Name

GEO Signatures of Differentially Expressed Genes for Kinase Perturbations Dataset

From Gene Expression Omnibus

mRNA expression profiles for cell lines or tissues following kinase perturbation (inhibition, activation, knockdown, knockout, over-expression, mutation)

LINCS Kinativ Kinase Inhibitor Bioactivity Profiles Dataset

From LINCS Kinativ

percent inhibition of kinases by small molecules measured in cell lysates

LINCS KinomeScan Kinase Inhibitor Targets Dataset

From LINCS KinomeScan

kinase inhibitor targets from percent inhibition of kinases by small molecules measured using purified kinases

Hub Proteins Protein-Protein Interactions Dataset

From Hub Proteins

sets of proteins interacting with hub proteins

NURSA Protein-Protein Interactions Dataset

From Nuclear Receptor Signaling Atlas

protein-protein interactions inferred from membership in complexes

Pathway Commons Protein-Protein Interactions Dataset

From Pathway Commons

protein-protein interactions from low-throughput or high-throughput studies aggregated by Pathway Commons from the following databases: Reactome, NCI Pathways, PhosphoSite, HumanCyc, HPRD, PANTHER, DIP, BioGRID, IntAct, BIND, Transfac, MiRTarBase, Drugbank, Recon X, Comparative Toxicogenomics Database, and KEGG

Virus MINT Protein-Viral Protein Interactions Dataset

From Virus MINT

interactions between viral and human proteins manually curated from literature

COMPARTMENTS Curated Protein Localization Evidence Scores Dataset

From COMPARTMENTS

protein subcellular localization evidence scores by manual literature curation

COMPARTMENTS Experimental Protein Localization Evidence Scores Dataset

From COMPARTMENTS

protein subcellular localization evidence scores by integrating experimental data

COMPARTMENTS Text-mining Protein Localization Evidence Scores Dataset

From COMPARTMENTS

gene-cellular compartment co-occurrence scores from text-mining biomedical abstracts

CORUM Protein Complexes Dataset

From CORUM

proteins participating in complexes by manual literature curation

Guide to Pharmacology Protein Ligands of Receptors Dataset

From Guide to Pharmacology

ligand-receptor interactions curated by experts

HPA Tissue Protein Expression Profiles Dataset

From Human Protein Atlas

semiquantitative protein expression profiles for tissues

HPM Cell Type and Tissue Protein Expression Profiles Dataset

From Human Proteome Map

protein expression profiles for tissues and cell types

InterPro Predicted Protein Domain Annotations Dataset

From InterPro

protein domains predicted for gene products based on sequence similarity to known domain signatures

LOCATE Curated Protein Localization Annotations Dataset

From LOCATE

subcellular localization of proteins from low-throughput or high-throughput protein localization assays

NURSA Protein Complexes Dataset

From Nuclear Receptor Signaling Atlas

proteins identified in complexes isolated from cultured cells

ProteomicsDB Cell Type and Tissue Protein Expression Profiles Dataset

From Proteomics Database

protein expression profiles for tissues and cell types reprocessed from many proteomics datasets

SILAC Phosphoproteomics Signatures of Differentially Phosphorylated Proteins for Protein Ligands Dataset

From SILAC Phosphoproteomics

phosphorylation levels of proteins in cell lines following ligand treatment

TISSUES Curated Tissue Protein Expression Evidence Scores Dataset

From TISSUES

protein tissue expression evidence scores by manual literature curation

TISSUES Experimental Tissue Protein Expression Evidence Scores Dataset

From TISSUES

protein tissue expression evidence scores by integrating experimental data

TISSUES Text-mining Tissue Protein Expression Evidence Scores Dataset

From TISSUES

gene-tissue co-occurrence scores from text-mining biomedical abstracts

Virus MINT Protein-Virus Interactions Dataset

From Virus MINT

interactions between viruses and human proteins manually curated from literature

LOCATE Predicted Protein Localization Annotations Dataset

From LOCATE

subcellular localization of proteins by sequence similarity to localization sequences

HPA Cell Line Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for cell lines

HPA Tissue Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for tissues

HPA Tissue Sample Gene Expression Profiles Dataset

From Human Protein Atlas

mRNA expression profiles for tissue samples

KEA Substrates of Kinases Dataset

From Kinase Enrichment Analysis

protein substrates of kinases from published low-throughput and high-throughput phosphoproteomics studies

RNU1-16P Gene

RNA, U1 small nuclear 16, pseudogene

RNU1-13P Gene

RNA, U1 small nuclear 13, pseudogene

GS1-120K12.4 Gene

uncharacterized LOC101929069

KRTAP4-16P Gene

keratin associated protein 4-16, pseudogene

RNU7-13P Gene

RNA, U7 small nuclear 13 pseudogene

TRIP4Q32.1Q32.2 Gene

Chromosome 4q32.1-q32.2 triplication syndrome

GS1-124K5.11 Gene

RAB guanine nucleotide exchange factor (GEF) 1 pseudogene

LL22NC03-104C7.1 Gene

uncharacterized LOC105373004

RNU1-18P Gene

RNA, U1 small nuclear 18, pseudogene

KRTAP5-13P Gene

keratin associated protein 5-13, pseudogene

RNU7-14P Gene

RNA, U7 small nuclear 14 pseudogene

1060P11.3 Gene

killer cell immunoglobulin-like receptor, three domains, pseudogene

CTB-12O2.1 Gene

uncharacterized LOC101927115

DUP17Q23.1Q23.2 Gene

Chromosome 17q23.1-q23.2 duplication syndrome

RNU6-15P Gene

RNA, U6 small nuclear 15, pseudogene

RNU1-15P Gene

RNA, U1 small nuclear 15, pseudogene

CTB-174D11.1 Gene

RNU6-10P Gene

RNA, U6 small nuclear 10, pseudogene

IGKV1OR15-118 Gene

immunoglobulin kappa variable 1/OR15-118 (pseudogene)

LL0XNC01-116E7.2 Gene

uncharacterized LOC100128594

RNU7-11P Gene

RNA, U7 small nuclear 11 pseudogene

RNU7-19P Gene

RNA, U7 small nuclear 19 pseudogene

CH507-145C22.1 Gene

uncharacterized LOC105379493

RNU7-10P Gene

RNA, U7 small nuclear 10 pseudogene

DEL16P12.1P11.2 Gene

Chromosome 16p12.2-p11.2 deletion syndrome

RNU7-12P Gene

RNA, U7 small nuclear 12 pseudogene

KRTAP19-11P Gene

keratin associated protein 19-11, pseudogene

DEL17Q23.1Q23.2 Gene

Chromosome 17q23.1-q23.2 deletion syndrome

RNU1-17P Gene

RNA, U1 small nuclear 17, pseudogene

CTB-113P19.1 Gene

uncharacterized LOC101927096

KRTAP9-11P Gene

keratin associated protein 9-11, pseudogene

IGKV1OR2-108 Gene

immunoglobulin kappa variable 1/OR2-108 (non-functional)

RNU6-19P Gene

RNA, U6 small nuclear 19, pseudogene

RNU6-16P Gene

RNA, U6 small nuclear 16, pseudogene

KRTAP5-14P Gene

keratin associated protein 5-14, pseudogene

RNU7-17P Gene

RNA, U7 small nuclear 17 pseudogene

GS1-124K5.4 Gene

uncharacterized LOC100289098

KRTAP10-13P Gene

keratin associated protein 10-13, pseudogene

RNU7-18P Gene

RNA, U7 small nuclear 18 pseudogene

LL22NC03-13G6.2 Gene

uncharacterized LOC105373009

RNU1-14P Gene

RNA, U1 small nuclear 14, pseudogene

MIR1-1HG Gene

MIR1-1 host gene

CH17-125A10.2 Gene

uncharacterized LOC101927333

CTB-178M22.2 Gene

uncharacterized LOC101927862

RNU1-11P Gene

RNA, U1 small nuclear 11, pseudogene

RNU4-10P Gene

RNA, U4 small nuclear 10, pseudogene

RNU1-19P Gene

RNA, U1 small nuclear 19, pseudogene

RNU6-14P Gene

RNA, U6 small nuclear 14, pseudogene

KRTAP19-10P Gene

keratin associated protein 19-10, pseudogene

RNU7-15P Gene

RNA, U7 small nuclear 15 pseudogene

RNU5E-10P Gene

RNA, U5E small nuclear 10, pseudogene

LL22NC03-102D1.18 Gene

uncharacterized LOC105372949

CTB-1I21.1 Gene

uncharacterized LOC105379191

KRTAP9-12P Gene

keratin associated protein 9-12, pseudogene

IGKV1OR2-118 Gene

immunoglobulin kappa variable 1/OR2-118 (pseudogene)

RNU7-16P Gene

RNA, U7 small nuclear 16 pseudogene

MAPKAPK5 Gene

mitogen-activated protein kinase-activated protein kinase 5

The protein encoded by this gene is a tumor suppressor and member of the serine/threonine kinase family. In response to cellular stress and proinflammatory cytokines, this kinase is activated through its phosphorylation by MAP kinases including MAPK1/ERK, MAPK14/p38-alpha, and MAPK11/p38-beta. The encoded protein is found in the nucleus but translocates to the cytoplasm upon phosphorylation and activation. This kinase phosphorylates heat shock protein HSP27 at its physiologically relevant sites. Two alternately spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Nov 2012]

MAPKAPK3 Gene

mitogen-activated protein kinase-activated protein kinase 3

This gene encodes a member of the Ser/Thr protein kinase family. This kinase functions as a mitogen-activated protein kinase (MAP kinase)- activated protein kinase. MAP kinases are also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. This kinase was shown to be activated by growth inducers and stress stimulation of cells. In vitro studies demonstrated that ERK, p38 MAP kinase and Jun N-terminal kinase were all able to phosphorylate and activate this kinase, which suggested the role of this kinase as an integrative element of signaling in both mitogen and stress responses. This kinase was reported to interact with, phosphorylate and repress the activity of E47, which is a basic helix-loop-helix transcription factor known to be involved in the regulation of tissue-specific gene expression and cell differentiation. Alternate splicing results in multiple transcript variants that encode the same protein. [provided by RefSeq, Sep 2011]

MAPKAPK2 Gene

mitogen-activated protein kinase-activated protein kinase 2

This gene encodes a member of the Ser/Thr protein kinase family. This kinase is regulated through direct phosphorylation by p38 MAP kinase. In conjunction with p38 MAP kinase, this kinase is known to be involved in many cellular processes including stress and inflammatory responses, nuclear export, gene expression regulation and cell proliferation. Heat shock protein HSP27 was shown to be one of the substrates of this kinase in vivo. Two transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC100422438 Gene

mitogen-activated protein kinase-activated protein kinase 2 pseudogene

MAPKAPK5P1 Gene

mitogen-activated protein kinase-activated protein kinase 5 pseudogene 1

MAP4K1 Gene

mitogen-activated protein kinase kinase kinase kinase 1

MAP4K3 Gene

mitogen-activated protein kinase kinase kinase kinase 3

This gene encodes a member of the mitogen-activated protein kinase kinase kinase kinase family. The encoded protein activates key effectors in cell signalling, among them c-Jun. Alternatively spliced transcripts encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

MAP4K2 Gene

mitogen-activated protein kinase kinase kinase kinase 2

The protein encoded by this gene is a member of the serine/threonine protein kinase family. Although this kinase is found in many tissues, its expression in lymphoid follicles is restricted to the cells of germinal centre, where it may participate in B-cell differentiation. This kinase can be activated by TNF-alpha, and has been shown to specifically activate MAP kinases. This kinase is also found to interact with TNF receptor-associated factor 2 (TRAF2), which is involved in the activation of MAP3K1/MEKK1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2015]

MAP4K5 Gene

mitogen-activated protein kinase kinase kinase kinase 5

This gene encodes a member of the serine/threonine protein kinase family, that is highly similar to yeast SPS1/STE20 kinase. Yeast SPS1/STE20 functions near the beginning of the MAP kinase signal cascades that is essential for yeast pheromone response. This kinase was shown to activate Jun kinase in mammalian cells, which suggested a role in stress response. Two alternatively spliced transcript variants encoding the same protein have been described for this gene. [provided by RefSeq, Jul 2008]

MAP4K4 Gene

mitogen-activated protein kinase kinase kinase kinase 4

The protein encoded by this gene is a member of the serine/threonine protein kinase family. This kinase has been shown to specifically activate MAPK8/JNK. The activation of MAPK8 by this kinase is found to be inhibited by the dominant-negative mutants of MAP3K7/TAK1, MAP2K4/MKK4, and MAP2K7/MKK7, which suggests that this kinase may function through the MAP3K7-MAP2K4-MAP2K7 kinase cascade, and mediate the TNF-alpha signaling pathway. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

MAP3K1 Gene

mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase

The protein encoded by this gene is a serine/threonine kinase and is part of some signal transduction cascades, including the ERK and JNK kinase pathways as well as the NF-kappa-B pathway. The encoded protein is activated by autophosphorylation and requires magnesium as a cofactor in phosphorylating other proteins. This protein has E3 ligase activity conferred by a plant homeodomain (PHD) in its N-terminus and phospho-kinase activity conferred by a kinase domain in its C-terminus. [provided by RefSeq, Mar 2012]

MAP3K10 Gene

mitogen-activated protein kinase kinase kinase 10

The protein encoded by this gene is a member of the serine/threonine kinase family. This kinase has been shown to activate MAPK8/JNK and MKK4/SEK1, and this kinase itself can be phoshorylated, and thus activated by JNK kinases. This kinase functions preferentially on the JNK signaling pathway, and is reported to be involved in nerve growth factor (NGF) induced neuronal apoptosis. [provided by RefSeq, Jul 2008]

MAP3K13 Gene

mitogen-activated protein kinase kinase kinase 13

The protein encoded by this gene is a member of serine/threonine protein kinase family. This kinase contains a dual leucine-zipper motif, and has been shown to form dimers/oligomers through its leucine-zipper motif. This kinase can phosphorylate and activate MAPK8/JNK, MAP2K7/MKK7, which suggests a role in the JNK signaling pathway. [provided by RefSeq, Jul 2008]

MAP3K19 Gene

mitogen-activated protein kinase kinase kinase 19

MAP3K11 Gene

mitogen-activated protein kinase kinase kinase 11

The protein encoded by this gene is a member of the serine/threonine kinase family. This kinase contains a SH3 domain and a leucine zipper-basic motif. This kinase preferentially activates MAPK8/JNK kinase, and functions as a positive regulator of JNK signaling pathway. This kinase can directly phosphorylate, and activates IkappaB kinase alpha and beta, and is found to be involved in the transcription activity of NF-kappaB mediated by Rho family GTPases and CDC42. [provided by RefSeq, Jul 2008]

MAP3K12 Gene

mitogen-activated protein kinase kinase kinase 12

This gene encodes a member of the serine/threonine protein kinase family. This kinase contains a leucine-zipper domain and is predominately expressed in neuronal cells. The phosphorylation state of this kinase in synaptic terminals was shown to be regulated by membrane depolarization via calcineurin. This kinase forms heterodimers with leucine zipper containing transcription factors, such as cAMP responsive element binding protein (CREB) and MYC, and thus may play a regulatory role in PKA or retinoic acid induced neuronal differentiation. Alternatively spliced transcript variants encoding different proteins have been described.[provided by RefSeq, Jul 2010]

MAP3K15 Gene

mitogen-activated protein kinase kinase kinase 15

The protein encoded by this gene is a member of the mitogen-activated protein kinase (MAPK) family. These family members function in a protein kinase signal transduction cascade, where an activated MAPK kinase kinase (MAP3K) phosphorylates and activates a specific MAPK kinase (MAP2K), which then activates a specific MAPK. This MAP3K protein plays an essential role in apoptotic cell death triggered by cellular stresses. [provided by RefSeq, Jul 2010]

MAP3K8 Gene

mitogen-activated protein kinase kinase kinase 8

This gene is an oncogene that encodes a member of the serine/threonine protein kinase family. The encoded protein localizes to the cytoplasm and can activate both the MAP kinase and JNK kinase pathways. This protein was shown to activate IkappaB kinases, and thus induce the nuclear production of NF-kappaB. This protein was also found to promote the production of TNF-alpha and IL-2 during T lymphocyte activation. This gene may also utilize a downstream in-frame translation start codon, and thus produce an isoform containing a shorter N-terminus. The shorter isoform has been shown to display weaker transforming activity. Alternate splicing results in multiple transcript variants that encode the same protein. [provided by RefSeq, Sep 2011]

MAP3K9 Gene

mitogen-activated protein kinase kinase kinase 9

MAP3K2 Gene

mitogen-activated protein kinase kinase kinase 2

The protein encoded by this gene is a member of serine/threonine protein kinase family. This kinase preferentially activates other kinases involved in the MAP kinase signaling pathway. This kinase has been shown to directly phosphorylate and activate Ikappa B kinases, and thus plays a role in NF-kappa B signaling pathway. This kinase has also been found to bind and activate protein kinase C-related kinase 2, which suggests its involvement in a regulated signaling process. [provided by RefSeq, Jul 2008]

MAP3K3 Gene

mitogen-activated protein kinase kinase kinase 3

This gene product is a 626-amino acid polypeptide that is 96.5% identical to mouse Mekk3. Its catalytic domain is closely related to those of several other kinases, including mouse Mekk2, tobacco NPK, and yeast Ste11. Northern blot analysis revealed a 4.6-kb transcript that appears to be ubiquitously expressed. This protein directly regulates the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by activating SEK and MEK1/2 respectively; it does not regulate the p38 pathway. In cotransfection assays, it enhanced transcription from a nuclear factor kappa-B (NFKB)-dependent reporter gene, consistent with a role in the SAPK pathway. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]

MAP3K7 Gene

mitogen-activated protein kinase kinase kinase 7

The protein encoded by this gene is a member of the serine/threonine protein kinase family. This kinase mediates the signaling transduction induced by TGF beta and morphogenetic protein (BMP), and controls a variety of cell functions including transcription regulation and apoptosis. In response to IL-1, this protein forms a kinase complex including TRAF6, MAP3K7P1/TAB1 and MAP3K7P2/TAB2; this complex is required for the activation of nuclear factor kappa B. This kinase can also activate MAPK8/JNK, MAP2K4/MKK4, and thus plays a role in the cell response to environmental stresses. Four alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

MAP3K4 Gene

mitogen-activated protein kinase kinase kinase 4

The central core of each mitogen-activated protein kinase (MAPK) pathway is a conserved cascade of 3 protein kinases: an activated MAPK kinase kinase (MAPKKK) phosphorylates and activates a specific MAPK kinase (MAPKK), which then activates a specific MAPK. While the ERK MAPKs are activated by mitogenic stimulation, the CSBP2 and JNK MAPKs are activated by environmental stresses such as osmotic shock, UV irradiation, wound stress, and inflammatory factors. This gene encodes a MAPKKK, the MEKK4 protein, also called MTK1. This protein contains a protein kinase catalytic domain at the C terminus. The N-terminal nonkinase domain may contain a regulatory domain. Expression of MEKK4 in mammalian cells activated the CSBP2 and JNK MAPK pathways, but not the ERK pathway. In vitro kinase studies indicated that recombinant MEKK4 can specifically phosphorylate and activate PRKMK6 and SERK1, MAPKKs that activate CSBP2 and JNK, respectively but cannot phosphorylate PRKMK1, an MAPKK that activates ERKs. MEKK4 is a major mediator of environmental stresses that activate the CSBP2 MAPK pathway, and a minor mediator of the JNK pathway. Several alternatively spliced transcripts encoding distinct isoforms have been described. [provided by RefSeq, May 2014]

MAP3K5 Gene

mitogen-activated protein kinase kinase kinase 5

Mitogen-activated protein kinase (MAPK) signaling cascades include MAPK or extracellular signal-regulated kinase (ERK), MAPK kinase (MKK or MEK), and MAPK kinase kinase (MAPKKK or MEKK). MAPKK kinase/MEKK phosphorylates and activates its downstream protein kinase, MAPK kinase/MEK, which in turn activates MAPK. The kinases of these signaling cascades are highly conserved, and homologs exist in yeast, Drosophila, and mammalian cells. MAPKKK5 contains 1,374 amino acids with all 11 kinase subdomains. Northern blot analysis shows that MAPKKK5 transcript is abundantly expressed in human heart and pancreas. The MAPKKK5 protein phosphorylates and activates MKK4 (aliases SERK1, MAPKK4) in vitro, and activates c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) during transient expression in COS and 293 cells; MAPKKK5 does not activate MAPK/ERK. [provided by RefSeq, Jul 2008]

MAP3K6 Gene

mitogen-activated protein kinase kinase kinase 6

This gene encodes a serine/threonine protein kinase that forms a component of protein kinase-mediated signal transduction cascades. The encoded kinase participates in the regulation of vascular endothelial growth factor (VEGF) expression. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

MAP3K14 Gene

mitogen-activated protein kinase kinase kinase 14

This gene encodes mitogen-activated protein kinase kinase kinase 14, which is a serine/threonine protein-kinase. This kinase binds to TRAF2 and stimulates NF-kappaB activity. It shares sequence similarity with several other MAPKK kinases. It participates in an NF-kappaB-inducing signalling cascade common to receptors of the tumour-necrosis/nerve-growth factor (TNF/NGF) family and to the interleukin-1 type-I receptor. [provided by RefSeq, Jul 2008]

TAB3P1 Gene

TGF-beta activated kinase 1/MAP3K7 binding protein 3 pseudogene 1

TAB3 Gene

TGF-beta activated kinase 1/MAP3K7 binding protein 3

The product of this gene functions in the NF-kappaB signal transduction pathway. The encoded protein, and the similar and functionally redundant protein MAP3K7IP2/TAB2, forms a ternary complex with the protein kinase MAP3K7/TAK1 and either TRAF2 or TRAF6 in response to stimulation with the pro-inflammatory cytokines TNF or IL-1. Subsequent MAP3K7/TAK1 kinase activity triggers a signaling cascade leading to activation of the NF-kappaB transcription factor. The human genome contains a related pseudogene. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

TAB2 Gene

TGF-beta activated kinase 1/MAP3K7 binding protein 2

The protein encoded by this gene is an activator of MAP3K7/TAK1, which is required for for the IL-1 induced activation of nuclear factor kappaB and MAPK8/JNK. This protein forms a kinase complex with TRAF6, MAP3K7 and TAB1, and it thus serves as an adaptor that links MAP3K7 and TRAF6. This protein, along with TAB1 and MAP3K7, also participates in the signal transduction induced by TNFSF11/RANKl through the activation of the receptor activator of NF-kappaB (TNFRSF11A/RANK), which may regulate the development and function of osteoclasts. Studies of the related mouse protein indicate that it functions to protect against liver damage caused by chemical stressors. Mutations in this gene cause congenital heart defects, multiple types, 2 (CHTD2). Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

TAB1 Gene

TGF-beta activated kinase 1/MAP3K7 binding protein 1

The protein encoded by this gene was identified as a regulator of the MAP kinase kinase kinase MAP3K7/TAK1, which is known to mediate various intracellular signaling pathways, such as those induced by TGF beta, interleukin 1, and WNT-1. This protein interacts and thus activates TAK1 kinase. It has been shown that the C-terminal portion of this protein is sufficient for binding and activation of TAK1, while a portion of the N-terminus acts as a dominant-negative inhibitor of TGF beta, suggesting that this protein may function as a mediator between TGF beta receptors and TAK1. This protein can also interact with and activate the mitogen-activated protein kinase 14 (MAPK14/p38alpha), and thus represents an alternative activation pathway, in addition to the MAPKK pathways, which contributes to the biological responses of MAPK14 to various stimuli. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

LOC100996792 Gene

dual specificity mitogen-activated protein kinase kinase 3

MAP2K4P1 Gene

mitogen-activated protein kinase kinase 4 pseudogene 1

MAP2K3 Gene

mitogen-activated protein kinase kinase 3

The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic and environmental stress, and participates in the MAP kinase-mediated signaling cascade. It phosphorylates and thus activates MAPK14/p38-MAPK. This kinase can be activated by insulin, and is necessary for the expression of glucose transporter. Expression of RAS oncogene is found to result in the accumulation of the active form of this kinase, which thus leads to the constitutive activation of MAPK14, and confers oncogenic transformation of primary cells. The inhibition of this kinase is involved in the pathogenesis of Yersina pseudotuberculosis. Multiple alternatively spliced transcript variants that encode distinct isoforms have been reported for this gene. [provided by RefSeq, Jul 2008]

MAP2K2 Gene

mitogen-activated protein kinase kinase 2

The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase is known to play a critical role in mitogen growth factor signal transduction. It phosphorylates and thus activates MAPK1/ERK2 and MAPK2/ERK3. The activation of this kinase itself is dependent on the Ser/Thr phosphorylation by MAP kinase kinase kinases. Mutations in this gene cause cardiofaciocutaneous syndrome (CFC syndrome), a disease characterized by heart defects, mental retardation, and distinctive facial features similar to those found in Noonan syndrome. The inhibition or degradation of this kinase is also found to be involved in the pathogenesis of Yersinia and anthrax. A pseudogene, which is located on chromosome 7, has been identified for this gene. [provided by RefSeq, Jul 2008]

MAP2K1 Gene

mitogen-activated protein kinase kinase 1

The protein encoded by this gene is a member of the dual specificity protein kinase family, which acts as a mitogen-activated protein (MAP) kinase kinase. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. This protein kinase lies upstream of MAP kinases and stimulates the enzymatic activity of MAP kinases upon wide variety of extra- and intracellular signals. As an essential component of MAP kinase signal transduction pathway, this kinase is involved in many cellular processes such as proliferation, differentiation, transcription regulation and development. [provided by RefSeq, Jul 2008]

MAP2K7 Gene

mitogen-activated protein kinase kinase 7

The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase specifically activates MAPK8/JNK1 and MAPK9/JNK2, and this kinase itself is phosphorylated and activated by MAP kinase kinase kinases including MAP3K1/MEKK1, MAP3K2/MEKK2,MAP3K3/MEKK5, and MAP4K2/GCK. This kinase is involved in the signal transduction mediating the cell responses to proinflammatory cytokines, and environmental stresses. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

