-protein coding)

CDRT1 Gene

CMT1A duplicated region transcript 1

Members of the F-box protein family, such as FBXW10, are characterized by an approximately 40-amino acid F-box motif. SCF complexes, formed by SKP1 (MIM 601434), cullin (see CUL1; MIM 603034), and F-box proteins, act as protein-ubiquitin ligases. F-box proteins interact with SKP1 through the F box, and they interact with ubiquitination targets through other protein interaction domains (Jin et al., 2004 [PubMed 15520277]).[supplied by OMIM, Mar 2008]

CDRT2 Gene

CMT1A duplicated region transcript 2

CDRT8 Gene

CMT1A duplicated region transcript 8

IGSF6-DREV1 Gene

region containing immunoglobulin superfamily, member 6 and DREV1

DSCR8 Gene

Down syndrome critical region 8

DSCR3 Gene

Down syndrome critical region 3

The region of chromosome 21 between genes CBR and ERG (CBR-ERG region), which spans 2.5 Mb on 21q22.2, has been defined by analysis of patients with partial trisomy 21. It contributes significantly to the pathogenesis of many characteristics of Down syndrome, including morphological features, hypotonia, and mental retardation. The DSCR3 (Down syndrome critical region gene 3) gene is found in this region and is predictated to contain eight exons. DSCR3 is expressed in most tissues examined. [provided by RefSeq, Jul 2008]

WHCR Gene

Wolf-Hirschhorn syndrome chromosome region

Wolf-Hirschhorn syndrome is a congenital malformation syndrome characterized by pre- and postnatal growth deficiency, developmental disability of variable degree, characteristic craniofacial features ('Greek warrior helmet' appearance of the nose, high forehead, prominent glabella, hypertelorism, high-arched eyebrows, protruding eyes, epicanthal folds, short philtrum, distinct mouth with downturned corners, and micrognathia), and a seizure disorder (Battaglia et al., 2008 [PubMed 18932224]).[supplied by OMIM, Nov 2010]

LOC102725101 Gene

Ig heavy chain V-III region VH26-like

LOC105379546 Gene

Ig heavy chain V-III region VH26-like

LOC105379541 Gene

Ig heavy chain V-III region VH26-like