MAP2K6 Gene

mitogen-activated protein kinase kinase 6

This gene encodes a member of the dual specificity protein kinase family, which functions as a mitogen-activated protein (MAP) kinase kinase. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. This protein phosphorylates and activates p38 MAP kinase in response to inflammatory cytokines or environmental stress. As an essential component of p38 MAP kinase mediated signal transduction pathway, this gene is involved in many cellular processes such as stress induced cell cycle arrest, transcription activation and apoptosis. [provided by RefSeq, Jul 2008]

MAP2K5 Gene

mitogen-activated protein kinase kinase 5

The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase specifically interacts with and activates MAPK7/ERK5. This kinase itself can be phosphorylated and activated by MAP3K3/MEKK3, as well as by atypical protein kinase C isoforms (aPKCs). The signal cascade mediated by this kinase is involved in growth factor stimulated cell proliferation and muscle cell differentiation. Three alternatively spliced transcript variants of this gene encoding distinct isoforms have been described. [provided by RefSeq, May 2011]

MAP2K4 Gene

mitogen-activated protein kinase kinase 4

This gene encodes a member of the mitogen-activated protein kinase (MAPK) family. Members of this family act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation, and development. They form a three-tiered signaling module composed of MAPKKKs, MAPKKs, and MAPKs. This protein is phosphorylated at serine and threonine residues by MAPKKKs and subsequently phosphorylates downstream MAPK targets at threonine and tyrosine residues. A similar protein in mouse has been reported to play a role in liver organogenesis. A pseudogene of this gene is located on the long arm of chromosome X. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

MAP2K1P1 Gene

mitogen-activated protein kinase kinase 1 pseudogene 1

LOC407835 Gene

mitogen-activated protein kinase kinase 2 pseudogene

LOC644172 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

MAPK1IP1L Gene

mitogen-activated protein kinase 1 interacting protein 1-like

MAPKBP1 Gene

mitogen-activated protein kinase binding protein 1

MAPK8IPP Gene

mitogen-activated protein kinase 8 interacting protein, pseudogene

LOC728098 Gene

mitogen-activated protein kinase 1 interacting protein 1-like pseudogene

MAPK8IP1 Gene

mitogen-activated protein kinase 8 interacting protein 1

This gene encodes a regulator of the pancreatic beta-cell function. It is highly similar to JIP-1, a mouse protein known to be a regulator of c-Jun amino-terminal kinase (Mapk8). This protein has been shown to prevent MAPK8 mediated activation of transcription factors, and to decrease IL-1 beta and MAP kinase kinase 1 (MEKK1) induced apoptosis in pancreatic beta cells. This protein also functions as a DNA-binding transactivator of the glucose transporter GLUT2. RE1-silencing transcription factor (REST) is reported to repress the expression of this gene in insulin-secreting beta cells. This gene is found to be mutated in a type 2 diabetes family, and thus is thought to be a susceptibility gene for type 2 diabetes. [provided by RefSeq, May 2011]

MAPK8IP2 Gene

mitogen-activated protein kinase 8 interacting protein 2

The protein encoded by this gene is closely related to MAPK8IP1/IB1/JIP-1, a scaffold protein that is involved in the c-Jun amino-terminal kinase signaling pathway. This protein is expressed in brain and pancreatic cells. It has been shown to interact with, and regulate the activity of MAPK8/JNK1, and MAP2K7/MKK7 kinases. This protein thus is thought to function as a regulator of signal transduction by protein kinase cascade in brain and pancreatic beta-cells. [provided by RefSeq, Feb 2014]

MAPK8IP3 Gene

mitogen-activated protein kinase 8 interacting protein 3

The protein encoded by this gene shares similarity with the product of Drosophila syd gene, required for the functional interaction of kinesin I with axonal cargo. Studies of the similar gene in mouse suggested that this protein may interact with, and regulate the activity of numerous protein kinases of the JNK signaling pathway, and thus function as a scaffold protein in neuronal cells. The C. elegans counterpart of this gene is found to regulate synaptic vesicle transport possibly by integrating JNK signaling and kinesin-1 transport. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Jul 2008]

LOC100533949 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

LOC100418685 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

LOC100418686 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

LOC100418687 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

MAPKAP1 Gene

mitogen-activated protein kinase associated protein 1

This gene encodes a protein that is highly similar to the yeast SIN1 protein, a stress-activated protein kinase. Alternatively spliced transcript variants encoding distinct isoforms have been described. Alternate polyadenylation sites as well as alternate 3' UTRs have been identified for transcripts of this gene. [provided by RefSeq, Jul 2008]

LOC100533950 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

LOC100533951 Gene

mitogen-activated protein kinase 8 interacting protein 1 pseudogene

LOC105378950 Gene

mitogen-activated protein kinase 7-like

MAPK3 Gene

mitogen-activated protein kinase 3

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals. This kinase is activated by upstream kinases, resulting in its translocation to the nucleus where it phosphorylates nuclear targets. Alternatively spliced transcript variants encoding different protein isoforms have been described. [provided by RefSeq, Jul 2008]

MAPK1 Gene

mitogen-activated protein kinase 1

This gene encodes a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. The activation of this kinase requires its phosphorylation by upstream kinases. Upon activation, this kinase translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. One study also suggests that this protein acts as a transcriptional repressor independent of its kinase activity. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct functions. Two alternatively spliced transcript variants encoding the same protein, but differing in the UTRs, have been reported for this gene. [provided by RefSeq, Jan 2014]

MAPK6 Gene

mitogen-activated protein kinase 6

The protein encoded by this gene is a member of the Ser/Thr protein kinase family, and is most closely related to mitogen-activated protein kinases (MAP kinases). MAP kinases also known as extracellular signal-regulated kinases (ERKs), are activated through protein phosphorylation cascades and act as integration points for multiple biochemical signals. This kinase is localized in the nucleus, and has been reported to be activated in fibroblasts upon treatment with serum or phorbol esters. [provided by RefSeq, Jul 2008]

MAPK4 Gene

mitogen-activated protein kinase 4

Mitogen-activated protein kinase 4 is a member of the mitogen-activated protein kinase family. Tyrosine kinase growth factor receptors activate mitogen-activated protein kinases which then translocate into the nucleus and phosphorylate nuclear targets. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

MAPK8 Gene

mitogen-activated protein kinase 8

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various cell stimuli, and targets specific transcription factors, and thus mediates immediate-early gene expression in response to cell stimuli. The activation of this kinase by tumor-necrosis factor alpha (TNF-alpha) is found to be required for TNF-alpha induced apoptosis. This kinase is also involved in UV radiation induced apoptosis, which is thought to be related to cytochrom c-mediated cell death pathway. Studies of the mouse counterpart of this gene suggested that this kinase play a key role in T cell proliferation, apoptosis and differentiation. Five alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jun 2013]

MAPK9 Gene

mitogen-activated protein kinase 9

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase targets specific transcription factors, and thus mediates immediate-early gene expression in response to various cell stimuli. It is most closely related to MAPK8, both of which are involved in UV radiation induced apoptosis, thought to be related to the cytochrome c-mediated cell death pathway. This gene and MAPK8 are also known as c-Jun N-terminal kinases. This kinase blocks the ubiquitination of tumor suppressor p53, and thus it increases the stability of p53 in nonstressed cells. Studies of this gene's mouse counterpart suggest a key role in T-cell differentiation. Several alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Sep 2008]

LOC102723727 Gene

mitogen-activated protein kinase 7-like

PRKDC Gene

protein kinase, DNA-activated, catalytic polypeptide

This gene encodes the catalytic subunit of the DNA-dependent protein kinase (DNA-PK). It functions with the Ku70/Ku80 heterodimer protein in DNA double strand break repair and recombination. The protein encoded is a member of the PI3/PI4-kinase family.[provided by RefSeq, Jul 2010]

MAPK14 Gene

mitogen-activated protein kinase 14

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

MAPK15 Gene

mitogen-activated protein kinase 15

MAPK10 Gene

mitogen-activated protein kinase 10

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This protein is a neuronal-specific form of c-Jun N-terminal kinases (JNKs). Through its phosphorylation and nuclear localization, this kinase plays regulatory roles in the signaling pathways during neuronal apoptosis. Beta-arrestin 2, a receptor-regulated MAP kinase scaffold protein, is found to interact with, and stimulate the phosphorylation of this kinase by MAP kinase kinase 4 (MKK4). Cyclin-dependent kianse 5 can phosphorylate, and inhibit the activity of this kinase, which may be important in preventing neuronal apoptosis. Four alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

MAPK11 Gene

mitogen-activated protein kinase 11

This gene encodes a member of a family of protein kinases that are involved in the integration of biochemical signals for a wide variety of cellular processes, including cell proliferation, differentiation, transcriptional regulation, and development. The encoded protein can be activated by proinflammatory cytokines and environmental stresses through phosphorylation by mitogen activated protein kinase kinases (MKKs). Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2014]

MAPK12 Gene

mitogen-activated protein kinase 12

Activation of members of the mitogen-activated protein kinase family is a major mechanism for transduction of extracellular signals. Stress-activated protein kinases are one subclass of MAP kinases. The protein encoded by this gene functions as a signal transducer during differentiation of myoblasts to myotubes. [provided by RefSeq, Jul 2008]

MAPK13 Gene

mitogen-activated protein kinase 13

This gene encodes a member of the mitogen-activated protein (MAP) kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. The encoded protein is a p38 MAP kinase and is activated by proinflammatory cytokines and cellular stress. Substrates of the encoded protein include the transcription factor ATF2 and the microtubule dynamics regulator stathmin. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Jul 2012]

MAPK6PS6 Gene

mitogen-activated protein kinase 6 pseudogene 6

MAPK6PS3 Gene

mitogen-activated protein kinase 6 pseudogene 3

LOC646214 Gene

p21 protein (Cdc42/Rac)-activated kinase 2 pseudogene

MAPK6PS4 Gene

mitogen-activated protein kinase 6 pseudogene 4

MAPK6PS5 Gene

mitogen-activated protein kinase 6 pseudogene 5

MAPK6PS2 Gene

mitogen-activated protein kinase 6 pseudogene 2

MAPK6PS1 Gene

mitogen-activated protein kinase 6 pseudogene 1

PAK4 Gene

p21 protein (Cdc42/Rac)-activated kinase 4

PAK proteins, a family of serine/threonine p21-activating kinases, include PAK1, PAK2, PAK3 and PAK4. PAK proteins are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. They serve as targets for the small GTP binding proteins Cdc42 and Rac and have been implicated in a wide range of biological activities. PAK4 interacts specifically with the GTP-bound form of Cdc42Hs and weakly activates the JNK family of MAP kinases. PAK4 is a mediator of filopodia formation and may play a role in the reorganization of the actin cytoskeleton. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PAK6 Gene

p21 protein (Cdc42/Rac)-activated kinase 6

This gene encodes a member of a family of p21-stimulated serine/threonine protein kinases, which contain an amino-terminal Cdc42/Rac interactive binding (CRIB) domain and a carboxyl-terminal kinase domain. These kinases function in a number of cellular processes, including cytoskeleton rearrangement, apoptosis, and the mitogen-activated protein (MAP) kinase signaling pathway. The protein encoded by this gene interacts with androgen receptor (AR) and translocates to the nucleus, where it is involved in transcriptional regulation. Changes in expression of this gene have been linked to prostate cancer. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2013]

PAK7 Gene

p21 protein (Cdc42/Rac)-activated kinase 7

The protein encoded by this gene is a member of the PAK family of Ser/Thr protein kinases. PAK family members are known to be effectors of Rac/Cdc42 GTPases, which have been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. This kinase contains a CDC42/Rac1 interactive binding (CRIB) motif, and has been shown to bind CDC42 in the presence of GTP. This kinase is predominantly expressed in brain. It is capable of promoting neurite outgrowth, and thus may play a role in neurite development. This kinase is associated with microtubule networks and induces microtubule stabilization. The subcellular localization of this kinase is tightly regulated during cell cycle progression. Alternatively spliced transcript variants encoding the same protein have been described. [provided by RefSeq, Jul 2008]

PAK1 Gene

p21 protein (Cdc42/Rac)-activated kinase 1

This gene encodes a family member of serine/threonine p21-activating kinases, known as PAK proteins. These proteins are critical effectors that link RhoGTPases to cytoskeleton reorganization and nuclear signaling, and they serve as targets for the small GTP binding proteins Cdc42 and Rac. This specific family member regulates cell motility and morphology. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2010]

PAK2 Gene

p21 protein (Cdc42/Rac)-activated kinase 2

The p21 activated kinases (PAK) are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. The PAK proteins are a family of serine/threonine kinases that serve as targets for the small GTP binding proteins, CDC42 and RAC1, and have been implicated in a wide range of biological activities. The protein encoded by this gene is activated by proteolytic cleavage during caspase-mediated apoptosis, and may play a role in regulating the apoptotic events in the dying cell. [provided by RefSeq, Jul 2008]

PAK3 Gene

p21 protein (Cdc42/Rac)-activated kinase 3

PAK proteins are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. PAK proteins, a family of serine/threonine p21-activating kinases, serve as targets for the small GTP binding proteins Cdc42 and RAC and have been implicated in a wide range of biological activities. The protein encoded by this gene forms an activated complex with GTP-bound RAS-like (P21), CDC2 and RAC1 proteins which then catalyzes a variety of targets. This protein may be necessary for dendritic development and for the rapid cytoskeletal reorganization in dendritic spines associated with synaptic plasticity. Defects in this gene are the cause of non-syndromic mental retardation X-linked type 30 (MRX30), also called X-linked mental retardation type 47 (MRX47). Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

MAPK7 Gene

mitogen-activated protein kinase 7

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is specifically activated by mitogen-activated protein kinase kinase 5 (MAP2K5/MEK5). It is involved in the downstream signaling processes of various receptor molecules including receptor type kinases, and G protein-coupled receptors. In response to extracelluar signals, this kinase translocates to cell nucleus, where it regulates gene expression by phosphorylating, and activating different transcription factors. Four alternatively spliced transcript variants of this gene encoding two distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

CAMKK2 Gene

calcium/calmodulin-dependent protein kinase kinase 2, beta

The product of this gene belongs to the Serine/Threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. The major isoform of this gene plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade by phosphorylating the downstream kinases CaMK1 and CaMK4. Protein products of this gene also phosphorylate AMP-activated protein kinase (AMPK). This gene has its strongest expression in the brain and influences signalling cascades involved with learning and memory, neuronal differentiation and migration, neurite outgrowth, and synapse formation. Alternative splicing results in multiple transcript variants encoding distinct isoforms. The identified isoforms differ in their ability to undergo autophosphorylation and to phosphorylate downstream kinases. [provided by RefSeq, Jul 2012]

DFFB Gene

DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase)

Apoptosis is a cell death process that removes toxic and/or useless cells during mammalian development. The apoptotic process is accompanied by shrinkage and fragmentation of the cells and nuclei and degradation of the chromosomal DNA into nucleosomal units. DNA fragmentation factor (DFF) is a heterodimeric protein of 40-kD (DFFB) and 45-kD (DFFA) subunits. DFFA is the substrate for caspase-3 and triggers DNA fragmentation during apoptosis. DFF becomes activated when DFFA is cleaved by caspase-3. The cleaved fragments of DFFA dissociate from DFFB, the active component of DFF. DFFB has been found to trigger both DNA fragmentation and chromatin condensation during apoptosis. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene but the biological validity of some of these variants has not been determined. [provided by RefSeq, Sep 2013]

PPARGC1B Gene

peroxisome proliferator-activated receptor gamma, coactivator 1 beta

The protein encoded by this gene stimulates the activity of several transcription factors and nuclear receptors, including estrogen receptor alpha, nuclear respiratory factor 1, and glucocorticoid receptor. The encoded protein may be involved in fat oxidation, non-oxidative glucose metabolism, and the regulation of energy expenditure. This protein is downregulated in prediabetic and type 2 diabetes mellitus patients. Certain allelic variations in this gene increase the risk of the development of obesity. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]

FASTK Gene

Fas-activated serine/threonine kinase

The protein encoded by this gene is a member of the serine/threonine protein kinase family. This kinase was shown to be activated rapidly during Fas-mediated apoptosis in Jurkat cells. In response to Fas receptor ligation, it phosphorylates TIA1, an apoptosis-promoting nuclear RNA-binding protein. The encoded protein is a strong inducer of lymphocyte apoptosis. Two transcript variants encoding different isoforms have been found for this gene. Other variants exist, but their full-length natures have not yet been determined. [provided by RefSeq, Jul 2008]

COPB2 Gene

coatomer protein complex, subunit beta 2 (beta prime)

The Golgi coatomer complex (see MIM 601924) constitutes the coat of nonclathrin-coated vesicles and is essential for Golgi budding and vesicular trafficking. It consists of 7 protein subunits, including COPB2.[supplied by OMIM, Jul 2002]

LOC102725016 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

LOC102724991 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

PIK3C2B Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 beta

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. The PI3-kinase activity of this protein is sensitive to low nanomolar levels of the inhibitor wortmanin. The C2 domain of this protein was shown to bind phospholipids but not Ca2+, which suggests that this enzyme may function in a calcium-independent manner. [provided by RefSeq, Jul 2008]

PIK3R2 Gene

phosphoinositide-3-kinase, regulatory subunit 2 (beta)

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that phosphorylates phosphatidylinositol and similar compounds, creating second messengers important in growth signaling pathways. PI3K functions as a heterodimer of a regulatory and a catalytic subunit. The protein encoded by this gene is a regulatory component of PI3K. Two transcript variants, one protein coding and the other non-protein coding, have been found for this gene. [provided by RefSeq, Dec 2012]

PIK3CB Gene

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta

This gene encodes an isoform of the catalytic subunit of phosphoinositide 3-kinase (PI3K). These kinases are important in signaling pathways involving receptors on the outer membrane of eukaryotic cells and are named for their catalytic subunit. The encoded protein is the catalytic subunit for PI3Kbeta (PI3KB). PI3KB has been shown to be part of the activation pathway in neutrophils which have bound immune complexes at sites of injury or infection. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2011]

BANCR Gene

BRAF-activated non-protein coding RNA

NFATC2IP Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 interacting protein

PIAS2 Gene

protein inhibitor of activated STAT, 2

This gene encodes a member of the protein inhibitor of activated STAT (PIAS) family. PIAS proteins function as SUMO E3 ligases and play important roles in many cellular processes by mediating the sumoylation of target proteins. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. Isoforms of the encoded protein enhance the sumoylation of specific target proteins including the p53 tumor suppressor protein, c-Jun, and the androgen receptor. A pseudogene of this gene is located on the short arm of chromosome 4. The symbol MIZ1 has also been associated with ZBTB17 which is a different gene located on chromosome 1. [provided by RefSeq, Aug 2011]

PIAS3 Gene

protein inhibitor of activated STAT, 3

This gene encodes a member of the PIAS [protein inhibitor of activated STAT (signal transducer and activator of transcription)] family of transcriptional modulators. The protein functions as a SUMO (small ubiquitin-like modifier)-E3 ligase which catalyzes the covalent attachment of a SUMO protein to specific target substrates. It directly binds to several transcription factors and either blocks or enhances their activity. Alternatively spliced transcript variants of this gene have been identified, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Jul 2008]

PIAS1 Gene

protein inhibitor of activated STAT, 1

This gene encodes a member of the mammalian PIAS [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1)] family. This member contains a putative zinc-binding motif and a highly acidic region. It inhibits STAT1-mediated gene activation and the DNA binding activity, binds to Gu protein/RNA helicase II/DEAD box polypeptide 21, and interacts with androgen receptor (AR). It functions in testis as a nuclear receptor transcriptional coregulator and may have a role in AR initiation and maintenance of spermatogenesis. [provided by RefSeq, Jul 2008]

PIAS4 Gene

protein inhibitor of activated STAT, 4

LOC100533708 Gene

protein inhibitor of activated STAT, 2 pseudogene

SSR2 Gene

signal sequence receptor, beta (translocon-associated protein beta)

The signal sequence receptor (SSR) is a glycosylated endoplasmic reticulum (ER) membrane receptor associated with protein translocation across the ER membrane. The SSR consists of 2 subunits, a 34-kD glycoprotein (alpha-SSR or SSR1) and a 22-kD glycoprotein (beta-SSR or SSR2). The human beta-signal sequence receptor gene (SSR2) maps to chromosome bands 1q21-q23. [provided by RefSeq, Jul 2008]

TFAP2B Gene

transcription factor AP-2 beta (activating enhancer binding protein 2 beta)

This gene encodes a member of the AP-2 family of transcription factors. AP-2 proteins form homo- or hetero-dimers with other AP-2 family members and bind specific DNA sequences. They are thought to stimulate cell proliferation and suppress terminal differentiation of specific cell types during embryonic development. Specific AP-2 family members differ in their expression patterns and binding affinity for different promoters. This protein functions as both a transcriptional activator and repressor. Mutations in this gene result in autosomal dominant Char syndrome, suggesting that this gene functions in the differentiation of neural crest cell derivatives. [provided by RefSeq, Jul 2008]

PRKAR2B Gene

protein kinase, cAMP-dependent, regulatory, type II, beta

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding protein 1 (CREB1) in activated T cells. Knockout studies in mice suggest that this subunit may play an important role in regulating energy balance and adiposity. The studies also suggest that this subunit may mediate the gene induction and cataleptic behavior induced by haloperidol. [provided by RefSeq, Jul 2008]

PKIB Gene

protein kinase (cAMP-dependent, catalytic) inhibitor beta

This gene encodes a member of the cAMP-dependent protein kinase inhibitor family. The encoded protein may play a role in the protein kinase A (PKA) pathway by interacting with the catalytic subunit of PKA, and overexpression of this gene may play a role in prostate cancer. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

CAMK2B Gene

calcium/calmodulin-dependent protein kinase II beta

The product of this gene belongs to the serine/threonine protein kinase family and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. In mammalian cells, the enzyme is composed of four different chains: alpha, beta, gamma, and delta. The product of this gene is a beta chain. It is possible that distinct isoforms of this chain have different cellular localizations and interact differently with calmodulin. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

PRKACB Gene

protein kinase, cAMP-dependent, catalytic, beta

The protein encoded by this gene is a member of the serine/threonine protein kinase family. The encoded protein is a catalytic subunit of cAMP (cyclic AMP)-dependent protein kinase, which mediates signalling though cAMP. cAMP signaling is important to a number of processes, including cell proliferaton and differentiation. Multiple alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2014]

PRKAR1B Gene

protein kinase, cAMP-dependent, regulatory, type I, beta

Cyclic AMP-dependent protein kinase A (PKA) is an essential enzyme in the signaling pathway of the second messenger cAMP. Through phosphorylation of target proteins, PKA controls many biochemical events in the cell including regulation of metabolism, ion transport, and gene transcription. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits and dissociates from the regulatory subunits upon binding of cAMP.[supplied by OMIM, Jun 2009]

LOC100422398 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

LOC100422399 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

LOC100421602 Gene

CDC42 binding protein kinase beta (DMPK-like) pseudogene

PRKCB Gene

protein kinase C, beta

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This protein kinase has been reported to be involved in many different cellular functions, such as B cell activation, apoptosis induction, endothelial cell proliferation, and intestinal sugar absorption. Studies in mice also suggest that this kinase may also regulate neuronal functions and correlate fear-induced conflict behavior after stress. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

PTK2B Gene

protein tyrosine kinase 2 beta

This gene encodes a cytoplasmic protein tyrosine kinase which is involved in calcium-induced regulation of ion channels and activation of the map kinase signaling pathway. The encoded protein may represent an important signaling intermediate between neuropeptide-activated receptors or neurotransmitters that increase calcium flux and the downstream signals that regulate neuronal activity. The encoded protein undergoes rapid tyrosine phosphorylation and activation in response to increases in the intracellular calcium concentration, nicotinic acetylcholine receptor activation, membrane depolarization, or protein kinase C activation. This protein has been shown to bind CRK-associated substrate, nephrocystin, GTPase regulator associated with FAK, and the SH2 domain of GRB2. The encoded protein is a member of the FAK subfamily of protein tyrosine kinases but lacks significant sequence similarity to kinases from other subfamilies. Four transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

CDC42BPB Gene

CDC42 binding protein kinase beta (DMPK-like)

This gene encodes a member of the serine/threonine protein kinase family. The encoded protein contains a Cdc42/Rac-binding p21 binding domain resembling that of PAK kinase. The kinase domain of this protein is most closely related to that of myotonic dystrophy kinase-related ROK. Studies of the similar gene in rat suggested that this kinase may act as a downstream effector of Cdc42 in cytoskeletal reorganization. [provided by RefSeq, Jul 2008]

CAMKK1 Gene

calcium/calmodulin-dependent protein kinase kinase 1, alpha

The product of this gene belongs to the Serine/Threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. This protein plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade. Three transcript variants encoding two distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

PACSIN1 Gene

protein kinase C and casein kinase substrate in neurons 1

PACSIN3 Gene

protein kinase C and casein kinase substrate in neurons 3

This gene is a member of the protein kinase C and casein kinase substrate in neurons family. The encoded protein is involved in linking the actin cytoskeleton with vesicle formation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

PACSIN2 Gene

protein kinase C and casein kinase substrate in neurons 2

This gene is a member of the protein kinase C and casein kinase substrate in neurons family. The encoded protein is involved in linking the actin cytoskeleton with vesicle formation by regulating tubulin polymerization. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

LOC101929026 Gene

zinc-activated ligand-gated ion channel-like

NFATC1 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1

The product of this gene is a component of the nuclear factor of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation, and an inducible nuclear component. Proteins belonging to this family of transcription factors play a central role in inducible gene transcription during immune response. The product of this gene is an inducible nuclear component. It functions as a major molecular target for the immunosuppressive drugs such as cyclosporin A. Multiple alternatively spliced transcript variants encoding distinct isoforms have been identified for this gene. Different isoforms of this protein may regulate inducible expression of different cytokine genes. [provided by RefSeq, Jul 2013]

NFATC2 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2

This gene is a member of the nuclear factor of activated T cells (NFAT) family. The product of this gene is a DNA-binding protein with a REL-homology region (RHR) and an NFAT-homology region (NHR). This protein is present in the cytosol and only translocates to the nucleus upon T cell receptor (TCR) stimulation, where it becomes a member of the nuclear factors of activated T cells transcription complex. This complex plays a central role in inducing gene transcription during the immune response. Alternate transcriptional splice variants encoding different isoforms have been characterized. [provided by RefSeq, Apr 2012]

NFATC4 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4

This gene encodes a member of the nuclear factor of activated T cells (NFAT) protein family. The encoded protein is part of a DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor stimulation and an inducible nuclear component. NFAT proteins are activated by the calmodulin-dependent phosphatase, calcineurin. The encoded protein plays a role in the inducible expression of cytokine genes in T cells, especially in the induction of interleukin-2 and interleukin-4. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

KCNN4 Gene

potassium channel, calcium activated intermediate/small conductance subfamily N alpha, member 4

The protein encoded by this gene is part of a potentially heterotetrameric voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization, which promotes calcium influx. The encoded protein may be part of the predominant calcium-activated potassium channel in T-lymphocytes. This gene is similar to other KCNN family potassium channel genes, but it differs enough to possibly be considered as part of a new subfamily. [provided by RefSeq, Jul 2008]

KCNN3 Gene

potassium channel, calcium activated intermediate/small conductance subfamily N alpha, member 3

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. This gene belongs to the KCNN family of potassium channels. It encodes an integral membrane protein that forms a voltage-independent calcium-activated channel, which is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. This gene contains two CAG repeat regions in the coding sequence. It was thought that expansion of one or both of these repeats could lead to an increased susceptibility to schizophrenia or bipolar disorder, but studies indicate that this is probably not the case. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2011]

KCNN2 Gene

potassium channel, calcium activated intermediate/small conductance subfamily N alpha, member 2

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The protein encoded by this gene is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. This gene is a member of the KCNN family of potassium channel genes. The encoded protein is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. Alternate splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2013]

KCNN1 Gene

potassium channel, calcium activated intermediate/small conductance subfamily N alpha, member 1

Action potentials in vertebrate neurons are followed by an afterhyperpolarization (AHP) that may persist for several seconds and may have profound consequences for the firing pattern of the neuron. Each component of the AHP is kinetically distinct and is mediated by different calcium-activated potassium channels. The protein encoded by this gene is activated before membrane hyperpolarization and is thought to regulate neuronal excitability by contributing to the slow component of synaptic AHP. The encoded protein is an integral membrane protein that forms a voltage-independent calcium-activated channel with three other calmodulin-binding subunits. This gene is a member of the KCNN family of potassium channel genes. [provided by RefSeq, Jul 2008]

KCNT2 Gene

potassium channel, sodium activated subfamily T, member 2

LOC100422548 Gene

solute carrier family 5 (glucose activated ion channel), member 4 pseudogene

LOC100422549 Gene

solute carrier family 5 (glucose activated ion channel), member 4 pseudogene

KCNMA1 Gene

potassium channel, calcium activated large conductance subfamily M alpha, member 1

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit, which is the product of this gene, and the modulatory beta subunit. Intracellular calcium regulates the physical association between the alpha and beta subunits. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

NFAT5 Gene

nuclear factor of activated T-cells 5, tonicity-responsive

The product of this gene is a member of the nuclear factors of activated T cells family of transcription factors. Proteins belonging to this family play a central role in inducible gene transcription during the immune response. This protein regulates gene expression induced by osmotic stress in mammalian cells. Unlike monomeric members of this protein family, this protein exists as a homodimer and forms stable dimers with DNA elements. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LAKLG Gene

lymphokine-activated killer cell ligand

PPRC1 Gene

peroxisome proliferator-activated receptor gamma, coactivator-related 1

The protein encoded by this gene is similar to PPAR-gamma coactivator 1 (PPARGC1/PGC-1), a protein that can activate mitochondrial biogenesis in part through a direct interaction with nuclear respiratory factor 1 (NRF1). This protein has been shown to interact with NRF1. It is thought to be a functional relative of PPAR-gamma coactivator 1 that activates mitochondrial biogenesis through NRF1 in response to proliferative signals. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

ALCAM Gene

activated leukocyte cell adhesion molecule

This gene encodes activated leukocyte cell adhesion molecule (ALCAM), also known as CD166 (cluster of differentiation 166), which is a member of a subfamily of immunoglobulin receptors with five immunoglobulin-like domains (VVC2C2C2) in the extracellular domain. This protein binds to T-cell differentiation antigene CD6, and is implicated in the processes of cell adhesion and migration. Multiple alternatively spliced transcript variants encoding different isoforms have been found. [provided by RefSeq, Aug 2011]

CANT1 Gene

calcium activated nucleotidase 1

This protein encoded by this gene belongs to the apyrase family. It functions as a calcium-dependent nucleotidase with a preference for UDP. Mutations in this gene are associated with Desbuquois dysplasia with hand anomalies. Alternatively spliced transcript variants have been noted for this gene.[provided by RefSeq, Mar 2010]

LOC100132239 Gene

calcium activated nucleotidase 1 pseudogene

ORAI2 Gene

ORAI calcium release-activated calcium modulator 2

ORAI3 Gene

ORAI calcium release-activated calcium modulator 3

ORAI1 Gene

ORAI calcium release-activated calcium modulator 1

The protein encoded by this gene is a membrane calcium channel subunit that is activated by the calcium sensor STIM1 when calcium stores are depleted. This type of channel is the primary way for calcium influx into T-cells. Defects in this gene are a cause of immune dysfunction with T-cell inactivation due to calcium entry defect type 1 (IDTICED1). [provided by RefSeq, Sep 2011]

PPARGC1A Gene

peroxisome proliferator-activated receptor gamma, coactivator 1 alpha

The protein encoded by this gene is a transcriptional coactivator that regulates the genes involved in energy metabolism. This protein interacts with PPARgamma, which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activities of, cAMP response element binding protein (CREB) and nuclear respiratory factors (NRFs). It provides a direct link between external physiological stimuli and the regulation of mitochondrial biogenesis, and is a major factor that regulates muscle fiber type determination. This protein may be also involved in controlling blood pressure, regulating cellular cholesterol homoeostasis, and the development of obesity. [provided by RefSeq, Jul 2008]

PPARG Gene

peroxisome proliferator-activated receptor gamma

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Alternatively spliced transcript variants that encode different isoforms have been described. [provided by RefSeq, Jul 2008]

PPARD Gene

peroxisome proliferator-activated receptor delta

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) family. PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR alpha and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jan 2010]

PPARA Gene

peroxisome proliferator-activated receptor alpha

Peroxisome proliferators include hypolipidemic drugs, herbicides, leukotriene antagonists, and plasticizers; this term arises because they induce an increase in the size and number of peroxisomes. Peroxisomes are subcellular organelles found in plants and animals that contain enzymes for respiration and for cholesterol and lipid metabolism. The action of peroxisome proliferators is thought to be mediated via specific receptors, called PPARs, which belong to the steroid hormone receptor superfamily. PPARs affect the expression of target genes involved in cell proliferation, cell differentiation and in immune and inflammation responses. Three closely related subtypes (alpha, beta/delta, and gamma) have been identified. This gene encodes the subtype PPAR-alpha, which is a nuclear transcription factor. Multiple alternatively spliced transcript variants have been described for this gene, although the full-length nature of only two has been determined. [provided by RefSeq, Jul 2008]

SLC5A4 Gene

solute carrier family 5 (glucose activated ion channel), member 4

ZACN Gene

zinc activated ligand-gated ion channel

LGICZ1 is a zinc-activated ligand-gated ion channel that defines a new subgroup of the cysteine-loop superfamily of ligand-gated ion channels (Davies et al., 2003 [PubMed 12381728]).[supplied by OMIM, Mar 2008]

LOC644110 Gene

hyperpolarization activated cyclic nucleotide gated potassium channel 2 pseudogene

HCN1 Gene

hyperpolarization activated cyclic nucleotide gated potassium channel 1

The membrane protein encoded by this gene is a hyperpolarization-activated cation channel that contributes to the native pacemaker currents in heart and neurons. The encoded protein can homodimerize or heterodimerize with other pore-forming subunits to form a potassium channel. This channel may act as a receptor for sour tastes. [provided by RefSeq, Oct 2011]

HCN3 Gene

hyperpolarization activated cyclic nucleotide gated potassium channel 3

This gene encodes a multi-pass membrane protein that functions as a voltage gated cation channel. The encoded protein is a member of a family of closely related cyclic adenosine monophosphate-binding channel proteins. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

HCN2 Gene

hyperpolarization activated cyclic nucleotide gated potassium channel 2

Hyperpolarization-activated cation channels of the HCN gene family, such as HCN2, contribute to spontaneous rhythmic activity in both heart and brain.[supplied by OMIM, Jul 2010]

HCN4 Gene

hyperpolarization activated cyclic nucleotide gated potassium channel 4

This gene encodes a member of the hyperpolarization-activated cyclic nucleotide-gated potassium channels. The encoded protein shows slow kinetics of activation and inactivation, and is necessary for the cardiac pacemaking process. This channel may also mediate responses to sour stimuli. Mutations in this gene have been linked to sick sinus syndrome 2, also known as atrial fibrillation with bradyarrhythmia or familial sinus bradycardia. Two pseudogenes have been identified on chromosome 15. [provided by RefSeq, Oct 2008]

KCNT1 Gene

potassium channel, sodium activated subfamily T, member 1

Potassium channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a sodium-activated potassium channel subunit which is thought to function in ion conductance and developmental signaling pathways. Mutations in this gene cause the early-onset epileptic disorders, malignant migrating partial seizures of infancy and autosomal dominant nocturnal frontal lobe epilepsy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2012]

CRACR2B Gene

calcium release activated channel regulator 2B

CRACR2A Gene

calcium release activated channel regulator 2A

NFATC3 Gene

nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3

The product of this gene is a member of the nuclear factors of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation and an inducible nuclear component. Other members of this family participate to form this complex also. The product of this gene plays a role in the regulation of gene expression in T cells and immature thymocytes. Several transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Nov 2010]

SLC5A4P1 Gene

solute carrier family 5 (glucose activated ion channel), member 4 pseudogene 1

LOC728424 Gene

hyperpolarization activated cyclic nucleotide gated potassium channel 2 pseudogene

ANO1 Gene

anoctamin 1, calcium activated chloride channel

ANO2 Gene

anoctamin 2, calcium activated chloride channel

ANO2 belongs to a family of calcium-activated chloride channels (CaCCs) (reviewed by Hartzell et al., 2009 [PubMed 19015192]).[supplied by OMIM, Jan 2011]

PANDAR Gene

promoter of CDKN1A antisense DNA damage activated RNA

PPP3CB Gene

protein phosphatase 3, catalytic subunit, beta isozyme

LOC347381 Gene

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), beta subunit pseudogene

AP5B1 Gene

adaptor-related protein complex 5, beta 1 subunit

LOC390705 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

AP2B1 Gene

adaptor-related protein complex 2, beta 1 subunit

The protein encoded by this gene is one of two large chain components of the assembly protein complex 2, which serves to link clathrin to receptors in coated vesicles. The encoded protein is found on the cytoplasmic face of coated vesicles in the plasma membrane. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC647208 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

AP4B1 Gene

adaptor-related protein complex 4, beta 1 subunit

This gene encodes a subunit of a heterotetrameric adapter-like complex 4 that is involved in targeting proteins from the trans-Golgi network to the endosomal-lysosomal system. Mutations in this gene are associated with cerebral palsy spastic quadriplegic type 5 (CPSQ5) disorder. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2011]

PGGT1BP1 Gene

protein geranylgeranyltransferase type I, beta subunit pseudogene 1

LOC100131348 Gene

adaptor-related protein complex 2, beta 1 subunit pseudogene

PPP2R1B Gene

protein phosphatase 2, regulatory subunit A, beta

This gene encodes a constant regulatory subunit of protein phosphatase 2. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The constant regulatory subunit A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. This gene encodes a beta isoform of the constant regulatory subunit A. Mutations in this gene have been associated with some lung and colon cancers. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

GABPB2 Gene

GA binding protein transcription factor, beta subunit 2

GABPB1 Gene

GA binding protein transcription factor, beta subunit 1

This gene encodes the GA-binding protein transcription factor, beta subunit. This protein forms a tetrameric complex with the alpha subunit, and stimulates transcription of target genes. The encoded protein may be involved in activation of cytochrome oxidase expression and nuclear control of mitochondrial function. The crystal structure of a similar protein in mouse has been resolved as a ternary protein complex. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

PPP2CBP1 Gene

protein phosphatase 2, catalytic subunit, beta isozyme pseudogene 1

COPB1 Gene

coatomer protein complex, subunit beta 1

This gene encodes a protein subunit of the coatomer complex associated with non-clathrin coated vesicles. The coatomer complex, also known as the coat protein complex 1, forms in the cytoplasm and is recruited to the Golgi by activated guanosine triphosphatases. Once at the Golgi membrane, the coatomer complex may assist in the movement of protein and lipid components back to the endoplasmic reticulum. Alternatively spliced transcript variants have been described. [provided by RefSeq, Jan 2009]

PGGT1B Gene

protein geranylgeranyltransferase type I, beta subunit

Protein geranylgeranyltransferase type I (GGTase-I) transfers a geranylgeranyl group to the cysteine residue of candidate proteins containing a C-terminal CAAX motif in which 'A' is an aliphatic amino acid and 'X' is leucine (summarized by Zhang et al., 1994 [PubMed 8106351]). The enzyme is composed of a 48-kD alpha subunit (FNTA; MIM 134635) and a 43-kD beta subunit, encoded by the PGGT1B gene. The FNTA gene encodes the alpha subunit for both GGTase-I and the related enzyme farnesyltransferase.[supplied by OMIM, Mar 2010]

PGGT1BP2 Gene

protein geranylgeranyltransferase type I, beta subunit pseudogene 2

PPP2R3B Gene

protein phosphatase 2, regulatory subunit B'', beta

Protein phosphatase 2 (formerly named type 2A) is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the beta subfamily of regulatory subunit B''. [provided by RefSeq, Apr 2010]

LOC100287928 Gene

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), beta subunit pseudogene

HADHB Gene

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), beta subunit

This gene encodes the beta subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the beta subunit catalyzing the 3-ketoacyl-CoA thiolase activity. The encoded protein can also bind RNA and decreases the stability of some mRNAs. The genes of the alpha and beta subunits of the mitochondrial trifunctional protein are located adjacent to each other in the human genome in a head-to-head orientation. Mutations in this gene result in trifunctional protein deficiency. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2013]

PPP3R2 Gene

protein phosphatase 3, regulatory subunit B, beta

AP1B1P1 Gene

adaptor-related protein complex 1, beta 1 subunit pseudogene 1

AP1B1P2 Gene

adaptor-related protein complex 1, beta 1 subunit pseudogene 2

AP1B1 Gene

adaptor-related protein complex 1, beta 1 subunit

Adaptor protein complex 1 is found at the cytoplasmic face of coated vesicles located at the Golgi complex, where it mediates both the recruitment of clathrin to the membrane and the recognition of sorting signals within the cytosolic tails of transmembrane receptors. This complex is a heterotetramer composed of two large, one medium, and one small adaptin subunit. The protein encoded by this gene serves as one of the large subunits of this complex and is a member of the adaptin protein family. This gene is a candidate meningioma gene. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

PPP2R5B Gene

protein phosphatase 2, regulatory subunit B', beta

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a beta isoform of the regulatory subunit B56 subfamily. [provided by RefSeq, Jul 2008]

AP3B1 Gene

adaptor-related protein complex 3, beta 1 subunit

This gene encodes a protein that may play a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes. The encoded protein is part of the heterotetrameric AP-3 protein complex which interacts with the scaffolding protein clathrin. Mutations in this gene are associated with Hermansky-Pudlak syndrome type 2. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2012]

AP3B2 Gene

adaptor-related protein complex 3, beta 2 subunit

Adaptor protein-3 (AP3) is a heterotetrameric vesicle-coat protein complex. Some AP3 subunits are ubiquitously expressed, whereas others are expressed exclusively in neurons. The neuron-specific AP3 complex, which includes AP3B2, is thought to serve neuron-specific functions such as neurotransmitter release (Grabner et al., 2006 [PubMed 16788073]).[supplied by OMIM, Mar 2008]

PPP1CB Gene

protein phosphatase 1, catalytic subunit, beta isozyme

The protein encoded by this gene is one of the three catalytic subunits of protein phosphatase 1 (PP1). PP1 is a serine/threonine specific protein phosphatase known to be involved in the regulation of a variety of cellular processes, such as cell division, glycogen metabolism, muscle contractility, protein synthesis, and HIV-1 viral transcription. Mouse studies suggest that PP1 functions as a suppressor of learning and memory. Two alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]

PPP2CB Gene

protein phosphatase 2, catalytic subunit, beta isozyme

This gene encodes the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. This gene encodes a beta isoform of the catalytic subunit. [provided by RefSeq, Mar 2010]

LOC401602 Gene

adaptor-related protein complex 2, beta 1 subunit pseudogene

PPP2R2B Gene

protein phosphatase 2, regulatory subunit B, beta

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a beta isoform of the regulatory subunit B55 subfamily. Defects in this gene cause autosomal dominant spinocerebellar ataxia 12 (SCA12), a disease caused by degeneration of the cerebellum, sometimes involving the brainstem and spinal cord, and in resulting in poor coordination of speech and body movements. Multiple alternatively spliced variants, which encode different isoforms, have been identified for this gene. The 5' UTR of some of these variants includes a CAG trinucleotide repeat sequence (7-28 copies) that can be expanded to 66-78 copies in cases of SCA12. [provided by RefSeq, Jul 2008]

RALGAPB Gene

Ral GTPase activating protein, beta subunit (non-catalytic)

CKS1B Gene

CDC28 protein kinase regulatory subunit 1B

CKS1B protein binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. The CKS1B mRNA is found to be expressed in different patterns through the cell cycle in HeLa cells, which reflects a specialized role for the encoded protein. At least two transcript variants have been identified for this gene, and it appears that only one of them encodes a protein. [provided by RefSeq, Sep 2008]

CKS2 Gene

CDC28 protein kinase regulatory subunit 2

CKS2 protein binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. The CKS2 mRNA is found to be expressed in different patterns through the cell cycle in HeLa cells, which reflects specialized role for the encoded protein. [provided by RefSeq, Jul 2008]

CKS1BP4 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 4

CKS1BP7 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 7

CKS1BP6 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 6

CKS1BP5 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 5

CKS1BP3 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 3

CKS1BP2 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 2

CKS1BP1 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 1

ITGB1 Gene

integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)

Integrins are heterodimeric proteins made up of alpha and beta subunits. At least 18 alpha and 8 beta subunits have been described in mammals. Integrin family members are membrane receptors involved in cell adhesion and recognition in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic diffusion of tumor cells. This gene encodes a beta subunit. Multiple alternatively spliced transcript variants which encode different protein isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

MGAT3 Gene

mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase

There are believed to be over 100 different glycosyltransferases involved in the synthesis of protein-bound and lipid-bound oligosaccharides. The enzyme encoded by this gene transfers a GlcNAc residue to the beta-linked mannose of the trimannosyl core of N-linked oligosaccharides and produces a bisecting GlcNAc. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

DBH Gene

dopamine beta-hydroxylase (dopamine beta-monooxygenase)

The protein encoded by this gene is an oxidoreductase belonging to the copper type II, ascorbate-dependent monooxygenase family. It is present in the synaptic vesicles of postganglionic sympathetic neurons and converts dopamine to norepinephrine. It exists in both soluble and membrane-bound forms, depending on the absence or presence, respectively, of a signal peptide. [provided by RefSeq, Jul 2008]

CHKB Gene

choline kinase beta

Choline kinase (CK) and ethanolamine kinase (EK) catalyze the phosphorylation of choline/ethanolamine to phosphocholine/phosphoethanolamine. This is the first enzyme in the biosynthesis of phosphatidylcholine/phosphatidylethanolamine in all animal cells. The highly purified CKs from mammalian sources and their recombinant gene products have been shown to have EK activity also, indicating that both activities reside on the same protein. The choline kinase-like protein encoded by CHKL belongs to the choline/ethanolamine kinase family; however, its exact function is not known. Read-through transcripts are expressed from this locus that include exons from the downstream CPT1B locus. [provided by RefSeq, Jun 2009]

PHKB Gene

phosphorylase kinase, beta

Phosphorylase kinase is a polymer of 16 subunits, four each of alpha, beta, gamma and delta. The alpha subunit includes the skeletal muscle and hepatic isoforms, encoded by two different genes. The beta subunit is the same in both the muscle and hepatic isoforms, encoded by this gene, which is a member of the phosphorylase b kinase regulatory subunit family. The gamma subunit also includes the skeletal muscle and hepatic isoforms, encoded by two different genes. The delta subunit is a calmodulin and can be encoded by three different genes. The gamma subunits contain the active site of the enzyme, whereas the alpha and beta subunits have regulatory functions controlled by phosphorylation. The delta subunit mediates the dependence of the enzyme on calcium concentration. Mutations in this gene cause glycogen storage disease type 9B, also known as phosphorylase kinase deficiency of liver and muscle. Alternatively spliced transcript variants encoding different isoforms have been identified in this gene. Two pseudogenes have been found on chromosomes 14 and 20, respectively.[provided by RefSeq, Feb 2010]

ADRBK1 Gene

adrenergic, beta, receptor kinase 1

The product of this gene phosphorylates the beta-2-adrenergic receptor and appears to mediate agonist-specific desensitization observed at high agonist concentrations. This protein is an ubiquitous cytosolic enzyme that specifically phosphorylates the activated form of the beta-adrenergic and related G-protein-coupled receptors. Abnormal coupling of beta-adrenergic receptor to G protein is involved in the pathogenesis of the failing heart. [provided by RefSeq, Jul 2008]

ADRBK2 Gene

adrenergic, beta, receptor kinase 2

The beta-adrenergic receptor kinase specifically phosphorylates the agonist-occupied form of the beta-adrenergic and related G protein-coupled receptors. Overall, the beta adrenergic receptor kinase 2 has 85% amino acid similarity with beta adrenergic receptor kinase 1, with the protein kinase catalytic domain having 95% similarity. These data suggest the existence of a family of receptor kinases which may serve broadly to regulate receptor function. [provided by RefSeq, Jul 2008]

STRADBP1 Gene

STE20-related kinase adaptor beta pseudogene 1

PIP4K2B Gene

phosphatidylinositol-5-phosphate 4-kinase, type II, beta

The protein encoded by this gene catalyzes the phosphorylation of phosphatidylinositol-5-phosphate on the fourth hydroxyl of the myo-inositol ring to form phosphatidylinositol-5,4-bisphosphate. This gene is a member of the phosphatidylinositol-5-phosphate 4-kinase family. The encoded protein sequence does not show similarity to other kinases, but the protein does exhibit kinase activity. Additionally, the encoded protein interacts with p55 TNF receptor. [provided by RefSeq, Jul 2008]

GSK3B Gene

glycogen synthase kinase 3 beta

The protein encoded by this gene is a serine-threonine kinase, belonging to the glycogen synthase kinase subfamily. It is involved in energy metabolism, neuronal cell development, and body pattern formation. Polymorphisms in this gene have been implicated in modifying risk of Parkinson disease, and studies in mice show that overexpression of this gene may be relevant to the pathogenesis of Alzheimer disease. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Sep 2009]

STRADB Gene

STE20-related kinase adaptor beta

This gene encodes a protein that belongs to the serine/threonine protein kinase STE20 subfamily. One of the active site residues in the protein kinase domain of this protein is altered, and it is thus a pseudokinase. This protein is a component of a complex involved in the activation of serine/threonine kinase 11, a master kinase that regulates cell polarity and energy-generating metabolism. This complex regulates the relocation of this kinase from the nucleus to the cytoplasm, and it is essential for G1 cell cycle arrest mediated by this kinase. The protein encoded by this gene can also interact with the X chromosome-linked inhibitor of apoptosis protein, and this interaction enhances the anti-apoptotic activity of this protein via the JNK1 signal transduction pathway. Two pseudogenes, located on chromosomes 1 and 7, have been found for this gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2011]

CSNK2B Gene

casein kinase 2, beta polypeptide

This gene encodes the beta subunit of casein kinase II, a ubiquitous protein kinase which regulates metabolic pathways, signal transduction, transcription, translation, and replication. The enzyme is composed of three subunits, alpha, alpha prime and beta, which form a tetrameric holoenzyme. The alpha and alpha prime subunits are catalytic, while the beta subunit serves regulatory functions. The enzyme localizes to the endoplasmic reticulum and the Golgi apparatus. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2013]

DGKB Gene

diacylglycerol kinase, beta 90kDa

Diacylglycerol kinases (DGKs) are regulators of the intracellular concentration of the second messenger diacylglycerol (DAG) and thus play a key role in cellular processes. Nine mammalian isotypes have been identified, which are encoded by separate genes. Mammalian DGK isozymes contain a conserved catalytic (kinase) domain and a cysteine-rich domain (CRD). The protein encoded by this gene is a diacylglycerol kinase, beta isotype. Two alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2008]

IKBKB Gene

inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta

The protein encoded by this gene phosphorylates the inhibitor in the inhibitor/NF-kappa-B complex, causing dissociation of the inhibitor and activation of NF-kappa-B. The encoded protein itself is found in a complex of proteins. Several transcript variants, some protein-coding and some not, have been found for this gene. [provided by RefSeq, Sep 2011]

LOC100271842 Gene

phosphatidylinositol 4-kinase type 2 beta pseudogene

PHKBP1 Gene

phosphorylase kinase, beta pseudogene 1

PHKBP2 Gene

phosphorylase kinase, beta pseudogene 2

PI4K2B Gene

phosphatidylinositol 4-kinase type 2 beta

Phosphatidylinositol 4-kinases (PI4Ks) phosphorylate phosphatidylinositol to generate phosphatidylinositol 4-phosphate (PIP), an immediate precursor of several important signaling and scaffolding molecules. PIP itself may also have direct functional and structural roles. PI4K2B is a primarily cytosolic PI4K that is recruited to membranes, where it stimulates phosphatidylinositol 4,5-bisphosphate synthesis (Wei et al., 2002 [PubMed 12324459]).[supplied by OMIM, Jun 2008]

PIP5K1B Gene

phosphatidylinositol-4-phosphate 5-kinase, type I, beta

PI4KB Gene

phosphatidylinositol 4-kinase, catalytic, beta

NUCKS1 Gene

nuclear casein kinase and cyclin-dependent kinase substrate 1

This gene encodes a nuclear protein that is highly conserved in vertebrates. The conserved regions of the protein contain several consensus phosphorylation sites for casein kinase II and cyclin-dependent kinases, two putative nuclear localization signals, and a basic DNA-binding domain. It is phosphorylated in vivo by Cdk1 during mitosis of the cell cycle. [provided by RefSeq, Aug 2010]

MKNK2 Gene

MAP kinase interacting serine/threonine kinase 2

This gene encodes a member of the calcium/calmodulin-dependent protein kinases (CAMK) Ser/Thr protein kinase family, which belongs to the protein kinase superfamily. This protein contains conserved DLG (asp-leu-gly) and ENIL (glu-asn-ile-leu) motifs, and an N-terminal polybasic region which binds importin A and the translation factor scaffold protein eukaryotic initiation factor 4G (eIF4G). This protein is one of the downstream kinases activated by mitogen-activated protein (MAP) kinases. It phosphorylates the eukaryotic initiation factor 4E (eIF4E), thus playing important roles in the initiation of mRNA translation, oncogenic transformation and malignant cell proliferation. In addition to eIF4E, this protein also interacts with von Hippel-Lindau tumor suppressor (VHL), ring-box 1 (Rbx1) and Cullin2 (Cul2), which are all components of the CBC(VHL) ubiquitin ligase E3 complex. Multiple alternatively spliced transcript variants have been found, but the full-length nature and biological activity of only two variants are determined. These two variants encode distinct isoforms which differ in activity and regulation, and in subcellular localization. [provided by RefSeq, Aug 2011]

MKNK1 Gene

MAP kinase interacting serine/threonine kinase 1

This gene encodes a Ser/Thr protein kinase that interacts with, and is activated by ERK1 and p38 mitogen-activated protein kinases, and thus may play a role in the response to environmental stress and cytokines. This kinase may also regulate transcription by phosphorylating eIF4E via interaction with the C-terminal region of eIF4G. Alternatively spliced transcript variants have been noted for this gene. [provided by RefSeq, Jan 2012]

SMG1 Gene

SMG1 phosphatidylinositol 3-kinase-related kinase

This gene encodes a protein involved in nonsense-mediated mRNA decay (NMD) as part of the mRNA surveillance complex. The protein has kinase activity and is thought to function in NMD by phosphorylating the regulator of nonsense transcripts 1 protein. Alternatively spliced transcript variants have been described, but their full-length nature has yet to be determined. [provided by RefSeq, Mar 2013]

MKNK2P1 Gene

MAP kinase interacting serine/threonine kinase 2 pseudogene 1

LOC100422558 Gene

SMG1 phosphatidylinositol 3-kinase-related kinase pseudogene

DTYMK Gene

deoxythymidylate kinase (thymidylate kinase)

CDKL1 Gene

cyclin-dependent kinase-like 1 (CDC2-related kinase)

This gene product is a member of a large family of CDC2-related serine/threonine protein kinases. It accumulates primarily in the nucleus. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

CDKL2 Gene

cyclin-dependent kinase-like 2 (CDC2-related kinase)

This gene product is a member of a large family of CDC2-related serine/threonine protein kinases. It accumulates primarily in the cytoplasm, with lower levels in the nucleus. [provided by RefSeq, Jul 2008]

PSMB9 Gene

proteasome (prosome, macropain) subunit, beta type, 9

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 1 (proteasome beta 6 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. [provided by RefSeq, Mar 2010]

PSMB8 Gene

proteasome (prosome, macropain) subunit, beta type, 8

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 3 (proteasome beta 5 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. Two alternative transcripts encoding two isoforms have been identified; both isoforms are processed to yield the same mature subunit. [provided by RefSeq, Jul 2008]

PSMB7 Gene

proteasome (prosome, macropain) subunit, beta type, 7

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. The encoded protein is a member of the proteasome B-type family, also known as the T1B family, and is a 20S core beta subunit in the proteasome. Expression of this catalytic subunit is downregulated by gamma interferon, and proteolytic processing is required to generate a mature subunit. A pseudogene of this gene is located on the long arm of chromosome 14. [provided by RefSeq, Jul 2012]

PSMB6 Gene

proteasome (prosome, macropain) subunit, beta type, 6

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. The encoded protein is a member of the proteasome B-type family, also known as the T1B family, and is a 20S core beta subunit in the proteasome. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

PSMB5 Gene

proteasome (prosome, macropain) subunit, beta type, 5

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit in the proteasome. This catalytic subunit is not present in the immunoproteasome and is replaced by catalytic subunit 3i (proteasome beta 8 subunit). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2009]

PSMB4 Gene

proteasome (prosome, macropain) subunit, beta type, 4

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. [provided by RefSeq, Jul 2008]

PSMB3 Gene

proteasome (prosome, macropain) subunit, beta type, 3

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. The 26 S proteasome may be involved in trinucleotide repeat expansion, a phenomenon which is associated with many hereditary neurological diseases. Pseudogenes have been identified on chromosomes 2 and 12. Alternative splicing results in multiple transcript variants [provided by RefSeq, Sep 2013]

PSMB2 Gene

proteasome (prosome, macropain) subunit, beta type, 2

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Dec 2010]

PSMB1 Gene

proteasome (prosome, macropain) subunit, beta type, 1

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is tightly linked to the TBP (TATA-binding protein) gene in human and in mouse, and is transcribed in the opposite orientation in both species. [provided by RefSeq, Jul 2008]

LOC100533945 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC101180897 Gene

Rab geranylgeranyltransferase, beta subunit pseudogene

LOC105376811 Gene

laminin subunit beta-2-like

KCNMB3P1 Gene

potassium channel subfamily M regulatory beta subunit 3 pseudogene 1

PSMB3P Gene

proteasome (prosome, macropain) subunit, beta type, 3 pseudogene

SCN1B Gene

sodium channel, voltage gated, type I beta subunit

Voltage-gated sodium channels are heteromeric proteins that function in the generation and propagation of action potentials in muscle and neuronal cells. They are composed of one alpha and two beta subunits, where the alpha subunit provides channel activity and the beta-1 subunit modulates the kinetics of channel inactivation. This gene encodes a sodium channel beta-1 subunit. Mutations in this gene result in generalized epilepsy with febrile seizures plus, Brugada syndrome 5, and defects in cardiac conduction. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

SCNN1B Gene

sodium channel, non voltage gated 1 beta subunit

Nonvoltage-gated, amiloride-sensitive, sodium channels control fluid and electrolyte transport across epithelia in many organs. These channels are heteromeric complexes consisting of 3 subunits: alpha, beta, and gamma. This gene encodes the beta subunit, and mutations in this gene have been associated with pseudohypoaldosteronism type 1 (PHA1), and Liddle syndrome. [provided by RefSeq, Apr 2009]

ITGB2 Gene

integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)

This gene encodes an integrin beta chain, which combines with multiple different alpha chains to form different integrin heterodimers. Integrins are integral cell-surface proteins that participate in cell adhesion as well as cell-surface mediated signalling. The encoded protein plays an important role in immune response and defects in this gene cause leukocyte adhesion deficiency. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

LOC100533944 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100533948 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100287189 Gene

Sec61 beta subunit pseudogene

RABGGTB Gene

Rab geranylgeranyltransferase, beta subunit

This gene encodes the beta-subunit of the enzyme Rab geranylgeranyl-transferase (RabGGTase), which belongs to the protein prenyltransferase family. RabGGTase catalyzes the post-translational addition of geranylgeranyl groups to C-terminal cysteine residues of Rab GTPases. Three small nucleolar RNA genes are present in the intronic regions of this gene. Alternately spliced transcript variants have been observed for this gene. A pseudogene associated with this gene is located on chromosome 3. [provided by RefSeq, Jan 2013]

FARSBP1 Gene

phenylalanyl-tRNA synthetase, beta subunit pseudogene 1

EIF2S2P1 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 1

EIF2S2P3 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 3

EIF2S2P2 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 2

EIF2S2P5 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 5

EIF2S2P4 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 4

EIF2S2P7 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 7

EIF2S2P6 Gene

eukaryotic translation initiation factor 2, subunit 2 beta pseudogene 6

PSMB11 Gene

proteasome (prosome, macropain) subunit, beta type, 11

Proteasomes generate peptides that are presented by major histocompatibility complex (MHC) I molecules to other cells of the immune system. Proteolysis is conducted by 20S proteasomes, complexes of 28 subunits arranged as a cylinder in 4 heteroheptameric rings: alpha-1 to -7, beta-1 to -7, beta-1 to -7, and alpha-1 to -7. The catalytic subunits are beta-1 (PSMB6; MIM 600307), beta-2 (PSMB7; MIM 604030), and beta-5 (PSMB5; MIM 600306). Three additional subunits, beta-1i (PSMB9; MIM 177045), beta-2i (PSMB10; MIM 176847), and beta-5i (PSMB8; MIM 177046), are induced by gamma-interferon (IFNG; MIM 147570) and are preferentially incorporated into proteasomes to make immunoproteasomes. PSMB11, or beta-5t, is a catalytic subunit expressed exclusively in cortical thymic epithelial cells (Murata et al., 2007 [PubMed 17540904]).[supplied by OMIM, Mar 2008]

PSMB10 Gene

proteasome (prosome, macropain) subunit, beta type, 10

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Proteolytic processing is required to generate a mature subunit. Expression of this gene is induced by gamma interferon, and this gene product replaces catalytic subunit 2 (proteasome beta 7 subunit) in the immunoproteasome. [provided by RefSeq, Jul 2008]

SCN3B Gene

sodium channel, voltage gated, type III beta subunit

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel beta subunit gene family, and influences the inactivation kinetics of the sodium channel. Two alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jul 2008]

SUCLA2P1 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene 1

SUCLA2P2 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene 2

SUCLA2P3 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene 3

SLC51B Gene

solute carrier family 51, beta subunit

EIF2S2 Gene

eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa

Eukaryotic translation initiation factor 2 (EIF-2) functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA and binding to a 40S ribosomal subunit. EIF-2 is composed of three subunits, alpha, beta, and gamma, with the protein encoded by this gene representing the beta subunit. The beta subunit catalyzes the exchange of GDP for GTP, which recycles the EIF-2 complex for another round of initiation. [provided by RefSeq, Jul 2008]

FARSB Gene

phenylalanyl-tRNA synthetase, beta subunit

This gene encodes a highly conserved enzyme that belongs to the aminoacyl-tRNA synthetase class IIc subfamily. This enzyme comprises the regulatory beta subunits that form a tetramer with two catalytic alpha subunits. In the presence of ATP, this tetramer is responsible for attaching L-phenylalanine to the terminal adenosine of the appropriate tRNA. A pseudogene located on chromosome 10 has been identified. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2015]

LOC100422275 Gene

proteasome (prosome, macropain) subunit, beta type, 5 pseudogene

LOC100533947 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100533946 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100130731 Gene

proteasome (prosome, macropain) subunit, beta type, 1 pseudogene

KCNE2 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 2

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a small integral membrane subunit that assembles with the KCNH2 gene product, a pore-forming protein, to alter its function. This gene is expressed in heart and muscle and the gene mutations are associated with cardiac arrhythmia. [provided by RefSeq, Jul 2008]

KCNE3 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 3

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a type I membrane protein, and a beta subunit that assembles with a potassium channel alpha-subunit to modulate the gating kinetics and enhance stability of the multimeric complex. This gene is prominently expressed in the kidney. A missense mutation in this gene is associated with hypokalemic periodic paralysis. [provided by RefSeq, Jul 2008]

KCNE1 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 1

The product of this gene belongs to the potassium channel KCNE family. Potassium ion channels are essential to many cellular functions and show a high degree of diversity, varying in their electrophysiologic and pharmacologic properties. This gene encodes a transmembrane protein known to associate with the product of the KVLQT1 gene to form the delayed rectifier potassium channel. Mutation in this gene are associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long-QT syndrome. Alternatively spliced transcript variants encoding the same protein have been identified. [provided by RefSeq, Jul 2008]

KCNE4 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 4

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a type I membrane protein, and a beta subunit that assembles with a potassium channel alpha-subunit to modulate the gating kinetics and enhance stability of the multimeric complex. This gene is prominently expressed in the embryo and in adult uterus. [provided by RefSeq, Jul 2008]

KCNE5 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 5

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a membrane protein which has sequence similarity to the KCNE1 gene product, a member of the potassium channel, voltage-gated, isk-related subfamily. This intronless gene is deleted in AMME contiguous gene syndrome and may be involved in the cardiac and neurologic abnormalities found in the AMME contiguous gene syndrome. [provided by RefSeq, Jul 2008]

LOC100418630 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

CACNB3 Gene

calcium channel, voltage-dependent, beta 3 subunit

This gene encodes a regulatory beta subunit of the voltage-dependent calcium channel. Beta subunits are composed of five domains, which contribute to the regulation of surface expression and gating of calcium channels and may also play a role in the regulation of transcription factors and calcium transport. [provided by RefSeq, Oct 2011]

CACNB2 Gene

calcium channel, voltage-dependent, beta 2 subunit

This gene encodes a subunit of a voltage-dependent calcium channel protein that is a member of the voltage-gated calcium channel superfamily. The gene product was originally identified as an antigen target in Lambert-Eaton myasthenic syndrome, an autoimmune disorder. Mutations in this gene are associated with Brugada syndrome. Alternatively spliced variants encoding different isoforms have been described. [provided by RefSeq, Feb 2013]

CACNB1 Gene

calcium channel, voltage-dependent, beta 1 subunit

The protein encoded by this gene belongs to the calcium channel beta subunit family. It plays an important role in the calcium channel by modulating G protein inhibition, increasing peak calcium current, controlling the alpha-1 subunit membrane targeting and shifting the voltage dependence of activation and inactivation. Alternative splicing occurs at this locus and three transcript variants encoding three distinct isoforms have been identified. [provided by RefSeq, Jul 2008]

CACNB4 Gene

calcium channel, voltage-dependent, beta 4 subunit

This gene encodes a member of the beta subunit family of voltage-dependent calcium channel complex proteins. Calcium channels mediate the influx of calcium ions into the cell upon membrane polarization and consist of a complex of alpha-1, alpha-2/delta, beta, and gamma subunits in a 1:1:1:1 ratio. Various versions of each of these subunits exist, either expressed from similar genes or the result of alternative splicing. The protein encoded by this locus plays an important role in calcium channel function by modulating G protein inhibition, increasing peak calcium current, controlling the alpha-1 subunit membrane targeting and shifting the voltage dependence of activation and inactivation. Certain mutations in this gene have been associated with idiopathic generalized epilepsy (IGE) and juvenile myoclonic epilepsy (JME). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

KCNMB1 Gene

potassium channel subfamily M regulatory beta subunit 1

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the product of this gene, the modulatory beta subunit. Intracellular calcium regulates the physical association between the alpha and beta subunits. [provided by RefSeq, Jul 2008]

KCNMB3 Gene

potassium channel subfamily M regulatory beta subunit 3

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the modulatory beta subunit. The protein encoded by this gene is an auxiliary beta subunit which may partially inactivate or slightly decrease the activation time of MaxiK alpha subunit currents. Alternative splicing results in multiple transcript variants. A related pseudogene has been identified on chromosome 22. [provided by RefSeq, Jul 2009]

KCNMB2 Gene

potassium channel subfamily M regulatory beta subunit 2

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the modulatory beta subunit. The protein encoded by this gene is an auxiliary beta subunit which decreases the activation time of MaxiK alpha subunit currents. Alternative splicing results in multiple transcript variants of this gene. Additional variants are discussed in the literature, but their full length nature has not been described. [provided by RefSeq, Jul 2013]

KCNMB4 Gene

potassium channel subfamily M regulatory beta subunit 4

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the modulatory beta subunit. The protein encoded by this gene is an auxiliary beta subunit which slows activation kinetics, leads to steeper calcium sensitivity, and shifts the voltage range of current activation to more negative potentials than does the beta 1 subunit. [provided by RefSeq, Jul 2008]

CCT2 Gene

chaperonin containing TCP1, subunit 2 (beta)

The protein encoded by this gene is a molecular chaperone that is a member of the chaperonin containing TCP1 complex (CCT), also known as the TCP1 ring complex (TRiC). This complex consists of two identical stacked rings, each containing eight different proteins. Unfolded polypeptides enter the central cavity of the complex and are folded in an ATP-dependent manner. The complex folds various proteins, including actin and tubulin. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2010]

SEC61B Gene

Sec61 beta subunit

The Sec61 complex is the central component of the protein translocation apparatus of the endoplasmic reticulum (ER) membrane. Oligomers of the Sec61 complex form a transmembrane channel where proteins are translocated across and integrated into the ER membrane. This complex consists of three membrane proteins- alpha, beta, and gamma. This gene encodes the beta-subunit protein. The Sec61 subunits are also observed in the post-ER compartment, suggesting that these proteins can escape the ER and recycle back. There is evidence for multiple polyadenylated sites for this transcript. [provided by RefSeq, Jul 2008]

BSND Gene

barttin CLCNK-type chloride channel accessory beta subunit

This gene encodes an essential beta subunit for CLC chloride channels. These heteromeric channels localize to basolateral membranes of renal tubules and of potassium-secreting epithelia of the inner ear. Mutations in this gene have been associated with Bartter syndrome with sensorineural deafness. [provided by RefSeq, Jul 2008]

SCN2B Gene

sodium channel, voltage gated, type II beta subunit

SUCLA2 Gene

succinate-CoA ligase, ADP-forming, beta subunit

Succinyl-CoA synthetase (SCS) is a mitochondrial matrix enzyme that acts as a heterodimer, being composed of an invariant alpha subunit and a substrate-specific beta subunit. The protein encoded by this gene is an ATP-specific SCS beta subunit that dimerizes with the SCS alpha subunit to form SCS-A, an essential component of the tricarboxylic acid cycle. SCS-A hydrolyzes ATP to convert succinate to succinyl-CoA. Defects in this gene are a cause of myopathic mitochondrial DNA depletion syndrome. A pseudogene of this gene has been found on chromosome 6. [provided by RefSeq, Jul 2008]

EIF2B2 Gene

eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa

This gene encodes the beta subunit of eukaryotic initiation factor-2B (EIF2B). EIF2B is involved in protein synthesis and exchanges GDP and GTP for its activation and deactivation. [provided by RefSeq, Aug 2011]

KCNAB1 Gene

potassium channel, voltage gated subfamily A regulatory beta subunit 1

Potassium channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. This member includes distinct isoforms which are encoded by alternatively spliced transcript variants of this gene. Some of these isoforms are beta subunits, which form heteromultimeric complexes with alpha subunits and modulate the activity of the pore-forming alpha subunits. [provided by RefSeq, Apr 2015]

KCNAB3 Gene

potassium channel, voltage gated subfamily A regulatory beta subunit 3

This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. The encoded protein is one of the beta subunits, which are auxiliary proteins associating with functional Kv-alpha subunits. The encoded protein forms a heterodimer with the potassium voltage-gated channel, shaker-related subfamily, member 5 gene product and regulates the activity of the alpha subunit. [provided by RefSeq, May 2012]

KCNAB2 Gene

potassium channel, voltage gated subfamily A regulatory beta subunit 2

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. This member is one of the beta subunits, which are auxiliary proteins associating with functional Kv-alpha subunits. This member alters functional properties of the KCNA4 gene product. Alternative splicing of this gene results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Dec 2010]

CBFB Gene

core-binding factor, beta subunit

The protein encoded by this gene is the beta subunit of a heterodimeric core-binding transcription factor belonging to the PEBP2/CBF transcription factor family which master-regulates a host of genes specific to hematopoiesis (e.g., RUNX1) and osteogenesis (e.g., RUNX2). The beta subunit is a non-DNA binding regulatory subunit; it allosterically enhances DNA binding by alpha subunit as the complex binds to the core site of various enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers and GM-CSF promoters. Alternative splicing generates two mRNA variants, each encoding a distinct carboxyl terminus. In some cases, a pericentric inversion of chromosome 16 [inv(16)(p13q22)] produces a chimeric transcript consisting of the N terminus of core-binding factor beta in a fusion with the C-terminal portion of the smooth muscle myosin heavy chain 11. This chromosomal rearrangement is associated with acute myeloid leukemia of the M4Eo subtype. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PSME2 Gene

proteasome (prosome, macropain) activator subunit 2 (PA28 beta)

The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. This gene encodes the beta subunit of the 11S regulator, one of the two 11S subunits that is induced by gamma-interferon. Three beta and three alpha subunits combine to form a heterohexameric ring. Six pseudogenes have been identified on chromosomes 4, 5, 8, 10 and 13. [provided by RefSeq, Jul 2008]

SUCLG2P4 Gene

succinate-CoA ligase, GDP-forming, beta subunit pseudogene 4

SUCLG2P2 Gene

succinate-CoA ligase, GDP-forming, beta subunit pseudogene 2

SUCLG2P3 Gene

succinate-CoA ligase, GDP-forming, beta subunit pseudogene 3

SUCLG2P1 Gene

succinate-CoA ligase, GDP-forming, beta subunit pseudogene 1

LOC100418626 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100418627 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100418628 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

LOC100418629 Gene

succinate-CoA ligase, ADP-forming, beta subunit pseudogene

CATSPERB Gene

catsper channel auxiliary subunit beta

PSMB3P2 Gene

proteasome (prosome, macropain) subunit, beta type, 3 pseudogene 2

SCN4B Gene

sodium channel, voltage gated, type IV beta subunit

The protein encoded by this gene is one of several sodium channel beta subunits. These subunits interact with voltage-gated alpha subunits to change sodium channel kinetics. The encoded transmembrane protein forms interchain disulfide bonds with SCN2A. Defects in this gene are a cause of long QT syndrome type 10 (LQT10). Three protein-coding and one non-coding transcript variant have been found for this gene.[provided by RefSeq, Mar 2009]

BSNDP2 Gene

barttin CLCNK-type chloride channel accessory beta subunit pseudogene 2

SUCLG2 Gene

succinate-CoA ligase, GDP-forming, beta subunit

This gene encodes a GTP-specific beta subunit of succinyl-CoA synthetase. Succinyl-CoA synthetase catalyzes the reversible reaction involving the formation of succinyl-CoA and succinate. Alternate splicing results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 5 and 12. [provided by RefSeq, Apr 2010]

PIK3C2A Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. The PI3-kinase activity of this protein is not sensitive to nanomolar levels of the inhibitor wortmanin. This protein was shown to be able to be activated by insulin and may be involved in integrin-dependent signaling. [provided by RefSeq, Jul 2008]

PIK3C2G Gene

phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma

The protein encoded by this gene belongs to the phosphoinositide 3-kinase (PI3K) family. PI3-kinases play roles in signaling pathways involved in cell proliferation, oncogenic transformation, cell survival, cell migration, and intracellular protein trafficking. This protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of class II PI3-kinases. C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein interactions. This gene may play a role in several diseases, including type II diabetes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

PIK3R6 Gene

phosphoinositide-3-kinase, regulatory subunit 6

Phosphoinositide 3-kinase gamma is a lipid kinase that produces the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. The kinase is composed of a catalytic subunit and one of several regulatory subunits, and is chiefly activated by G protein-coupled receptors. This gene encodes a regulatory subunit, and is distantly related to the phosphoinositide-3-kinase, regulatory subunit 5 gene which is located adjacent to this gene on chromosome 7. The orthologous protein in the mouse binds to both the catalytic subunit and to G(beta/gamma), and mediates activation of the kinase subunit downstream of G protein-coupled receptors. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

PIK3R5 Gene

phosphoinositide-3-kinase, regulatory subunit 5

Phosphatidylinositol 3-kinases (PI3Ks) phosphorylate the inositol ring of phosphatidylinositol at the 3-prime position, and play important roles in cell growth, proliferation, differentiation, motility, survival and intracellular trafficking. The PI3Ks are divided into three classes: I, II and III, and only the class I PI3Ks are involved in oncogenesis. This gene encodes the 101 kD regulatory subunit of the class I PI3K gamma complex, which is a dimeric enzyme, consisting of a 110 kD catalytic subunit gamma and a regulatory subunit of either 55, 87 or 101 kD. This protein recruits the catalytic subunit from the cytosol to the plasma membrane through high-affinity interaction with G-beta-gamma proteins. Multiple alternatively spliced transcript variants encoding two distinct isoforms have been found. [provided by RefSeq, Oct 2011]

PIK3R4 Gene

phosphoinositide-3-kinase, regulatory subunit 4

PIK3R3 Gene

phosphoinositide-3-kinase, regulatory subunit 3 (gamma)

PIK3R1 Gene

phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

Phosphatidylinositol 3-kinase phosphorylates the inositol ring of phosphatidylinositol at the 3-prime position. The enzyme comprises a 110 kD catalytic subunit and a regulatory subunit of either 85, 55, or 50 kD. This gene encodes the 85 kD regulatory subunit. Phosphatidylinositol 3-kinase plays an important role in the metabolic actions of insulin, and a mutation in this gene has been associated with insulin resistance. Alternative splicing of this gene results in four transcript variants encoding different isoforms. [provided by RefSeq, Jun 2011]

LOC100422375 Gene

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha pseudogene

CDK5R1 Gene

cyclin-dependent kinase 5, regulatory subunit 1 (p35)

The protein encoded by this gene (p35) is a neuron-specific activator of cyclin-dependent kinase 5 (CDK5); the activation of CDK5 is required for proper development of the central nervous system. The p35 form of this protein is proteolytically cleaved by calpain, generating a p25 form. The cleavage of p35 into p25 results in relocalization of the protein from the cell periphery to nuclear and perinuclear regions. P25 deregulates CDK5 activity by prolonging its activation and changing its cellular location. The p25 form accumulates in the brain neurons of patients with Alzheimer's disease. This accumulation correlates with an increase in CDK5 kinase activity, and may lead to aberrantly phosphorylated forms of the microtubule-associated protein tau, which contributes to Alzheimer's disease. [provided by RefSeq, Jul 2008]

LOC391349 Gene

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta pseudogene

PIK3CA Gene

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

Phosphatidylinositol 3-kinase is composed of an 85 kDa regulatory subunit and a 110 kDa catalytic subunit. The protein encoded by this gene represents the catalytic subunit, which uses ATP to phosphorylate PtdIns, PtdIns4P and PtdIns(4,5)P2. This gene has been found to be oncogenic and has been implicated in cervical cancers. [provided by RefSeq, Jul 2008]

PIK3CD Gene

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta

Phosphoinositide 3-kinases (PI3Ks) phosphorylate inositol lipids and are involved in the immune response. The protein encoded by this gene is a class I PI3K found primarily in leukocytes. Like other class I PI3Ks (p110-alpha p110-beta, and p110-gamma), the encoded protein binds p85 adapter proteins and GTP-bound RAS. However, unlike the other class I PI3Ks, this protein phosphorylates itself, not p85 protein.[provided by RefSeq, Jul 2010]

PIK3CG Gene

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma

This gene encodes a protein that belongs to the pi3/pi4-kinase family of proteins. The gene product is an enzyme that phosphorylates phosphoinositides on the 3-hydroxyl group of the inositol ring. It is an important modulator of extracellular signals, including those elicited by E-cadherin-mediated cell-cell adhesion, which plays an important role in maintenance of the structural and functional integrity of epithelia. In addition to its role in promoting assembly of adherens junctions, the protein is thought to play a pivotal role in the regulation of cytotoxicity in NK cells. The gene is located in a commonly deleted segment of chromosome 7 previously identified in myeloid leukemias. Several transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2013]

PIK3C3 Gene

phosphatidylinositol 3-kinase, catalytic subunit type 3

CDK5R2 Gene

cyclin-dependent kinase 5, regulatory subunit 2 (p39)

The protein encoded by this gene is a neuron-specific activator of CDK5 kinase. It associates with CDK5 to form an active kinase. This protein and neuron-specific CDK5 activator CDK5R1/p39NCK5A both share limited similarity to cyclins, and thus may define a distinct family of cyclin-dependent kinase activating proteins. [provided by RefSeq, Jul 2008]

RIIAD1 Gene

regulatory subunit of type II PKA R-subunit (RIIa) domain containing 1

LOC100507083 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene

ATP5G2P1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 1

ATP5G2P3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 3

ATP5G2P2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 2

ATP5G2P4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) pseudogene 4

ATP5G3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene is one of three genes that encode subunit c of the proton channel. Each of the three genes have distinct mitochondrial import sequences but encode the identical mature protein. Alternatively spliced transcript variants encoding different proteins have been identified. [provided by RefSeq, Jun 2010]

ATP5G2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and single representatives of the gamma, delta, and epsilon subunits. The proton channel likely has nine subunits (a, b, c, d, e, f, g, F6 and 8). There are three separate genes which encode subunit c of the proton channel and they specify precursors with different import sequences but identical mature proteins. The protein encoded by this gene is one of three precursors of subunit c. Alternatively spliced transcript variants encoding different isoforms have been identified. This gene has multiple pseudogenes. [provided by RefSeq, Jun 2010]

ATP5G1P3 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 3

ATP5G1P1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 1

ATP5G1P2 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 2

ATP5G1P6 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 6

ATP5G1P7 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 7

ATP5G1P4 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 4

ATP5G1P5 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 5

ATP5G1P8 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) pseudogene 8

ATP5G1 Gene

ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9)

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene is one of three genes that encode subunit c of the proton channel. Each of the three genes have distinct mitochondrial import sequences but encode the identical mature protein. Alternatively spliced transcript variants encoding the same protein have been identified. [provided by RefSeq, Jul 2008]

APBB1IP Gene

amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein

GNB2L1 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1

PPFIBP1 Gene

PTPRF interacting protein, binding protein 1 (liprin beta 1)

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. It has been proposed that liprins are multivalent proteins that form complex structures and act as scaffolds for the recruitment and anchoring of LAR family of tyrosine phosphatases. This protein was found to interact with S100A4, a calcium-binding protein related to tumor invasiveness and metastasis. In vitro experiment demonstrated that the interaction inhibited the phosphorylation of this protein by protein kinase C and protein kinase CK2. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

PPFIBP2 Gene

PTPRF interacting protein, binding protein 2 (liprin beta 2)

This gene encodes a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. The encoded protein is a beta liprin and plays a role in axon guidance and neuronal synapse development by recruiting LAR protein-tyrosine phosphatases to the plasma membrane. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Feb 2012]

GNB5 Gene

guanine nucleotide binding protein (G protein), beta 5

Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. Alternatively spliced transcript variants encoding different isoforms exist. [provided by RefSeq, Jul 2008]

GNB4 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 4

Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. [provided by RefSeq, Jul 2008]

GNB1 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 1

Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

GNB3 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 3

Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit which belongs to the WD repeat G protein beta family. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. A single-nucleotide polymorphism (C825T) in this gene is associated with essential hypertension and obesity. This polymorphism is also associated with the occurrence of the splice variant GNB3-s, which appears to have increased activity. GNB3-s is an example of alternative splicing caused by a nucleotide change outside of the splice donor and acceptor sites. Alternative splicing results in multiple transcript variants. Additional alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Jul 2014]

GNB2 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 2

Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. This gene contains a trinucleotide (CCG) repeat length polymorphism in its 5' UTR. [provided by RefSeq, Jul 2008]

APPBP2 Gene

amyloid beta precursor protein (cytoplasmic tail) binding protein 2

The protein encoded by this gene interacts with microtubules and is functionally associated with beta-amyloid precursor protein transport and/or processing. The beta-amyloid precursor protein is a cell surface protein with signal-transducing properties, and it is thought to play a role in the pathogenesis of Alzheimer's disease. The encoded protein may be involved in regulating cell death. This gene has been found to be highly expressed in breast cancer. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

LOC100422559 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 pseudogene

GNB1L Gene

guanine nucleotide binding protein (G protein), beta polypeptide 1-like

This gene encodes a G-protein beta-subunit-like polypeptide which is a member of the WD repeat protein family. WD repeats are minimally conserved regions of approximately 40 amino acids typically bracketed by gly-his and trp-asp (GH-WD), which may facilitate formation of heterotrimeric or multiprotein complexes. Members of this family are involved in a variety of cellular processes, including cell cycle progression, signal transduction, apoptosis, and gene regulation. This protein contains 6 WD repeats and is highly expressed in the heart. The gene maps to the region on chromosome 22q11, which is deleted in DiGeorge syndrome, trisomic in derivative 22 syndrome and tetrasomic in cat-eye syndrome. Therefore, this gene may contribute to the etiology of those disorders. Transcripts from this gene share exons with some transcripts from the C22orf29 gene. [provided by RefSeq, Jul 2008]

LOC100422561 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 pseudogene

LOC100422562 Gene

guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 pseudogene

PRKCDBP Gene

protein kinase C, delta binding protein

The protein encoded by this gene was identified as a binding protein of the protein kinase C, delta (PRKCD). The expression of this gene in cultured cell lines is strongly induced by serum starvation. The expression of this protein was found to be down-regulated in various cancer cell lines, suggesting the possible tumor suppressor function of this protein. [provided by RefSeq, Jul 2008]

SKP2 Gene

S-phase kinase-associated protein 2, E3 ubiquitin protein ligase

This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbls class; in addition to an F-box, this protein contains 10 tandem leucine-rich repeats. This protein is an essential element of the cyclin A-CDK2 S-phase kinase. It specifically recognizes phosphorylated cyclin-dependent kinase inhibitor 1B (CDKN1B, also referred to as p27 or KIP1) predominantly in S phase and interacts with S-phase kinase-associated protein 1 (SKP1 or p19). In addition, this gene is established as a protooncogene causally involved in the pathogenesis of lymphomas. Alternative splicing of this gene generates three transcript variants encoding different isoforms. [provided by RefSeq, Jul 2011]

LOC100130500 Gene

S-phase kinase-associated protein 2, E3 ubiquitin protein ligase pseudogene

TYROBP Gene

TYRO protein tyrosine kinase binding protein

This gene encodes a transmembrane signaling polypeptide which contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. The encoded protein may associate with the killer-cell inhibitory receptor (KIR) family of membrane glycoproteins and may act as an activating signal transduction element. This protein may bind zeta-chain (TCR) associated protein kinase 70kDa (ZAP-70) and spleen tyrosine kinase (SYK) and play a role in signal transduction, bone modeling, brain myelination, and inflammation. Mutations within this gene have been associated with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), also known as Nasu-Hakola disease. Its putative receptor, triggering receptor expressed on myeloid cells 2 (TREM2), also causes PLOSL. Multiple alternative transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Mar 2010]

HSP90B3P Gene

heat shock protein 90kDa beta (Grp94), member 3, pseudogene

GJB6 Gene

gap junction protein, beta 6, 30kDa

Gap junctions allow the transport of ions and metabolites between the cytoplasm of adjacent cells. They are formed by two hemichannels, made up of six connexin proteins assembled in groups. Each connexin protein has four transmembrane segments, two extracellular loops, a cytoplasmic loop formed between the two inner transmembrane segments, and the N- and C-terminus both being in the cytoplasm. The specificity of the gap junction is determined by which connexin proteins comprise the hemichannel. In the past, connexin protein names were based on their molecular weight, however the new nomenclature uses sequential numbers based on which form (alpha or beta) of the gap junction is present. This gene encodes one of the connexin proteins. Mutations in this gene have been found in some forms of deafness and in some families with hidrotic ectodermal dysplasia. [provided by RefSeq, Jul 2008]

MAP1LC3B2 Gene

microtubule-associated protein 1 light chain 3 beta 2

LOC105373314 Gene

UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like protein 1

YWHAB Gene

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta

This gene encodes a protein belonging to the 14-3-3 family of proteins, members of which mediate signal transduction by binding to phosphoserine-containing proteins. This highly conserved protein family is found in both plants and mammals. The encoded protein has been shown to interact with RAF1 and CDC25 phosphatases, suggesting that it may play a role in linking mitogenic signaling and the cell cycle machinery. Two transcript variants, which encode the same protein, have been identified for this gene. [provided by RefSeq, Jul 2008]

BTRCP1 Gene

beta-transducin repeat containing E3 ubiquitin protein ligase pseudogene 1

LOC100422013 Gene

catenin (cadherin-associated protein), beta 1, 88kDa pseudogene

APBB1 Gene

amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65)

The protein encoded by this gene is a member of the Fe65 protein family. It is an adaptor protein localized in the nucleus. It interacts with the Alzheimer's disease amyloid precursor protein (APP), transcription factor CP2/LSF/LBP1 and the low-density lipoprotein receptor-related protein. APP functions as a cytosolic anchoring site that can prevent the gene product's nuclear translocation. This encoded protein could play an important role in the pathogenesis of Alzheimer's disease. It is thought to regulate transcription. Also it is observed to block cell cycle progression by downregulating thymidylate synthase expression. Multiple alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Mar 2012]

APBB2 Gene

amyloid beta (A4) precursor protein-binding, family B, member 2

The protein encoded by this gene interacts with the cytoplasmic domains of amyloid beta (A4) precursor protein and amyloid beta (A4) precursor-like protein 2. This protein contains two phosphotyrosine binding (PTB) domains, which are thought to function in signal transduction. Polymorphisms in this gene have been associated with Alzheimer's disease. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

APBB3 Gene

amyloid beta (A4) precursor protein-binding, family B, member 3

The protein encoded by this gene is a member of the APBB protein family. It is found in the cytoplasm and binds to the intracellular domain of the Alzheimer's disease beta-amyloid precursor protein (APP) as well as to other APP-like proteins. It is thought that the protein encoded by this gene may modulate the internalization of APP. Multiple transcript variants encoding several different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LOC101059997 Gene

alpha/beta hydrolase domain-containing protein 17A-like

LAPTM4B Gene

lysosomal protein transmembrane 4 beta

LOC100653061 Gene

beta-glucuronidase-like protein SMA4

CEBPB Gene

CCAAT/enhancer binding protein (C/EBP), beta

This intronless gene encodes a transcription factor that contains a basic leucine zipper (bZIP) domain. The encoded protein functions as a homodimer but can also form heterodimers with CCAAT/enhancer-binding proteins alpha, delta, and gamma. Activity of this protein is important in the regulation of genes involved in immune and inflammatory responses, among other processes. The use of alternative in-frame AUG start codons results in multiple protein isoforms, each with distinct biological functions. [provided by RefSeq, Oct 2013]

APP Gene

amyloid beta (A4) precursor protein

This gene encodes a cell surface receptor and transmembrane precursor protein that is cleaved by secretases to form a number of peptides. Some of these peptides are secreted and can bind to the acetyltransferase complex APBB1/TIP60 to promote transcriptional activation, while others form the protein basis of the amyloid plaques found in the brains of patients with Alzheimer disease. In addition, two of the peptides are antimicrobial peptides, having been shown to have bacteriocidal and antifungal activities. Mutations in this gene have been implicated in autosomal dominant Alzheimer disease and cerebroarterial amyloidosis (cerebral amyloid angiopathy). Multiple transcript variants encoding several different isoforms have been found for this gene. [provided by RefSeq, Aug 2014]

CTNNBIP1 Gene

catenin, beta interacting protein 1

The protein encoded by this gene binds CTNNB1 and prevents interaction between CTNNB1 and TCF family members. The encoded protein is a negative regulator of the Wnt signaling pathway. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

LOC645900 Gene

lysosomal protein transmembrane 4 beta pseudogene

APBA1 Gene

amyloid beta (A4) precursor protein-binding, family A, member 1

The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP and inhibits production of proteolytic APP fragments including the A beta peptide that is deposited in the brains of Alzheimer's disease patients. This gene product is believed to be involved in signal transduction processes. It is also regarded as a putative vesicular trafficking protein in the brain that can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion. [provided by RefSeq, Jul 2008]

APBA3 Gene

amyloid beta (A4) precursor protein-binding, family A, member 3

The protein encoded by this gene is a member of the X11 protein family. It is an adapter protein that interacts with the Alzheimer's disease amyloid precursor protein. This gene product is believed to be involved in signal transduction processes. This gene is a candidate gene for Alzheimer's disease. [provided by RefSeq, Jul 2008]

APBA2 Gene

amyloid beta (A4) precursor protein-binding, family A, member 2

The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). It stabilizes APP and inhibits production of proteolytic APP fragments including the A beta peptide that is deposited in the brains of Alzheimer's disease patients. This gene product is believed to be involved in signal transduction processes. It is also regarded as a putative vesicular trafficking protein in the brain that can form a complex with the potential to couple synaptic vesicle exocytosis to neuronal cell adhesion. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PITPNB Gene

phosphatidylinositol transfer protein, beta

This gene encodes a cytoplasmic protein that catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes. This transfer activity is required for COPI complex-mediated retrograde transport from the Golgi apparatus to the endoplasmic reticulum. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Sep 2013]

ACTR1B Gene

ARP1 actin-related protein 1 homolog B, centractin beta (yeast)

This gene encodes a 42.3 kD subunit of dynactin, a macromolecular complex consisting of 10 subunits ranging in size from 22 to 150 kD. Dynactin binds to both microtubules and cytoplasmic dynein and is involved in a diverse array of cellular functions, including ER-to-Golgi transport, the centripetal movement of lysosomes and endosomes, spindle formation, chromosome movement, nuclear positioning, and axonogenesis. This subunit, like ACTR1A, is an actin-related protein. These two proteins, which are of equal length and share 90% amino acid identity, are present in a constant ratio of approximately 1:15 in the dynactin complex. [provided by RefSeq, Aug 2008]

LOC100422491 Gene

amyloid beta (A4) precursor protein-binding, family A, member 2 pseudogene

LOC100422492 Gene

amyloid beta (A4) precursor protein-binding, family A, member 2 pseudogene

C4BPB Gene

complement component 4 binding protein, beta

This gene encodes a member of a superfamily of proteins composed predominantly of tandemly arrayed short consensus repeats of approximately 60 amino acids. A single, unique beta-chain encoded by this gene assembles with seven identical alpha-chains into the predominant isoform of C4b-binding protein, a multimeric protein that controls activation of the complement cascade through the classical pathway. C4b-binding protein has a regulatory role in the coagulation system also, mediated through the beta-chain binding of protein S, a vitamin K-dependent protein that serves as a cofactor of activated protein C. The genes encoding both alpha and beta chains are located adjacent to each other on human chromosome 1 in the regulator of complement activation gene cluster. Alternative splicing gives rise to multiple transcript variants. [provided by RefSeq, Jul 2008]

CAPZB Gene

capping protein (actin filament) muscle Z-line, beta

This gene encodes the beta subunit of the barbed-end actin binding protein, which belongs to the F-actin capping protein family. The capping protein is a heterodimeric actin capping protein that blocks actin filament assembly and disassembly at the fast growing (barbed) filament ends and functions in regulating actin filament dynamics as well as in stabilizing actin filament lengths in muscle and nonmuscle cells. A pseudogene of this gene is located on the long arm of chromosome 2. Multiple alternatively spliced transcript variants encoding different isoforms have been found.[provided by RefSeq, Aug 2013]

PROS2P Gene

protein S (beta) pseudogene

APLP1 Gene

amyloid beta (A4) precursor-like protein 1

This gene encodes a member of the highly conserved amyloid precursor protein gene family. The encoded protein is a membrane-associated glycoprotein that is cleaved by secretases in a manner similar to amyloid beta A4 precursor protein cleavage. This cleavage liberates an intracellular cytoplasmic fragment that may act as a transcriptional activator. The encoded protein may also play a role in synaptic maturation during cortical development. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

HSP90B2P Gene

heat shock protein 90kDa beta (Grp94), member 2, pseudogene

LOC102725009 Gene

putative beta-glucuronidase-like protein MGC156142

GJB7 Gene

gap junction protein, beta 7, 25kDa

Connexins, such as GJB7, are involved in the formation of gap junctions, intercellular conduits that directly connect the cytoplasms of contacting cells. Each gap junction channel is formed by docking of 2 hemichannels, each of which contains 6 connexin subunits (Sohl et al., 2003 [PubMed 12881038]).[supplied by OMIM, Mar 2008]

ITGB1BP1 Gene

integrin beta 1 binding protein 1

The cytoplasmic domains of integrins are essential for cell adhesion. The protein encoded by this gene binds to the beta1 integrin cytoplasmic domain. The interaction between this protein and beta1 integrin is highly specific. Two isoforms of this protein are derived from alternatively spliced transcripts. The shorter form of this protein does not interact with the beta1 integrin cytoplasmic domain. The longer form is a phosphoprotein and the extent of its phosphorylation is regulated by the cell-matrix interaction, suggesting an important role of this protein during integrin-dependent cell adhesion. [provided by RefSeq, Jul 2008]

ITGB1BP2 Gene

integrin beta 1 binding protein (melusin) 2

HSP90B1 Gene

heat shock protein 90kDa beta (Grp94), member 1

This gene encodes a member of a family of adenosine triphosphate(ATP)-metabolizing molecular chaperones with roles in stabilizing and folding other proteins. The encoded protein is localized to melanosomes and the endoplasmic reticulum. Expression of this protein is associated with a variety of pathogenic states, including tumor formation. There is a microRNA gene located within the 5' exon of this gene. There are pseudogenes for this gene on chromosomes 1 and 15. [provided by RefSeq, Aug 2012]

LOC102723964 Gene

alpha/beta hydrolase domain-containing protein 17A-like

ITGB3BP Gene

integrin beta 3 binding protein (beta3-endonexin)

This gene encodes a transcriptional coregulator that binds to and enhances the activity of members of the nuclear receptor families, thyroid hormone receptors and retinoid X receptors. This protein also acts as a corepressor of NF-kappaB-dependent signaling. This protein induces apoptosis in breast cancer cells through a caspase 2-mediated signaling pathway. This protein is also a component of the centromere-specific histone H3 variant nucleosome associated complex (CENP-NAC) and may be involved in mitotic progression by recruiting the histone H3 variant CENP-A to the centromere. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2011]

NAPB Gene

N-ethylmaleimide-sensitive factor attachment protein, beta

LOC100506747 Gene

alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase-like protein LOC641515 homolog

TGFBRAP1 Gene

transforming growth factor, beta receptor associated protein 1

SNTB2 Gene

syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic component 2)

Dystrophin is a large, rod-like cytoskeletal protein found at the inner surface of muscle fibers. Dystrophin is missing in Duchenne Muscular Dystrophy patients and is present in reduced amounts in Becker Muscular Dystrophy patients. The protein encoded by this gene is a peripheral membrane protein found associated with dystrophin and dystrophin-related proteins. This gene is a member of the syntrophin gene family, which contains at least two other structurally-related genes. [provided by RefSeq, Jul 2008]

SNTB1 Gene

syntrophin, beta 1 (dystrophin-associated protein A1, 59kDa, basic component 1)

Dystrophin is a large, rod-like cytoskeletal protein found at the inner surface of muscle fibers. Dystrophin is missing in Duchenne Muscular Dystrophy patients and is present in reduced amounts in Becker Muscular Dystrophy patients. The protein encoded by this gene is a peripheral membrane protein found associated with dystrophin and dystrophin-related proteins. This gene is a member of the syntrophin gene family, which contains at least two other structurally-related genes. [provided by RefSeq, Jul 2008]

CTNNB1 Gene

catenin (cadherin-associated protein), beta 1, 88kDa

The protein encoded by this gene is part of a complex of proteins that constitute adherens junctions (AJs). AJs are necessary for the creation and maintenance of epithelial cell layers by regulating cell growth and adhesion between cells. The encoded protein also anchors the actin cytoskeleton and may be responsible for transmitting the contact inhibition signal that causes cells to stop dividing once the epithelial sheet is complete. Finally, this protein binds to the product of the APC gene, which is mutated in adenomatous polyposis of the colon. Mutations in this gene are a cause of colorectal cancer (CRC), pilomatrixoma (PTR), medulloblastoma (MDB), and ovarian cancer. Three transcript variants encoding the same protein have been found for this gene.[provided by RefSeq, Oct 2009]

MAP1LC3BP1 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene 1

GJB1 Gene

gap junction protein, beta 1, 32kDa

This gene encodes a member of the gap junction protein family. The gap junction proteins are membrane-spanning proteins that assemble to form gap junction channels that facilitate the transfer of ions and small molecules between cells. According to sequence similarities at the nucleotide and amino acid levels, the gap junction proteins are divided into two categories, alpha and beta. Mutations in this gene cause X-linked Charcot-Marie-Tooth disease, an inherited peripheral neuropathy. Alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Oct 2008]

GJB3 Gene

gap junction protein, beta 3, 31kDa

This gene is a member of the connexin gene family. The encoded protein is a component of gap junctions, which are composed of arrays of intercellular channels that provide a route for the diffusion of low molecular weight materials from cell to cell. Mutations in this gene can cause non-syndromic deafness or erythrokeratodermia variabilis, a skin disorder. Alternative splicing results in multiple transcript variants encoding the same protein. [provided by RefSeq, Jul 2008]

GJB2 Gene

gap junction protein, beta 2, 26kDa

This gene encodes a member of the gap junction protein family. The gap junctions were first characterized by electron microscopy as regionally specialized structures on plasma membranes of contacting adherent cells. These structures were shown to consist of cell-to-cell channels that facilitate the transfer of ions and small molecules between cells. The gap junction proteins, also known as connexins, purified from fractions of enriched gap junctions from different tissues differ. According to sequence similarities at the nucleotide and amino acid levels, the gap junction proteins are divided into two categories, alpha and beta. Mutations in this gene are responsible for as much as 50% of pre-lingual, recessive deafness. [provided by RefSeq, Oct 2008]

GJB5 Gene

gap junction protein, beta 5, 31.1kDa

This gene encodes a member of the beta-type (group I) connexin family. The encoded protein is a gap junction protein involved in intercellular communication related to epidermal differentiation and environmental sensing. This gene has been linked to non-small cell lung cancer. [provided by RefSeq, Nov 2012]

GJB4 Gene

gap junction protein, beta 4, 30.3kDa

This gene encodes a transmembrane connexin protein that is a component of gap junctions. Mutations in this gene have been associated with erythrokeratodermia variabilis, progressive symmetric erythrokeratoderma and hearing impairment. [provided by RefSeq, Dec 2009]

LOC387869 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene

SIRPB2 Gene

signal-regulatory protein beta 2

SIRPB1 Gene

signal-regulatory protein beta 1

The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled signaling processes. This protein was found to interact with TYROBP/DAP12, a protein bearing immunoreceptor tyrosine-based activation motifs. This protein was also reported to participate in the recruitment of tyrosine kinase SYK. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2009]

LOC100287355 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene

LOC100130137 Gene

integrin beta 1 binding protein 1 pseudogene

MAP1LC3B Gene

microtubule-associated protein 1 light chain 3 beta

The product of this gene is a subunit of neuronal microtubule-associated MAP1A and MAP1B proteins, which are involved in microtubule assembly and important for neurogenesis. Studies on the rat homolog implicate a role for this gene in autophagy, a process that involves the bulk degradation of cytoplasmic component. [provided by RefSeq, Jul 2008]

LTBP4 Gene

latent transforming growth factor beta binding protein 4

The protein encoded by this gene binds transforming growth factor beta (TGFB) as it is secreted and targeted to the extracellular matrix. TGFB is biologically latent after secretion and insertion into the extracellular matrix, and sheds TGFB and other proteins upon activation. Defects in this gene may be a cause of cutis laxa and severe pulmonary, gastrointestinal, and urinary abnormalities. Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, May 2010]

LTBP3 Gene

latent transforming growth factor beta binding protein 3

The protein encoded by this gene forms a complex with transforming growth factor beta (TGF-beta) proteins and may be involved in their subcellular localization. Activation of this complex requires removal of the encoded binding protein. This protein also may play a structural role in the extracellular matrix. Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jan 2010]

LTBP2 Gene

latent transforming growth factor beta binding protein 2

The protein encoded by this gene belongs to the family of latent transforming growth factor (TGF)-beta binding proteins (LTBP), which are extracellular matrix proteins with multi-domain structure. This protein is the largest member of the LTBP family possessing unique regions and with most similarity to the fibrillins. It has thus been suggested that it may have multiple functions: as a member of the TGF-beta latent complex, as a structural component of microfibrils, and a role in cell adhesion. [provided by RefSeq, Jul 2008]

LTBP1 Gene

latent transforming growth factor beta binding protein 1

The protein encoded by this gene belongs to the family of latent TGF-beta binding proteins (LTBPs). The secretion and activation of TGF-betas is regulated by their association with latency-associated proteins and with latent TGF-beta binding proteins. The product of this gene targets latent complexes of transforming growth factor beta to the extracellular matrix, where the latent cytokine is subsequently activated by several different mechanisms. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

BGLT3 Gene

beta globin locus transcript 3 (non-protein coding)

BTRC Gene

beta-transducin repeat containing E3 ubiquitin protein ligase

This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbws class; in addition to an F-box, this protein contains multiple WD-40 repeats. The encoded protein mediates degradation of CD4 via its interaction with HIV-1 Vpu. It has also been shown to ubiquitinate phosphorylated NFKBIA (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), targeting it for degradation and thus activating nuclear factor kappa-B. Alternatively spliced transcript variants have been described. A related pseudogene exists in chromosome 6. [provided by RefSeq, Mar 2012]

LOC105369186 Gene

beta-glucuronidase-like protein SMA4

SIRPB3P Gene

signal-regulatory protein beta 3, pseudogene

YWHABP2 Gene

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta pseudogene 2

YWHABP1 Gene

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta pseudogene 1

LOC644265 Gene

capping protein (actin filament) muscle Z-line, beta pseudogene

APLP2 Gene

amyloid beta (A4) precursor-like protein 2

This gene encodes amyloid precursor- like protein 2 (APLP2), which is a member of the APP (amyloid precursor protein) family including APP, APLP1 and APLP2. This protein is ubiquitously expressed. It contains heparin-, copper- and zinc- binding domains at the N-terminus, BPTI/Kunitz inhibitor and E2 domains in the middle region, and transmembrane and intracellular domains at the C-terminus. This protein interacts with major histocompatibility complex (MHC) class I molecules. The synergy of this protein and the APP is required to mediate neuromuscular transmission, spatial learning and synaptic plasticity. This protein has been implicated in the pathogenesis of Alzheimer's disease. Multiple alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Aug 2011]

POMGNT1 Gene

protein O-linked mannose N-acetylglucosaminyltransferase 1 (beta 1,2-)

This gene encodes a type II transmembrane protein that resides in the Golgi apparatus. It participates in O-mannosyl glycosylation and is specific for alpha linked terminal mannose. Mutations in this gene may be associated with muscle-eye-brain disease and several congenital muscular dystrophies. Alternatively spliced transcript variants that encode different protein isoforms have been described. [provided by RefSeq, Feb 2014]

POMGNT2 Gene

protein O-linked mannose N-acetylglucosaminyltransferase 2 (beta 1,4-)

This gene encodes a protein with glycosyltransferase activity although its function is not currently known. [provided by RefSeq, Sep 2012]

GS1-279B7.1 Gene

microtubule-associated protein 1 light chain 3 beta pseudogene

PRKAR2A Gene

protein kinase, cAMP-dependent, regulatory, type II, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins and determine the subcellular localization of cAMP-dependent protein kinase. This subunit has been shown to regulate protein transport from endosomes to the Golgi apparatus and further to the endoplasmic reticulum (ER). [provided by RefSeq, Jul 2008]

SH3KBP1 Gene

SH3-domain kinase binding protein 1

This gene encodes an adapter protein that contains three N-terminal Src homology domains, a proline rich region and a C-terminal coiled-coil domain. The encoded protein facilitates protein-protein interactions and has been implicated in numerous cellular processes including apoptosis, cytoskeletal rearrangement, cell adhesion and in the regulation of clathrin-dependent endocytosis. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2010]

LOC642490 Gene

S-phase kinase-associated protein 1 pseudogene

LOC646012 Gene

aurora kinase A interacting protein 1 pseudogene

IRAK1BP1 Gene

interleukin-1 receptor-associated kinase 1 binding protein 1

LOC105378176 Gene

proline-rich receptor-like protein kinase PERK2

MOK Gene

MOK protein kinase

This gene belongs to the MAP kinase superfamily. The gene was found to be regulated by caudal type transcription factor 2 (Cdx2) protein. The encoded protein, which is localized to epithelial cells in the intestinal crypt, may play a role in growth arrest and differentiation of cells of upper crypt and lower villus regions. Multiple alternatively spliced transcript variants encoding different isoforms have been observed for this gene. [provided by RefSeq, Dec 2012]

CDK2AP1 Gene

cyclin-dependent kinase 2 associated protein 1

The protein encoded by this gene is a cyclin-dependent kinase 2 (CDK2) -associated protein which is thought to negatively regulate CDK2 activity by sequestering monomeric CDK2, and targeting CDK2 for proteolysis. This protein was found to also interact with DNA polymerase alpha/primase and mediate the phosphorylation of the large p180 subunit, which suggests a regulatory role in DNA replication during the S-phase of the cell cycle. This protein also forms a core subunit of the nucleosome remodeling and histone deacetylation (NURD) complex that epigenetically regulates embryonic stem cell differentiation. This gene thus plays a role in both cell-cycle and epigenetic regulation. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2012]

CDK2AP2 Gene

cyclin-dependent kinase 2 associated protein 2

This gene encodes a protein that interacts with cyclin-dependent kinase 2 associated protein 1. Pseudogenes associated with this gene are located on chromosomes 7 and 9. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Dec 2012]

PDPK2P Gene

3-phosphoinositide dependent protein kinase 2, pseudogene

LOC101929421 Gene

cyclin-dependent kinase 2-associated protein 1 pseudogene

LOC101929483 Gene

cyclin-dependent kinase 2-associated protein 1 pseudogene

STRAP Gene

serine/threonine kinase receptor associated protein

ROCK1 Gene

Rho-associated, coiled-coil containing protein kinase 1

This gene encodes a protein serine/threonine kinase that is activated when bound to the GTP-bound form of Rho. The small GTPase Rho regulates formation of focal adhesions and stress fibers of fibroblasts, as well as adhesion and aggregation of platelets and lymphocytes by shuttling between the inactive GDP-bound form and the active GTP-bound form. Rho is also essential in cytokinesis and plays a role in transcriptional activation by serum response factor. This protein, a downstream effector of Rho, phosphorylates and activates LIM kinase, which in turn, phosphorylates cofilin, inhibiting its actin-depolymerizing activity. [provided by RefSeq, Jul 2008]

ROCK2 Gene

Rho-associated, coiled-coil containing protein kinase 2

The protein encoded by this gene is a serine/threonine kinase that regulates cytokinesis, smooth muscle contraction, the formation of actin stress fibers and focal adhesions, and the activation of the c-fos serum response element. This protein, which is an isozyme of ROCK1 is a target for the small GTPase Rho. [provided by RefSeq, Jul 2008]

WNK3 Gene

WNK lysine deficient protein kinase 3

This gene encodes a protein belonging to the 'with no lysine' family of serine-threonine protein kinases. These family members lack the catalytic lysine in subdomain II, and instead have a conserved lysine in subdomain I. This family member functions as a positive regulator of the transcellular Ca2+ transport pathway, and it plays a role in the increase of cell survival in a caspase-3-dependent pathway. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

PKIG Gene

protein kinase (cAMP-dependent, catalytic) inhibitor gamma

This gene encodes a member of the protein kinase inhibitor family. Studies of a similar protein in mice suggest that this protein acts as a potent competitive cAMP-dependent protein kinase inhibitor, and is a predominant form of inhibitor in various tissues. The encoded protein may be involved in osteogenesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

PKIA Gene

protein kinase (cAMP-dependent, catalytic) inhibitor alpha

The protein encoded by this gene is a member of the cAMP-dependent protein kinase (PKA) inhibitor family. This protein was demonstrated to interact with and inhibit the activities of both C alpha and C beta catalytic subunits of the PKA. Alternatively spliced transcript variants encoding the same protein have been reported. [provided by RefSeq, Jul 2008]

RPS6KB3 Gene

ribosomal protein S6 kinase, 70kDa, polypeptide 3

PSKH2 Gene

protein serine kinase H2

PSKH1 Gene

protein serine kinase H1

LOC100996361 Gene

ribosomal protein S6 kinase, 70kDa, polypeptide 1 pseudogene

HIPK2 Gene

homeodomain interacting protein kinase 2

This gene encodes a conserved serine/threonine kinase that is a member of the homeodomain-interacting protein kinase family. The encoded protein interacts with homeodomain transcription factors and many other transcription factors such as p53, and can function as both a corepressor and a coactivator depending on the transcription factor and its subcellular localization. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2011]

LOC400026 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene

RPS6KB1 Gene

ribosomal protein S6 kinase, 70kDa, polypeptide 1

This gene encodes a member of the ribosomal S6 kinase family of serine/threonine kinases. The encoded protein responds to mTOR (mammalian target of rapamycin) signaling to promote protein synthesis, cell growth, and cell proliferation. Activity of this gene has been associated with human cancer. Alternatively spliced transcript variants have been observed. The use of alternative translation start sites results in isoforms with longer or shorter N-termini which may differ in their subcellular localizations. There are two pseudogenes for this gene on chromosome 17. [provided by RefSeq, Jan 2013]

RPS6KB2 Gene

ribosomal protein S6 kinase, 70kDa, polypeptide 2

This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains a kinase catalytic domain and phosphorylates the S6 ribosomal protein and eukaryotic translation initiation factor 4B (eIF4B). Phosphorylation of S6 leads to an increase in protein synthesis and cell proliferation. [provided by RefSeq, Jan 2015]

CAMK2D Gene

calcium/calmodulin-dependent protein kinase II delta

The product of this gene belongs to the serine/threonine protein kinase family and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. In mammalian cells, the enzyme is composed of four different chains: alpha, beta, gamma, and delta. The product of this gene is a delta chain. Alternative splicing results in multiple transcript variants encoding distinct isoforms. Distinct isoforms of this chain have different expression patterns.[provided by RefSeq, Nov 2008]

CAMK2G Gene

calcium/calmodulin-dependent protein kinase II gamma

The product of this gene is one of the four subunits of an enzyme which belongs to the serine/threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. In mammalian cells the enzyme is composed of four different chains: alpha, beta, gamma, and delta. The product of this gene is a gamma chain. Many alternatively spliced transcripts encoding different isoforms have been described but the full-length nature of all the variants has not been determined.[provided by RefSeq, Mar 2011]

CAMK2A Gene

calcium/calmodulin-dependent protein kinase II alpha

The product of this gene belongs to the serine/threonine protein kinases family, and to the Ca(2+)/calmodulin-dependent protein kinases subfamily. Calcium signaling is crucial for several aspects of plasticity at glutamatergic synapses. This calcium calmodulin-dependent protein kinase is composed of four different chains: alpha, beta, gamma, and delta. The alpha chain encoded by this gene is required for hippocampal long-term potentiation (LTP) and spatial learning. In addition to its calcium-calmodulin (CaM)-dependent activity, this protein can undergo autophosphorylation, resulting in CaM-independent activity. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Nov 2008]

PRKAR1AP Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha pseudogene

PRKD1 Gene

protein kinase D1

PRKD1 is a serine/threonine kinase that regulates a variety of cellular functions, including membrane receptor signaling, transport at the Golgi, protection from oxidative stress at the mitochondria, gene transcription, and regulation of cell shape, motility, and adhesion (summary by Eiseler et al., 2009 [PubMed 19329994]).[supplied by OMIM, Nov 2010]

PRKD2 Gene

protein kinase D2

The protein encoded by this gene belongs to the protein kinase D (PKD) family of serine/threonine protein kinases. This kinase can be activated by phorbol esters as well as by gastrin via the cholecystokinin B receptor (CCKBR) in gastric cancer cells. It can bind to diacylglycerol (DAG) in the trans-Golgi network (TGN) and may regulate basolateral membrane protein exit from TGN. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

PRKD3 Gene

protein kinase D3

This gene belongs to the multigene protein kinase D family of serine/threonine kinases, which bind diacylglycerol and phorbol esters. Members of this family are characterized by an N-terminal regulatory domain comprised of a tandem repeat of cysteine-rich zinc-finger motifs and a pleckstrin domain. The C-terminal region contains the catalytic domain and is distantly related to calcium-regulated kinases. Catalytic activity of this enzyme promotes its nuclear localization. This protein has been implicated in a variety of functions including negative regulation of human airway epithelial barrier formation, growth regulation of breast and prostate cancer cells, and vesicle trafficking. [provided by RefSeq, Jan 2015]

JAKMIP3 Gene

Janus kinase and microtubule interacting protein 3

JAKMIP2 Gene

janus kinase and microtubule interacting protein 2

The protein encoded by this gene is reported to be a component of the Golgi matrix. It may act as a golgin protein by negatively regulating transit of secretory cargo and by acting as a structural scaffold of the Golgi. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

JAKMIP1 Gene

janus kinase and microtubule interacting protein 1

LOC100420990 Gene

aurora kinase A interacting protein 1 pseudogene

CDK2AP2P1 Gene

cyclin-dependent kinase 2 associated protein 2 pseudogene 1

CDK2AP2P3 Gene

cyclin-dependent kinase 2 associated protein 2 pseudogene 3

IKBKAP Gene

inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein

The protein encoded by this gene is a scaffold protein and a regulator for 3 different kinases involved in proinflammatory signaling. This encoded protein can bind NF-kappa-B-inducing kinase (NIK) and IKKs through separate domains and assemble them into an active kinase complex. Mutations in this gene have been associated with familial dysautonomia. [provided by RefSeq, Jul 2008]

PRKRAP1 Gene

protein kinase, interferon-inducible double stranded RNA dependent activator pseudogene 1

GRK6 Gene

G protein-coupled receptor kinase 6

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the activated forms of G protein-coupled receptors thus initiating their deactivation. Several transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

GRK7 Gene

G protein-coupled receptor kinase 7

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. It is specifically expressed in the retina and the encoded protein has been shown to phosphorylate cone opsins and initiate their deactivation. [provided by RefSeq, Jul 2008]

GRK4 Gene

G protein-coupled receptor kinase 4

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the activated forms of G protein-coupled receptors thus initiating its deactivation. This gene has been linked to both genetic and acquired hypertension. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]

GRK5 Gene

G protein-coupled receptor kinase 5

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the activated forms of G protein-coupled receptors thus initiating their deactivation. It has also been shown to play a role in regulating the motility of polymorphonuclear leukocytes (PMNs). [provided by RefSeq, Jul 2008]

GRK1 Gene

G protein-coupled receptor kinase 1

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates rhodopsin and initiates its deactivation. Defects in GRK1 are known to cause Oguchi disease 2 (also known as stationary night blindness Oguchi type-2). [provided by RefSeq, Jul 2008]

DAPK3 Gene

death-associated protein kinase 3

Death-associated protein kinase 3 (DAPK3) induces morphological changes in apoptosis when overexpressed in mammalian cells. These results suggest that DAPK3 may play a role in the induction of apoptosis. [provided by RefSeq, Jul 2008]

DAPK2 Gene

death-associated protein kinase 2

This gene encodes a protein that belongs to the serine/threonine protein kinase family. This protein contains a N-terminal protein kinase domain followed by a conserved calmodulin-binding domain with significant similarity to that of death-associated protein kinase 1 (DAPK1), a positive regulator of programmed cell death. Overexpression of this gene was shown to induce cell apoptosis. It uses multiple polyadenylation sites. [provided by RefSeq, Jul 2008]

DAPK1 Gene

death-associated protein kinase 1

Death-associated protein kinase 1 is a positive mediator of gamma-interferon induced programmed cell death. DAPK1 encodes a structurally unique 160-kD calmodulin dependent serine-threonine kinase that carries 8 ankyrin repeats and 2 putative P-loop consensus sites. It is a tumor suppressor candidate. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

PRKCSH Gene

protein kinase C substrate 80K-H

This gene encodes the beta-subunit of glucosidase II, an N-linked glycan-processing enzyme in the endoplasmic reticulum. The encoded protein is an acidic phosphoprotein known to be a substrate for protein kinase C. Mutations in this gene have been associated with the autosomal dominant polycystic liver disease. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

PIK3IP1 Gene

phosphoinositide-3-kinase interacting protein 1

NIM1K Gene

NIM1 serine/threonine protein kinase

PRKACG Gene

protein kinase, cAMP-dependent, catalytic, gamma

Cyclic AMP-dependent protein kinase (PKA) consists of two catalytic subunits and a regulatory subunit dimer. This gene encodes the gamma form of its catalytic subunit. The gene is intronless and is thought to be a retrotransposon derived from the gene for the alpha form of the PKA catalytic subunit. [provided by RefSeq, Jul 2008]

PRKACA Gene

protein kinase, cAMP-dependent, catalytic, alpha

This gene encodes one of the catalytic subunits of protein kinase A, which exists as a tetrameric holoenzyme with two regulatory subunits and two catalytic subunits, in its inactive form. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. cAMP-dependent phosphorylation of proteins by protein kinase A is important to many cellular processes, including differentiation, proliferation, and apoptosis. Constitutive activation of this gene caused either by somatic mutations, or genomic duplications of regions that include this gene, have been associated with hyperplasias and adenomas of the adrenal cortex and are linked to corticotropin-independent Cushing's syndrome. Alternative splicing results in multiple transcript variants encoding different isoforms. Tissue-specific isoforms that differ at the N-terminus have been described, and these isoforms may differ in the post-translational modifications that occur at the N-terminus of some isoforms. [provided by RefSeq, Jan 2015]

LOC100418693 Gene

protein kinase, interferon-inducible double stranded RNA dependent activator pseudogene

LOC100418694 Gene

protein kinase, interferon-inducible double stranded RNA dependent activator pseudogene

SKP1P3 Gene

S-phase kinase-associated protein 1 pseudogene 3

SKP1P2 Gene

S-phase kinase-associated protein 1 pseudogene 2

LOC101154643 Gene

cyclin-dependent kinase 2 associated protein 2 pseudogene

MARCKS Gene

myristoylated alanine-rich protein kinase C substrate

The protein encoded by this gene is a substrate for protein kinase C. It is localized to the plasma membrane and is an actin filament crosslinking protein. Phosphorylation by protein kinase C or binding to calcium-calmodulin inhibits its association with actin and with the plasma membrane, leading to its presence in the cytoplasm. The protein is thought to be involved in cell motility, phagocytosis, membrane trafficking and mitogenesis. [provided by RefSeq, Jul 2008]

PRKRIR Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)

STK11IP Gene

serine/threonine kinase 11 interacting protein

PRKG1 Gene

protein kinase, cGMP-dependent, type I

Mammals have three different isoforms of cyclic GMP-dependent protein kinase (Ialpha, Ibeta, and II). These PRKG isoforms act as key mediators of the nitric oxide/cGMP signaling pathway and are important components of many signal transduction processes in diverse cell types. This PRKG1 gene on human chromosome 10 encodes the soluble Ialpha and Ibeta isoforms of PRKG by alternative transcript splicing. A separate gene on human chromosome 4, PRKG2, encodes the membrane-bound PRKG isoform II. The PRKG1 proteins play a central role in regulating cardiovascular and neuronal functions in addition to relaxing smooth muscle tone, preventing platelet aggregation, and modulating cell growth. This gene is most strongly expressed in all types of smooth muscle, platelets, cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. Isoforms Ialpha and Ibeta have identical cGMP-binding and catalytic domains but differ in their leucine/isoleucine zipper and autoinhibitory sequences and therefore differ in their dimerization substrates and kinase enzyme activity. [provided by RefSeq, Sep 2011]

PRKG2 Gene

protein kinase, cGMP-dependent, type II

This gene encodes a protein that belongs to the serine/threonine protein kinase family of proteins. The encoded protein plays a role in the regulation of fluid balance in the intestine. A similar protein in mouse is thought to regulate differentiation and proliferation of cells in the colon. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

AKAP11 Gene

A kinase (PRKA) anchor protein 11

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein is expressed at high levels throughout spermatogenesis and in mature sperm. It binds the RI and RII subunits of PKA in testis. It may serve a function in cell cycle control of both somatic cells and germ cells in addition to its putative role in spermatogenesis and sperm function. [provided by RefSeq, Jul 2008]

TYRO3 Gene

TYRO3 protein tyrosine kinase

The gene is part of a 3-member transmembrane receptor kinase receptor family with a processed pseudogene distal on chromosome 15. The encoded protein is activated by the products of the growth arrest-specific gene 6 and protein S genes and is involved in controlling cell survival and proliferation, spermatogenesis, immunoregulation and phagocytosis. The encoded protein has also been identified as a cell entry factor for Ebola and Marburg viruses. [provided by RefSeq, May 2010]

SKP1 Gene

S-phase kinase-associated protein 1

This gene encodes a component of SCF complexes, which are composed of this protein, cullin 1, a ring-box protein, and one member of the F-box family of proteins. This protein binds directly to the F-box motif found in F-box proteins. SCF complexes are involved in the regulated ubiquitination of specific protein substrates, which targets them for degradation by the proteosome. Specific F-box proteins recognize different target protein(s), and many specific SCF substrates have been identified including regulators of cell cycle progression and development. Studies have also characterized the protein as an RNA polymerase II elongation factor. Alternative splicing of this gene results in two transcript variants. A related pseudogene has been identified on chromosome 7. [provided by RefSeq, Jul 2008]

PRKRA Gene

protein kinase, interferon-inducible double stranded RNA dependent activator

This gene encodes a protein kinase activated by double-stranded RNA which mediates the effects of interferon in response to viral infection. Mutations in this gene have been associated with dystonia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2008]

LOC102724428 Gene

serine/threonine-protein kinase SIK1

LOC100131680 Gene

52 kDa repressor of the inhibitor of the protein kinase-like

LOC105379534 Gene

proline-rich receptor-like protein kinase PERK2

LOC158948 Gene

protein kinase C, iota pseudogene

PRKAR1A Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. This gene encodes one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids. Mutations in this gene cause Carney complex (CNC). This gene can fuse to the RET protooncogene by gene rearrangement and form the thyroid tumor-specific chimeric oncogene known as PTC2. A nonconventional nuclear localization sequence (NLS) has been found for this protein which suggests a role in DNA replication via the protein serving as a nuclear transport protein for the second subunit of the Replication Factor C (RFC40). Several alternatively spliced transcript variants encoding two different isoforms have been observed. [provided by RefSeq, Jan 2013]

SKP1P1 Gene

S-phase kinase-associated protein 1 pseudogene 1

RPS6KL1 Gene

ribosomal protein S6 kinase-like 1

AKAP8L Gene

A kinase (PRKA) anchor protein 8-like

NAMA Gene

non-protein coding RNA, associated with MAP kinase pathway and growth arrest

CASK Gene

calcium/calmodulin-dependent serine protein kinase (MAGUK family)

This gene encodes a calcium/calmodulin-dependent serine protein kinase. The encoded protein is a MAGUK (membrane-associated guanylate kinase) protein family member. These proteins are scaffold proteins and the encoded protein is located at synapses in the brain. Mutations in this gene are associated with FG syndrome 4, mental retardation and microcephaly with pontine and cerebellar hypoplasia, and a form of X-linked mental retardation. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Mar 2010]

CAMK2N2 Gene

calcium/calmodulin-dependent protein kinase II inhibitor 2

This gene encodes a protein that is highly similar to the rat CaM-KII inhibitory protein, an inhibitor of calcium/calmodulin-dependent protein kinase II (CAMKII). CAMKII regulates numerous physiological functions, including neuronal synaptic plasticity through the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate (AMPA) receptors. Studies of the similar protein in rat suggest that this protein may function as a negative regulator of CaM-KII and may act to inhibit the phosphorylation of AMPA receptors. [provided by RefSeq, Jul 2008]

CAMK2N1 Gene

calcium/calmodulin-dependent protein kinase II inhibitor 1

MARCKSP1 Gene

myristoylated alanine-rich protein kinase C substrate pseudogene 1

LOC105371128 Gene

serine/threonine-protein kinase SMG1-like

NRGN Gene

neurogranin (protein kinase C substrate, RC3)

Neurogranin (NRGN) is the human homolog of the neuron-specific rat RC3/neurogranin gene. This gene encodes a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. The NRGN gene contains four exons and three introns. The exons 1 and 2 encode the protein and exons 3 and 4 contain untranslated sequences. It is suggested that the NRGN is a direct target for thyroid hormone in human brain, and that control of expression of this gene could underlay many of the consequences of hypothyroidism on mental states during development as well as in adult subjects. [provided by RefSeq, Jul 2008]

GIT1 Gene

G protein-coupled receptor kinase interacting ArfGAP 1

GIT2 Gene

G protein-coupled receptor kinase interacting ArfGAP 2

This gene encodes a member of the GIT protein family, which interact with G protein-coupled receptor kinases and possess ADP-ribosylation factor (ARF) GTPase-activating protein (GAP) activity. GIT proteins traffic between cytoplasmic complexes, focal adhesions, and the cell periphery, and interact with Pak interacting exchange factor beta (PIX) to form large oligomeric complexes that transiently recruit other proteins. GIT proteins regulate cytoskeletal dynamics and participate in receptor internalization and membrane trafficking. This gene has been shown to repress lamellipodial extension and focal adhesion turnover, and is thought to regulate cell motility. This gene undergoes extensive alternative splicing to generate multiple isoforms, but the full-length nature of some of these variants has not been determined. The various isoforms have functional differences, with respect to ARF GAP activity and to G protein-coupled receptor kinase 2 binding. [provided by RefSeq, Sep 2008]

WNK4 Gene

WNK lysine deficient protein kinase 4

This gene encodes a member of the WNK family of serine-threonine protein kinases. The kinase is part of the tight junction complex in kidney cells, and regulates the balance between NaCl reabsorption and K(+) secretion. The kinase regulates the activities of several types of ion channels, cotransporters, and exchangers involved in electrolyte flux in epithelial cells. Mutations in this gene result in pseudohypoaldosteronism type IIB.[provided by RefSeq, Sep 2009]

PRKY Gene

protein kinase, Y-linked, pseudogene

This gene is similar to the protein kinase, X-linked gene in the pseudoautosomal region of the X chromosome. The gene is classified as a transcribed pseudogene because it has lost a coding exon that results in all transcripts being candidates for nonsense-mediated decay (NMD) and unlikely to express a protein. Abnormal recombination between this gene and a related gene on chromosome X is a frequent cause of XX males and XY females. [provided by RefSeq, Jul 2010]

PRKX Gene

protein kinase, X-linked

This gene encodes a serine threonine protein kinase that has similarity to the catalytic subunit of cyclic AMP dependent protein kinases. The encoded protein is developmentally regulated and may be involved in renal epithelial morphogenesis. This protein may also be involved in macrophage and granulocyte maturation. Abnormal recombination between this gene and a related pseudogene on chromosome Y is a frequent cause of sex reversal disorder in XX males and XY females. Pseudogenes of this gene are found on chromosomes X, 15 and Y. [provided by RefSeq, Feb 2010]

GRK6P1 Gene

G protein-coupled receptor kinase 6 pseudogene 1

CAMK1G Gene

calcium/calmodulin-dependent protein kinase IG

This gene encodes a protein similar to calcium/calmodulin dependent protein kinase, however, its exact function is not known. [provided by RefSeq, Jul 2008]

LOC392226 Gene

serine/threonine-protein kinase PLK1-like

PRKRIRP8 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 8

PRKRIRP9 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 9

PRKRIRP1 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 1

PRKRIRP2 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 2

PRKRIRP3 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 3

PRKRIRP4 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 4

PRKRIRP5 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 5

PRKRIRP6 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 6

PRKRIRP7 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 7

LOC101929775 Gene

C-Jun-amino-terminal kinase-interacting protein 1-like

ZAP70 Gene

zeta-chain (TCR) associated protein kinase 70kDa

This gene encodes an enzyme belonging to the protein tyrosine kinase family, and it plays a role in T-cell development and lymphocyte activation. This enzyme, which is phosphorylated on tyrosine residues upon T-cell antigen receptor (TCR) stimulation, functions in the initial step of TCR-mediated signal transduction in combination with the Src family kinases, Lck and Fyn. This enzyme is also essential for thymocyte development. Mutations in this gene cause selective T-cell defect, a severe combined immunodeficiency disease characterized by a selective absence of CD8-positive T-cells. Two transcript variants that encode different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PRKXP1 Gene

protein kinase, X-linked, pseudogene 1

PRKXP2 Gene

protein kinase, X-linked, pseudogene 2

SGK494 Gene

uncharacterized serine/threonine-protein kinase SgK494

PTK2 Gene

protein tyrosine kinase 2

This gene encodes a cytoplasmic protein tyrosine kinase which is found concentrated in the focal adhesions that form between cells growing in the presence of extracellular matrix constituents. The encoded protein is a member of the FAK subfamily of protein tyrosine kinases but lacks significant sequence similarity to kinases from other subfamilies. Activation of this gene may be an important early step in cell growth and intracellular signal transduction pathways triggered in response to certain neural peptides or to cell interactions with the extracellular matrix. Several transcript variants encoding different isoforms have been found for this gene, but the full-length natures of only three of them have been determined. [provided by RefSeq, Dec 2010]

PTK7 Gene

protein tyrosine kinase 7 (inactive)

This gene encodes a member of the receptor protein tyrosine kinase family of proteins that transduce extracellular signals across the cell membrane. The encoded protein lacks detectable catalytic tyrosine kinase activity, is involved in the Wnt signaling pathway and plays a role in multiple cellular processes including polarity and adhesion. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

PTK6 Gene

protein tyrosine kinase 6

The protein encoded by this gene is a cytoplasmic nonreceptor protein kinase which may function as an intracellular signal transducer in epithelial tissues. Overexpression of this gene in mammary epithelial cells leads to sensitization of the cells to epidermal growth factor and results in a partially transformed phenotype. Expression of this gene has been detected at low levels in some breast tumors but not in normal breast tissue. The encoded protein has been shown to undergo autophosphorylation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2012]

HIPK3 Gene

homeodomain interacting protein kinase 3

HIPK1 Gene

homeodomain interacting protein kinase 1

The protein encoded by this gene belongs to the Ser/Thr family of protein kinases and HIPK subfamily. It phosphorylates homeodomain transcription factors and may also function as a co-repressor for homeodomain transcription factors. Alternative splicing results in four transcript variants encoding four distinct isoforms. [provided by RefSeq, Jul 2008]

HIPK4 Gene

homeodomain interacting protein kinase 4

AURKAIP1 Gene

aurora kinase A interacting protein 1

SRPK2P Gene

SRSF protein kinase 2 pseudogene

PKN1 Gene

protein kinase N1

The protein encoded by this gene belongs to the protein kinase C superfamily. This kinase is activated by Rho family of small G proteins and may mediate the Rho-dependent signaling pathway. This kinase can be activated by phospholipids and by limited proteolysis. The 3-phosphoinositide dependent protein kinase-1 (PDPK1/PDK1) is reported to phosphorylate this kinase, which may mediate insulin signals to the actin cytoskeleton. The proteolytic activation of this kinase by caspase-3 or related proteases during apoptosis suggests its role in signal transduction related to apoptosis. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]

PKN3 Gene

protein kinase N3

PKN2 Gene

protein kinase N2

RPS6KA1 Gene

ribosomal protein S6 kinase, 90kDa, polypeptide 1

This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 nonidentical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase (MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

RPS6KA2 Gene

ribosomal protein S6 kinase, 90kDa, polypeptide 2

This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase (MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

RPS6KA3 Gene

ribosomal protein S6 kinase, 90kDa, polypeptide 3

This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase (MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Mutations in this gene have been associated with Coffin-Lowry syndrome (CLS). [provided by RefSeq, Jul 2008]

RPS6KA4 Gene

ribosomal protein S6 kinase, 90kDa, polypeptide 4

This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including CREB1 and c-fos. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

RPS6KA5 Gene

ribosomal protein S6 kinase, 90kDa, polypeptide 5

RPS6KA6 Gene

ribosomal protein S6 kinase, 90kDa, polypeptide 6

This gene encodes a member of ribosomal S6 kinase family, serine-threonine protein kinases which are regulated by growth factors. The encoded protein may be distinct from other members of this family, however, as studies suggest it is not growth factor dependent and may not participate in the same signaling pathways. [provided by RefSeq, Jan 2010]

CAMK1D Gene

calcium/calmodulin-dependent protein kinase ID

This gene is a member of the calcium/calmodulin-dependent protein kinase 1 family, a subfamily of the serine/threonine kinases. The encoded protein is a component of the calcium-regulated calmodulin-dependent protein kinase cascade. It has been associated with multiple processes including regulation of granulocyte function, activation of CREB-dependent gene transcription, aldosterone synthesis, differentiation and activation of neutrophil cells, and apoptosis of erythroleukemia cells. Alternatively spliced transcript variants encoding different isoforms of this gene have been described. [provided by RefSeq, Jan 2015]

AKIP1 Gene

A kinase (PRKA) interacting protein 1

This gene encodes a nuclear protein that interacts with protein kinase A catalytic subunit, and regulates the effect of the cAMP-dependent protein kinase signaling pathway on the NF-kappa-B activation cascade. Alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Oct 2011]

WNK2 Gene

WNK lysine deficient protein kinase 2

The protein encoded by this gene is a cytoplasmic serine-threonine kinase that belongs to the protein kinase superfamily. The protein plays an important role in the regulation of electrolyte homeostasis, cell signaling survival, and proliferation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

WNK1 Gene

WNK lysine deficient protein kinase 1

This gene encodes a member of the WNK subfamily of serine/threonine protein kinases. The encoded protein may be a key regulator of blood pressure by controlling the transport of sodium and chloride ions. Mutations in this gene have been associated with pseudohypoaldosteronism type II and hereditary sensory neuropathy type II. Alternatively spliced transcript variants encoding different isoforms have been described but the full-length nature of all of them has yet to be determined.[provided by RefSeq, May 2010]

TEC Gene

tec protein tyrosine kinase

The protein encoded by this gene belongs to the Tec family of non-receptor protein-tyrosine kinases containing a pleckstrin homology domain. Tec family kinases are involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein coupled receptors, and integrin molecules. They are also key players in the regulation of the immune functions. Tec kinase is an integral component of T cell signaling and has a distinct role in T cell activation. This gene may be associated with myelodysplastic syndrome. [provided by RefSeq, Jul 2008]

FN3KRP Gene

fructosamine 3 kinase related protein

A high concentration of glucose can result in non-enzymatic oxidation of proteins by reaction of glucose and lysine residues (glycation). Proteins modified in this way are less active or functional. This gene encodes an enzyme which catalyzes the phosphorylation of psicosamines and ribulosamines compared to the neighboring gene which encodes a highly similar enzyme, fructosamine-3-kinase, which has different substrate specificity. The activity of both enzymes may result in deglycation of proteins to restore their function. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2012]

PKMYT1 Gene

protein kinase, membrane associated tyrosine/threonine 1

This gene encodes a member of the serine/threonine protein kinase family. The encoded protein is a membrane-associated kinase that negatively regulates the G2/M transition of the cell cycle by phosphorylating and inactivating cyclin-dependent kinase 1. The activity of the encoded protein is regulated by polo-like kinase 1. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, May 2012]

DSTYK Gene

dual serine/threonine and tyrosine protein kinase

This gene encodes a dual serine/threonine and tyrosine protein kinase which is expressed in multiple tissues. It is thought to function as a regulator of cell death. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2008]

AKAP14 Gene

A kinase (PRKA) anchor protein 14

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The protein anchors PKA in ciliary axonemes and, in this way, may play a role in regulating ciliary beat frequency. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

AKAP12 Gene

A kinase (PRKA) anchor protein 12

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein is expressed in endothelial cells, cultured fibroblasts, and osteosarcoma cells. It associates with protein kinases A and C and phosphatase, and serves as a scaffold protein in signal transduction. This protein and RII PKA colocalize at the cell periphery. This protein is a cell growth-related protein. Antibodies to this protein can be produced by patients with myasthenia gravis. Alternative splicing of this gene results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

AKAP13 Gene

A kinase (PRKA) anchor protein 13

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. Alternative splicing of this gene results in multiple transcript variants encoding different isoforms containing c-terminal dbl oncogene homology (DH) and pleckstrin homology (PH) domains. The DH domain is associated with guanine nucleotide exchange activation for the Rho/Rac family of small GTP binding proteins, resulting in the conversion of the inactive GTPase to the active form capable of transducing signals. The PH domain has multiple functions. Therefore, these isoforms function as scaffolding proteins to coordinate a Rho signaling pathway, function as protein kinase A-anchoring proteins and, in addition, enhance ligand-dependent activity of estrogen receptors alpha and beta. [provided by RefSeq, Jul 2012]

AKAP10 Gene

A kinase (PRKA) anchor protein 10

This gene encodes a member of the A-kinase anchor protein family. A-kinase anchor proteins bind to the regulatory subunits of protein kinase A (PKA) and confine the holoenzyme to discrete locations within the cell. The encoded protein is localized to mitochondria and interacts with both the type I and type II regulatory subunits of PKA. Polymorphisms in this gene may be associated with increased risk of arrhythmias and sudden cardiac death. [provided by RefSeq, May 2012]

PKDCC Gene

protein kinase domain containing, cytoplasmic

ROCK1P1 Gene

Rho-associated, coiled-coil containing protein kinase 1 pseudogene 1

CAMK1 Gene

calcium/calmodulin-dependent protein kinase I

Calcium/calmodulin-dependent protein kinase I is expressed in many tissues and is a component of a calmodulin-dependent protein kinase cascade. Calcium/calmodulin directly activates calcium/calmodulin-dependent protein kinase I by binding to the enzyme and indirectly promotes the phosphorylation and synergistic activation of the enzyme by calcium/calmodulin-dependent protein kinase I kinase. [provided by RefSeq, Jul 2008]

CAMK4 Gene

calcium/calmodulin-dependent protein kinase IV

The product of this gene belongs to the serine/threonine protein kinase family, and to the Ca(2+)/calmodulin-dependent protein kinase subfamily. This enzyme is a multifunctional serine/threonine protein kinase with limited tissue distribution, that has been implicated in transcriptional regulation in lymphocytes, neurons and male germ cells. [provided by RefSeq, Jul 2008]

AKAP17A Gene

A kinase (PRKA) anchor protein 17A

This locus encodes a protein kinase A anchoring protein. The encoded protein is part of the spliceosome complex and is involved in the regulation of alternate splicing in some mRNA precursors. Alternatively spliced transcript variants have been identified for this gene.[provided by RefSeq, Sep 2010]

AKAP4 Gene

A kinase (PRKA) anchor protein 4

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein is localized to the sperm flagellum and may be involved in the regulation of sperm motility. Alternative splicing of this gene results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

AKAP5 Gene

A kinase (PRKA) anchor protein 5

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein binds to the RII-beta regulatory subunit of PKA, and also to protein kinase C and the phosphatase calcineurin. It is predominantly expressed in cerebral cortex and may anchor the PKA protein at postsynaptic densities (PSD) and be involved in the regulation of postsynaptic events. It is also expressed in T lymphocytes and may function to inhibit interleukin-2 transcription by disrupting calcineurin-dependent dephosphorylation of NFAT. [provided by RefSeq, Jul 2008]

AKAP6 Gene

A kinase (PRKA) anchor protein 6

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein is highly expressed in various brain regions and cardiac and skeletal muscle. It is specifically localized to the sarcoplasmic reticulum and nuclear membrane, and is involved in anchoring PKA to the nuclear membrane or sarcoplasmic reticulum. [provided by RefSeq, Jul 2008]

AKAP7 Gene

A kinase (PRKA) anchor protein 7

This gene encodes a member of the A-kinase anchoring protein (AKAP) family, a group of functionally related proteins that bind to a regulatory subunit (RII) of cAMP-dependent protein kinase A (PKA) and target the enzyme to specific subcellular compartments. AKAPs have a common RII-binding domain, but contain different targeting motifs responsible for directing PKA to distinct intracellular locations. Three alternatively spliced transcript variants encoding different isoforms have been described.[provided by RefSeq, Apr 2011]

AKAP1 Gene

A kinase (PRKA) anchor protein 1

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. The encoded protein binds to type I and type II regulatory subunits of PKA and anchors them to the mitochondrion. This protein is speculated to be involved in the cAMP-dependent signal transduction pathway and in directing RNA to a specific cellular compartment. [provided by RefSeq, Jul 2008]

AKAP2 Gene

A kinase (PRKA) anchor protein 2

The protein encoded by this gene binds to the regulatory subunit of protein kinase A and is found associated with the actin cytoskeleton. The encoded protein mediates signals carried by cAMP and may be involved in creating polarity in certain signaling processes. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2011]

AKAP3 Gene

A kinase (PRKA) anchor protein 3

This gene encodes a member of A-kinase anchoring proteins (AKAPs), a family of functionally related proteins that target protein kinase A to discrete locations within the cell. The encoded protein is reported to participate in protein-protein interactions with the R-subunit of the protein kinase A as well as sperm-associated proteins. This protein is expressed in spermatozoa and localized to the acrosomal region of the sperm head as well as the length of the principal piece. It may function as a regulator of motility, capacitation, and the acrosome reaction. [provided by RefSeq, May 2013]

AKAP8 Gene

A kinase (PRKA) anchor protein 8

This gene encodes a member of the A-kinase anchor protein family. A-kinase anchor proteins are scaffold proteins that contain a binding domain for the RI/RII subunit of protein kinase A (PKA) and recruit PKA and other signaling molecules to specific subcellular locations. This gene encodes a nuclear A-kinase anchor protein that binds to the RII alpha subunit of PKA and may play a role in chromosome condensation during mitosis by targeting PKA and the condensin complex to chromatin. A pseudogene of this gene is located on the short arm of chromosome 9. [provided by RefSeq, May 2011]

AKAP9 Gene

A kinase (PRKA) anchor protein 9

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. Alternate splicing of this gene results in at least two isoforms that localize to the centrosome and the Golgi apparatus, and interact with numerous signaling proteins from multiple signal transduction pathways. These signaling proteins include type II protein kinase A, serine/threonine kinase protein kinase N, protein phosphatase 1, protein phosphatase 2a, protein kinase C-epsilon and phosphodiesterase 4D3. [provided by RefSeq, Aug 2008]

POMK Gene

protein-O-mannose kinase

This gene encodes a protein that may be involved in the presentation of the laminin-binding O-linked carbohydrate chain of alpha-dystroglycan (a-DG), which forms transmembrane linkages between the extracellular matrix and the exoskeleton. Some pathogens use this O-linked carbohydrate unit for host entry. Loss of function compound heterozygous mutations in this gene were found in a human patient affected by the Walker-Warburg syndrome (WWS) phenotype. Mice lacking this gene contain misplaced neurons (heterotopia) in some regions of the brain, possibly from defects in neuronal migration. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2013]

DMPK Gene

dystrophia myotonica-protein kinase

The protein encoded by this gene is a serine-threonine kinase that is closely related to other kinases that interact with members of the Rho family of small GTPases. Substrates for this enzyme include myogenin, the beta-subunit of the L-type calcium channels, and phospholemman. The 3' untranslated region of this gene contains 5-37 copies of a CTG trinucleotide repeat. Expansion of this unstable motif to 50-5,000 copies causes myotonic dystrophy type I, which increases in severity with increasing repeat element copy number. Repeat expansion is associated with condensation of local chromatin structure that disrupts the expression of genes in this region. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Jul 2008]

AUNIP Gene

aurora kinase A and ninein interacting protein

LOC105371179 Gene

proline-rich receptor-like protein kinase PERK2

GKAP1 Gene

G kinase anchoring protein 1

This gene encodes a protein that is highly similar to the mouse cGMP-dependent protein kinase anchoring protein 42kDa. The mouse protein has been found to localize with the Golgi and recruit cGMP-dependent protein kinase I alpha to the Golgi in mouse testes. It is thought to play a role in germ cell development. Transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2008]

RPS6KC1 Gene

ribosomal protein S6 kinase, 52kDa, polypeptide 1

TYRO3P Gene

TYRO3P protein tyrosine kinase pseudogene

PRKCI Gene

protein kinase C, iota

This gene encodes a member of the protein kinase C (PKC) family of serine/threonine protein kinases. The PKC family comprises at least eight members, which are differentially expressed and are involved in a wide variety of cellular processes. This protein kinase is calcium-independent and phospholipid-dependent. It is not activated by phorbolesters or diacylglycerol. This kinase can be recruited to vesicle tubular clusters (VTCs) by direct interaction with the small GTPase RAB2, where this kinase phosphorylates glyceraldehyde-3-phosphate dehydrogenase (GAPD/GAPDH) and plays a role in microtubule dynamics in the early secretory pathway. This kinase is found to be necessary for BCL-ABL-mediated resistance to drug-induced apoptosis and therefore protects leukemia cells against drug-induced apoptosis. There is a single exon pseudogene mapped on chromosome X. [provided by RefSeq, Jul 2008]

PRKCH Gene

protein kinase C, eta

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. It is a calcium-independent and phospholipids-dependent protein kinase. It is predominantly expressed in epithelial tissues and has been shown to reside specifically in the cell nucleus. This protein kinase can regulate keratinocyte differentiation by activating the MAP kinase MAPK13 (p38delta)-activated protein kinase cascade that targets CCAAT/enhancer-binding protein alpha (CEBPA). It is also found to mediate the transcription activation of the transglutaminase 1 (TGM1) gene. [provided by RefSeq, Jul 2008]

PRKCA Gene

protein kinase C, alpha

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This kinase has been reported to play roles in many different cellular processes, such as cell adhesion, cell transformation, cell cycle checkpoint, and cell volume control. Knockout studies in mice suggest that this kinase may be a fundamental regulator of cardiac contractility and Ca(2+) handling in myocytes. [provided by RefSeq, Jul 2008]

PRKCE Gene

protein kinase C, epsilon

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This kinase has been shown to be involved in many different cellular functions, such as neuron channel activation, apoptosis, cardioprotection from ischemia, heat shock response, as well as insulin exocytosis. Knockout studies in mice suggest that this kinase is important for lipopolysaccharide (LPS)-mediated signaling in activated macrophages and may also play a role in controlling anxiety-like behavior. [provided by RefSeq, Jul 2008]

PRKCD Gene

protein kinase C, delta

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play distinct roles in cells. The protein encoded by this gene is one of the PKC family members. Studies both in human and mice demonstrate that this kinase is involved in B cell signaling and in the regulation of growth, apoptosis, and differentiation of a variety of cell types. Alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq, Jul 2008]

PRKCG Gene

protein kinase C, gamma

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play distinct roles in cells. The protein encoded by this gene is one of the PKC family members. This protein kinase is expressed solely in the brain and spinal cord and its localization is restricted to neurons. It has been demonstrated that several neuronal functions, including long term potentiation (LTP) and long term depression (LTD), specifically require this kinase. Knockout studies in mice also suggest that this kinase may be involved in neuropathic pain development. Defects in this protein have been associated with neurodegenerative disorder spinocerebellar ataxia-14 (SCA14). [provided by RefSeq, Jul 2008]

PRKCZ Gene

protein kinase C, zeta

Protein kinase C (PKC) zeta is a member of the PKC family of serine/threonine kinases which are involved in a variety of cellular processes such as proliferation, differentiation and secretion. Unlike the classical PKC isoenzymes which are calcium-dependent, PKC zeta exhibits a kinase activity which is independent of calcium and diacylglycerol but not of phosphatidylserine. Furthermore, it is insensitive to typical PKC inhibitors and cannot be activated by phorbol ester. Unlike the classical PKC isoenzymes, it has only a single zinc finger module. These structural and biochemical properties indicate that the zeta subspecies is related to, but distinct from other isoenzymes of PKC. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

PRKCQ Gene

protein kinase C, theta

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role. The protein encoded by this gene is one of the PKC family members. It is a calcium-independent and phospholipid-dependent protein kinase. This kinase is important for T-cell activation. It is required for the activation of the transcription factors NF-kappaB and AP-1, and may link the T cell receptor (TCR) signaling complex to the activation of the transcription factors. [provided by RefSeq, Jul 2008]

LOC101929242 Gene

S-phase kinase-associated protein 1 pseudogene

AKAP8P1 Gene

A kinase (PRKA) anchor protein 8 pseudogene 1

PIK3AP1 Gene

phosphoinositide-3-kinase adaptor protein 1

LOC102723432 Gene

serine/threonine-protein kinase PAK 2 pseudogene

AKAP17BP Gene

A kinase (PRKA) anchor protein 17B, pseudogene

LOC100533853 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene

LOC100419851 Gene

protein serine kinase H1 pseudogene

STK26 Gene

serine/threonine protein kinase 26

The product of this gene is a member of the GCK group III family of kinases, which are a subset of the Ste20-like kinases. The encoded protein contains an amino-terminal kinase domain, and a carboxy-terminal regulatory domain that mediates homodimerization. The protein kinase localizes to the Golgi apparatus and is specifically activated by binding to the Golgi matrix protein GM130. It is also cleaved by caspase-3 in vitro, and may function in the apoptotic pathway. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Jul 2008]

LOC100287072 Gene

ribosomal protein S6 kinase, 70kDa, polypeptide 1 pseudogene

LOC100288962 Gene

S-phase kinase-associated protein 1 pseudogene

LOC105375252 Gene

serine-threonine kinase receptor-associated protein pseudogene

LOC344382 Gene

serine/threonine kinase receptor associated protein pseudogene

LOC100420576 Gene

death-associated protein kinase 1 pseudogene

PDPK1 Gene

3-phosphoinositide dependent protein kinase 1

CDC42BPG Gene

CDC42 binding protein kinase gamma (DMPK-like)

CDC42BPA Gene

CDC42 binding protein kinase alpha (DMPK-like)

The protein encoded by this gene is a member of the Serine/Threonine protein kinase family. This kinase contains multiple functional domains. Its kinase domain is highly similar to that of the myotonic dystrophy protein kinase (DMPK). This kinase also contains a Rac interactive binding (CRIB) domain, and has been shown to bind CDC42. It may function as a CDC42 downstream effector mediating CDC42 induced peripheral actin formation, and promoting cytoskeletal reorganization. Multiple alternatively spliced transcript variants have been described, and the full-length nature of two of them has been reported. [provided by RefSeq, Jul 2008]

BMPR2 Gene

bone morphogenetic protein receptor, type II (serine/threonine kinase)

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of two different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension, both familial and fenfluramine-associated, and with pulmonary venoocclusive disease. [provided by RefSeq, Jul 2008]

CASKP1 Gene

calcium/calmodulin-dependent serine protein kinase (MAGUK family) pseudogene 1

CINP Gene

cyclin-dependent kinase 2 interacting protein

The protein encoded by this gene is reported to be a component of the DNA replication complex as well as a genome-maintenance protein. It may interact with proteins important for replication initiation and has been shown to bind chromatin at the G1 phase of the cell cycle and dissociate from chromatin with replication initiation. It may also serve to regulate checkpoint signaling as part of the DNA damage response. [provided by RefSeq, Jul 2013]

DOK1 Gene

docking protein 1, 62kDa (downstream of tyrosine kinase 1)

The protein encoded by this gene is part of a signal transduction pathway downstream of receptor tyrosine kinases. The encoded protein is a scaffold protein that helps form a platform for the assembly of multiprotein signaling complexes. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2010]

TTK Gene

TTK protein kinase

This gene encodes a dual specificity protein kinase with the ability to phosphorylate tyrosine, serine and threonine. Associated with cell proliferation, this protein is essential for chromosome alignment at the centromere during mitosis and is required for centrosome duplication. It has been found to be a critical mitotic checkpoint protein for accurate segregation of chromosomes during mitosis. Tumorigenesis may occur when this protein fails to degrade and produces excess centrosomes resulting in aberrant mitotic spindles. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2009]

SRPK1 Gene

SRSF protein kinase 1

This gene encodes a serine/arginine protein kinase specific for the SR (serine/arginine-rich domain) family of splicing factors. The protein localizes to the nucleus and the cytoplasm. It is thought to play a role in regulation of both constitutive and alternative splicing by regulating intracellular localization of splicing factors. Alternative splicing of this gene results in multiple transcript variants. Additional alternatively spliced transcript variants have been described for this gene, but their full length nature have not been determined.[provided by RefSeq, Jul 2010]

SRPK3 Gene

SRSF protein kinase 3

This gene encodes a protein kinase similar to a protein kinase which is specific for the SR (serine/arginine-rich domain) family of splicing factors. A highly similar protein has been shown to play a role in muscle development in mice. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2009]

SRPK2 Gene

SRSF protein kinase 2

LOC102724064 Gene

proline-rich receptor-like protein kinase PERK13

PRKRIRP10 Gene

protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor) pseudogene 10

LOC100419668 Gene

protein kinase C, eta pseudogene

LOC100421559 Gene

adaptor-related protein complex 5, mu 1 subunit pseudogene

PPP1R1AP2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A pseudogene 2

RAB3GAP2 Gene

RAB3 GTPase activating protein subunit 2 (non-catalytic)

The protein encoded by this gene belongs to the RAB3 protein family, members of which are involved in regulated exocytosis of neurotransmitters and hormones. This protein forms the Rab3 GTPase-activating complex with RAB3GAP1, where it constitutes the regulatory subunit, whereas the latter functions as the catalytic subunit. This gene has the highest level of expression in the brain, consistent with it having a key role in neurodevelopment. Mutations in this gene are associated with Martsolf syndrome.[provided by RefSeq, Oct 2009]

RAB3GAP1 Gene

RAB3 GTPase activating protein subunit 1 (catalytic)

This gene encodes the catalytic subunit of a Rab GTPase activating protein. The encoded protein forms a heterodimer with a non-catalytic subunit to specifically regulate the activity of members of the Rab3 subfamily of small G proteins. This protein mediates the hydrolysis of GTP bound Rab3 to the GDP bound form. Mutations in this gene are associated with Warburg micro syndrome. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Feb 2010]

PPP3CA Gene

protein phosphatase 3, catalytic subunit, alpha isozyme

PPP3CC Gene

protein phosphatase 3, catalytic subunit, gamma isozyme

Calcineurin is a calcium-dependent, calmodulin-stimulated protein phosphatase involved in the downstream regulation of dopaminergic signal transduction. Calcineurin is composed of a regulatory subunit and a catalytic subunit. The protein encoded by this gene represents one of the regulatory subunits that has been found for calcineurin. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

PPP1R26 Gene

protein phosphatase 1, regulatory subunit 26

PPP1R27 Gene

protein phosphatase 1, regulatory subunit 27

PPP1R21 Gene

protein phosphatase 1, regulatory subunit 21

PPP1R13B Gene

protein phosphatase 1, regulatory subunit 13B

This gene encodes a member of the ASPP (apoptosis-stimulating protein of p53) family of p53 interacting proteins. The protein contains four ankyrin repeats and an SH3 domain involved in protein-protein interactions. ASPP proteins are required for the induction of apoptosis by p53-family proteins. They promote DNA binding and transactivation of p53-family proteins on the promoters of proapoptotic genes. Expression of this gene is regulated by the E2F transcription factor. [provided by RefSeq, Jul 2008]

PPP1R13L Gene

protein phosphatase 1, regulatory subunit 13 like

IASPP is one of the most evolutionarily conserved inhibitors of p53 (TP53; MIM 191170), whereas ASPP1 (MIM 606455) and ASPP2 (MIM 602143) are activators of p53.[supplied by OMIM, Mar 2008]

LOC100631380 Gene

protein phosphatase 6, regulatory subunit 2 pseudogene 1

PPP6C Gene

protein phosphatase 6, catalytic subunit

This gene encodes the catalytic subunit of protein phosphatase, a component of a signaling pathway regulating cell cycle progression. Splice variants encoding different protein isoforms exist. The pseudogene of this gene is located on chromosome X. [provided by RefSeq, Jul 2008]

LOC100421419 Gene

protein phosphatase 4, regulatory subunit 2 pseudogene

AP1S1 Gene

adaptor-related protein complex 1, sigma 1 subunit

The protein encoded by this gene is part of the clathrin coat assembly complex which links clathrin to receptors in coated vesicles. These vesicles are involved in endocytosis and Golgi processing. This protein, as well as beta-prime-adaptin, gamma-adaptin, and the medium (mu) chain AP47, form the AP-1 assembly protein complex located at the Golgi vesicle. [provided by RefSeq, Jul 2008]

PPP1R10P1 Gene

protein phosphatase 1, regulatory subunit 10 pseudogene 1

PPP6CP Gene

protein phosphatase 6, catalytic subunit pseudogene

AP5Z1 Gene

adaptor-related protein complex 5, zeta 1 subunit

This gene was identified by genome-wide screen for genes involved in homologous recombination DNA double-strand break repair (HR-DSBR). The encoded protein was found in a complex with other proteins that have a role in HR-DSBR. Knockdown of this gene reduced homologous recombination, and mutations in this gene were found in patients with spastic paraplegia. It was concluded that this gene likely encodes a helicase (PMID:20613862). [provided by RefSeq, Jan 2011]

PPP1R14D Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14D

Protein phosphatase-1 (PP1; see MIM 176875) is a major cellular phosphatase that reverses serine/threonine protein phosphorylation. PPP1R14D is a PP1 inhibitor that itself is regulated by phosphorylation (Liu et al., 2004 [PubMed 12974676]).[supplied by OMIM, Feb 2010]

PPP1R14B Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B

PPP1R14C Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14C

The degree of protein phosphorylation is regulated by a balance of protein kinase and phosphatase activities. Protein phosphatase-1 (PP1; see MIM 176875) is a signal-transducing phosphatase that influences neuronal activity, protein synthesis, metabolism, muscle contraction, and cell division. PPP1R14C is an inhibitor of PP1 (Liu et al., 2002 [PubMed 11812771]).[supplied by OMIM, Feb 2010]

PPP1R14A Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14A

The protein encoded by this gene belongs to the protein phosphatase 1 (PP1) inhibitor family. This protein is an inhibitor of smooth muscle myosin phosphatase, and has higher inhibitory activity when phosphorylated. Inhibition of myosin phosphatase leads to increased myosin phosphorylation and enhanced smooth muscle contraction. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Sep 2011]

LOC100133326 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

PPP1R12BP1 Gene

protein phosphatase 1, regulatory subunit 12B pseudogene, Y-linked 1

PPP1R12BP2 Gene

protein phosphatase 1, regulatory subunit 12B Y-linked pseudogene 2

ARPC5L Gene

actin related protein 2/3 complex, subunit 5-like

IGFALS Gene

insulin-like growth factor binding protein, acid labile subunit

The protein encoded by this gene is a serum protein that binds insulin-like growth factors, increasing their half-life and their vascular localization. Production of the encoded protein, which contains twenty leucine-rich repeats, is stimulated by growth hormone. Defects in this gene are a cause of acid-labile subunit deficiency, which maifests itself in a delayed and slow puberty. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

LOC653653 Gene

adaptor-related protein complex 1, sigma 2 subunit pseudogene

LOC100421808 Gene

protein phosphatase 2, regulatory subunit B, gamma pseudogene

LOC100421802 Gene

protein phosphatase 2, regulatory subunit B, alpha pseudogene

LOC643454 Gene

adaptor-related protein complex 3, sigma 1 subunit pseudogene

AP3M1 Gene

adaptor-related protein complex 3, mu 1 subunit

The protein encoded by this gene is the medium subunit of AP-3, which is an adaptor-related protein complex associated with the Golgi region as well as more peripheral intracellular structures. AP-3 facilitates the budding of vesicles from the Golgi membrane and may be directly involved in protein sorting to the endosomal/lysosomal system. AP-3 is a heterotetrameric protein complex composed of two large subunits (delta and beta3), a medium subunit (mu3), and a small subunit (sigma 3). Mutations in one of the large subunits of AP-3 have been associated with the Hermansky-Pudlak syndrome, a genetic disorder characterized by defective lysosome-related organelles. Alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq, Jul 2008]

AP3M2 Gene

adaptor-related protein complex 3, mu 2 subunit

This gene encodes a subunit of the heterotetrameric adaptor-related protein comlex 3 (AP-3), which belongs to the adaptor complexes medium subunits family. The AP-3 complex plays a role in protein trafficking to lysosomes and specialized organelles. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Aug 2008]

PPP2R2DP1 Gene

protein phosphatase 2, regulatory subunit B, delta pseudogene 1

HADHAP2 Gene

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit pseudogene 2

LOC100289381 Gene

adaptor-related protein complex 3, sigma 1 subunit pseudogene

LOC102724200 Gene

trafficking protein particle complex subunit 10-like

GABPAP Gene

GA binding protein transcription factor, alpha subunit pseudogene

LOC149935 Gene

CDK5 regulatory subunit associated protein 3 pseudogene

PPP1R26P5 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 5

PPP1R26P2 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 2

PTAR1 Gene

protein prenyltransferase alpha subunit repeat containing 1

LOC260421 Gene

actin related protein 2/3 complex subunit 1A pseudogene

LOC260422 Gene

actin related protein 2/3 complex subunit 1A pseudogene

AP2A1 Gene

adaptor-related protein complex 2, alpha 1 subunit

This gene encodes the alpha 1 adaptin subunit of the adaptor protein 2 (AP-2) complex found in clathrin coated vesicles. The AP-2 complex is a heterotetramer consisting of two large adaptins (alpha or beta), a medium adaptin (mu), and a small adaptin (sigma). The complex is part of the protein coat on the cytoplasmic face of coated vesicles which links clathrin to receptors in vesicles. Alternative splicing of this gene results in two transcript variants encoding two different isoforms. A third transcript variant has been described, but its full length nature has not been determined. [provided by RefSeq, Jul 2008]

AP2A2 Gene

adaptor-related protein complex 2, alpha 2 subunit

LOC100422044 Gene

actin related protein 2/3 complex, subunit 1A, 41kDa pseudogene

PPP1R8P1 Gene

protein phosphatase 1, regulatory subunit 8 pseudogene 1

PPP1R26P4 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 4

PPP2R4 Gene

protein phosphatase 2A activator, regulatory subunit 4

Protein phosphatase 2A is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2A holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B' family. This gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

ARPC4 Gene

actin related protein 2/3 complex, subunit 4, 20kDa

This gene encodes one of seven subunits of the human Arp2/3 protein complex. This complex controls actin polymerization in cells and has been conserved throughout eukaryotic evolution. This gene encodes the p20 subunit, which is necessary for actin nucleation and high-affinity binding to F-actin. Alternative splicing results in multiple transcript variants. Naturally occurring read-through transcription exists between this gene and the downstream tubulin tyrosine ligase-like family, member 3 (TTLL3), which results in the production of a fusion protein. [provided by RefSeq, Nov 2010]

HADHAP1 Gene

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit pseudogene 1

ARPC3P4 Gene

actin related protein 2/3 complex, subunit 3 pseudogene 4

LOC100132773 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

AP1S2 Gene

adaptor-related protein complex 1, sigma 2 subunit

Adaptor protein complex 1 is found at the cytoplasmic face of coated vesicles located at the Golgi complex, where it mediates both the recruitment of clathrin to the membrane and the recognition of sorting signals within the cytosolic tails of transmembrane receptors. This complex is a heterotetramer composed of two large, one medium, and one small adaptin subunit. The protein encoded by this gene serves as the small subunit of this complex and is a member of the adaptin protein family. Transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2013]

AP1S3 Gene

adaptor-related protein complex 1, sigma 3 subunit

This gene encodes a member of the adaptor-related protein complex 1, sigma subunit genes. The encoded protein is a component of adaptor protein complex 1 (AP-1), one of the AP complexes involved in claathrin-mediated vesicular transport from the Golgi or endosomes. Disruption of the pathway for display of HIV-1 antigens, which prevents recognition of the virus by cytotoxic T cells, has been shown to involve the AP-1 complex (PMID: 15569716). Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2014]

AP4E1 Gene

adaptor-related protein complex 4, epsilon 1 subunit

This gene encodes a member of the adaptor complexes large subunit protein family. These proteins are components of the heterotetrameric adaptor protein complexes, which play important roles in the secretory and endocytic pathways by mediating vesicle formation and sorting of integral membrane proteins. The encoded protein is a large subunit of adaptor protein complex-4, which is associated with both clathrin- and nonclathrin-coated vesicles. Disruption of this gene may be associated with cerebral palsy. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Nov 2011]

PPP1R14BP5 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 5

AP4M1 Gene

adaptor-related protein complex 4, mu 1 subunit

This gene encodes a subunit of the heterotetrameric AP-4 complex. The encoded protein belongs to the adaptor complexes medium subunits family. This AP-4 complex is involved in the recognition and sorting of cargo proteins with tyrosine-based motifs from the trans-golgi network to the endosomal-lysosomal system. [provided by RefSeq, Jul 2008]

SDHC Gene

succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa

This gene encodes one of four nuclear-encoded subunits that comprise succinate dehydrogenase, also known as mitochondrial complex II, a key enzyme complex of the tricarboxylic acid cycle and aerobic respiratory chains of mitochondria. The encoded protein is one of two integral membrane proteins that anchor other subunits of the complex, which form the catalytic core, to the inner mitochondrial membrane. There are several related pseudogenes for this gene on different chromosomes. Mutations in this gene have been associated with paragangliomas. Alternatively spliced transcript variants have been described. [provided by RefSeq, May 2013]

SDHD Gene

succinate dehydrogenase complex, subunit D, integral membrane protein

This gene encodes a member of complex II of the respiratory chain, which is responsible for the oxidation of succinate. The encoded protein is one of two integral membrane proteins anchoring the complex to the matrix side of the mitochondrial inner membrane. Mutations in this gene are associated with the formation of tumors, including hereditary paraganglioma. Transmission of disease occurs almost exclusively through the paternal allele, suggesting that this locus may be maternally imprinted. There are pseudogenes for this gene on chromosomes 1, 2, 3, 7, and 18. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2013]

PPP1R14BP4 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 4

PPP1R14BP2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 2

PPP1R14BP3 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 3

PPP1R14BP1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 1

PPP1R3G Gene

protein phosphatase 1, regulatory subunit 3G

PPP1R3F Gene

protein phosphatase 1, regulatory subunit 3F

This gene encodes a protein that has been identified as one of several type-1 protein phosphatase (PP1) regulatory subunits. One or two of these subunits, together with the well-conserved catalytic subunit, can form the PP1 holoenzyme, where the regulatory subunit functions to regulate substrate specificity and/or targeting to a particular cellular compartment. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

PPP1R3E Gene

protein phosphatase 1, regulatory subunit 3E

PPP1R3D Gene

protein phosphatase 1, regulatory subunit 3D

Phosphorylation of serine and threonine residues in proteins is a crucial step in the regulation of many cellular functions ranging from hormonal regulation to cell division and even short-term memory. The level of phosphorylation is controlled by the opposing actions of protein kinases and protein phosphatases. Protein phosphatase 1 (PP1) is 1 of 4 major serine/threonine-specific protein phosphatases which have been identified in eukaryotic cells. PP1 associates with various regulatory subunits that dictate its subcellular localization and modulate its substrate specificity. Several subunits that target PP1 to glycogen have been identified. This gene encodes a glycogen-targeting subunit of PP1. [provided by RefSeq, Jul 2008]

PPP1R3C Gene

protein phosphatase 1, regulatory subunit 3C

This gene encodes a regulatory subunit of protein phosphatase-1 (PP1). PP1 catalyzes reversible protein phosphorylation, which is important in a wide range of cellular activities: neuronal, muscular, RNA splicing, protein synthesis, cell death, and glycogen metabolism, to name just a few. By interacting with different regulatory subunits, PP1 is directed to different parts of the cell, to different substrates, or to respond to extracellular signals. [provided by RefSeq, Oct 2011]

PPP1R3B Gene

protein phosphatase 1, regulatory subunit 3B

This gene encodes the catalytic subunit of the serine/theonine phosphatase, protein phosphatase-1. The encoded protein is expressed in liver and skeletal muscle tissue and may be involved in regulating glycogen synthesis in these tissues. This gene may be a involved in type 2 diabetes and maturity-onset diabetes of the young. Alternate splicing results in multiple transcript variants that encode the same protein.[provided by RefSeq, Jan 2011]

PPP1R3A Gene

protein phosphatase 1, regulatory subunit 3A

The glycogen-associated form of protein phosphatase-1 (PP1) derived from skeletal muscle is a heterodimer composed of a 37-kD catalytic subunit and a 124-kD targeting and regulatory subunit. This gene encodes the regulatory subunit which binds to muscle glycogen with high affinity, thereby enhancing dephosphorylation of glycogen-bound substrates for PP1 such as glycogen synthase and glycogen phosphorylase kinase. [provided by RefSeq, Jul 2008]

PPP1R37 Gene

protein phosphatase 1, regulatory subunit 37

PPP1R36 Gene

protein phosphatase 1, regulatory subunit 36

PPP1R35 Gene

protein phosphatase 1, regulatory subunit 35

PPP1R32 Gene

protein phosphatase 1, regulatory subunit 32

PPP1R12A Gene

protein phosphatase 1, regulatory subunit 12A

Myosin phosphatase target subunit 1, which is also called the myosin-binding subunit of myosin phosphatase, is one of the subunits of myosin phosphatase. Myosin phosphatase regulates the interaction of actin and myosin downstream of the guanosine triphosphatase Rho. The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP. RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2009]

PPP1R12B Gene

protein phosphatase 1, regulatory subunit 12B

Myosin phosphatase is a protein complex comprised of three subunits: a catalytic subunit (PP1c-delta, protein phosphatase 1, catalytic subunit delta), a large regulatory subunit (MYPT, myosin phosphatase target) and small regulatory subunit (sm-M20). Two isoforms of MYPT have been isolated--MYPT1 and MYPT2, the first of which is widely expressed, and the second of which may be specific to heart, skeletal muscle, and brain. Each of the MYPT isoforms functions to bind PP1c-delta and increase phosphatase activity. This locus encodes both MYTP2 and M20. Alternatively spliced transcript variants encoding different isoforms have been identified. Related pseudogenes have been defined on the Y chromosome. [provided by RefSeq, Oct 2011]

PPP1R12C Gene

protein phosphatase 1, regulatory subunit 12C

The gene encodes a subunit of myosin phosphatase. The encoded protein regulates the catalytic activity of protein phosphatase 1 delta and assembly of the actin cytoskeleton. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Oct 2012]

PPP6R2 Gene

protein phosphatase 6, regulatory subunit 2

Protein phosphatase regulatory subunits, such as SAPS2, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS2 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP6R3 Gene

protein phosphatase 6, regulatory subunit 3

Protein phosphatase regulatory subunits, such as SAPS3, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS3 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP6R1 Gene

protein phosphatase 6, regulatory subunit 1

Protein phosphatase regulatory subunits, such as SAPS1, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS1 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP1R26P1 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 1

LOC100131868 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

LOC100288663 Gene

actin related protein 2/3 complex, subunit 1A, 41kDa pseudogene

PPP5C Gene

protein phosphatase 5, catalytic subunit

This gene encodes a serine/threonine phosphatase which is a member of the protein phosphatase catalytic subunit family. Proteins in this family participate in pathways regulated by reversible phosphorylation at serine and threonine residues; many of these pathways are involved in the regulation of cell growth and differentiation. The product of this gene has been shown to participate in signaling pathways in response to hormones or cellular stress, and elevated levels of this protein may be associated with breast cancer development. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2011]

AP3S2 Gene

adaptor-related protein complex 3, sigma 2 subunit

AP3S1 Gene

adaptor-related protein complex 3, sigma 1 subunit

CDKAL1 Gene

CDK5 regulatory subunit associated protein 1-like 1

The protein encoded by this gene is a member of the methylthiotransferase family. The function of this gene is not known. Genome-wide association studies have linked single nucleotide polymorphisms in an intron of this gene with susceptibilty to type 2 diabetes. [provided by RefSeq, May 2010]

PPP4R4 Gene

protein phosphatase 4, regulatory subunit 4

The protein encoded by this gene is a HEAT-like repeat-containing protein. The HEAT repeat is a tandemly repeated, 37-47 amino acid long module occurring in a number of cytoplasmic proteins. Arrays of HEAT repeats form a rod-like helical structure and appear to function as protein-protein interaction surfaces. The repeat-containing region of this protein has some similarity to the constant regulatory domain of the protein phosphatase 2A PR65/A subunit. The function of this particular gene product has not been determined. Alternative splicing has been observed for this gene and two transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP4R1 Gene

protein phosphatase 4, regulatory subunit 1

This gene encodes one of several alternate regulatory subunits of serine/threonine protein phosphatase 4 (PP4). The protein features multiple HEAT repeats. This protein forms a complex with PP4RC. This complex may have a distinct role from other PP4 complexes, including regulation of HDAC3 (Zhang et al., PMID: 15805470). There is also a transcribed pseudogene on chromosome 20. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2012]

PPP4R2 Gene

protein phosphatase 4, regulatory subunit 2

EMC9 Gene

ER membrane protein complex subunit 9

EMC8 Gene

ER membrane protein complex subunit 8

EMC3 Gene

ER membrane protein complex subunit 3

EMC2 Gene

ER membrane protein complex subunit 2

EMC1 Gene

ER membrane protein complex subunit 1

This gene encodes a single-pass type I transmembrane protein, which is a subunit of the endoplasmic reticulum membrane protein complex (EMC). Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2012]

EMC7 Gene

ER membrane protein complex subunit 7

EMC6 Gene

ER membrane protein complex subunit 6

EMC4 Gene

ER membrane protein complex subunit 4

LOC642502 Gene

succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa pseudogene

PPP1R1AP1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A pseudogene 1

PPP1R7 Gene

protein phosphatase 1, regulatory subunit 7

This gene encodes a protein subunit that regulates the activity of the serine/threonine phosphatase, protein phosphatase-1. The encoded protein is required for completion of the mitotic cycle and for targeting protein phosphatase-1 to mitotic kinetochores. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

PPP1R2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2

LOC100131360 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

COPZ1 Gene

coatomer protein complex, subunit zeta 1

This gene encodes a subunit of the cytoplasmic coatamer protein complex, which is involved in autophagy and intracellular protein trafficking. The coatomer protein complex is comprised of seven subunits and functions as the coat protein of coat protein complex (COP)I-vesicles. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2012]

COPZ2 Gene

coatomer protein complex, subunit zeta 2

This gene encodes a member of the adaptor complexes small subunit family. The encoded protein is a subunit of the coatomer protein complex, a seven-subunit complex that functions in the formation of COPI-type, non-clathrin-coated vesicles. COPI vesicles function in the retrograde Golgi-to-ER transport of dilysine-tagged proteins. [provided by RefSeq, Feb 2014]

COPG2 Gene

coatomer protein complex, subunit gamma 2

COPG1 Gene

coatomer protein complex, subunit gamma 1

DDOST Gene

dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit (non-catalytic)

This gene encodes a component of the oligosaccharyltransferase complex which catalyzes the transfer of high-mannose oligosaccharides to asparagine residues on nascent polypeptides in the lumen of the rough endoplasmic reticulum. The protein complex co-purifies with ribosomes. The product of this gene is also implicated in the processing of advanced glycation endproducts (AGEs), which form from non-enzymatic reactions between sugars and proteins or lipids and are associated with aging and hyperglycemia. [provided by RefSeq, Jul 2008]

RALGAPA1P Gene

Ral GTPase activating protein, alpha subunit 1 (catalytic) pseudogene

GABPA Gene

GA binding protein transcription factor, alpha subunit 60kDa

This gene encodes one of three GA-binding protein transcription factor subunits which functions as a DNA-binding subunit. Since this subunit shares identity with a subunit encoding the nuclear respiratory factor 2 gene, it is likely involved in activation of cytochrome oxidase expression and nuclear control of mitochondrial function. This subunit also shares identity with a subunit constituting the transcription factor E4TF1, responsible for expression of the adenovirus E4 gene. Because of its chromosomal localization and ability to form heterodimers with other polypeptides, this gene may play a role in the Down Syndrome phenotype. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Oct 2010]

PPP2R3C Gene

protein phosphatase 2, regulatory subunit B'', gamma

This gene encodes a regulatory subunit of the serine/threonine phosphatase, protein phosphatase 2. This protein is localized to both nuclear and cytoplasmic regions depending on cell cycle phase. Homozygous conditional knockout mice for this gene exhibit reduced numbers and impaired proliferation of immune system B cells. This protein may regulate the expression of the P-glycoprotein ATP-binding cassette transporter through its phosphatase activity. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

PPP2R3A Gene

protein phosphatase 2, regulatory subunit B'', alpha

This gene encodes one of the regulatory subunits of the protein phosphatase 2. Protein phosphatase 2 (formerly named type 2A) is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the alpha subfamily of regulatory subunit B''. Alternative splicing results in multiple transcript variants encoding different isoforms.[provided by RefSeq, Jun 2010]

PPP1R8 Gene

protein phosphatase 1, regulatory subunit 8

This gene, through alternative splicing, encodes three different isoforms. Two of the protein isoforms encoded by this gene are specific inhibitors of type 1 serine/threonine protein phosphatases and can bind but not cleave RNA. The third protein isoform lacks the phosphatase inhibitory function but is a single-strand endoribonuclease comparable to RNase E of E. coli. This isoform requires magnesium for its function and cleaves specific sites in A+U-rich regions of RNA. [provided by RefSeq, Jul 2008]

AP2S1 Gene

adaptor-related protein complex 2, sigma 1 subunit

One of two major clathrin-associated adaptor complexes, AP-2, is a heterotetramer which is associated with the plasma membrane. This complex is composed of two large chains, a medium chain, and a small chain. This gene encodes the small chain of this complex. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

RALGAPA2 Gene

Ral GTPase activating protein, alpha subunit 2 (catalytic)

NCBP1 Gene

nuclear cap binding protein subunit 1, 80kDa

The product of this gene is a component of the nuclear cap-binding protein complex (CBC), which binds to the monomethylated 5' cap of nascent pre-mRNA in the nucleoplasm. The encoded protein promotes high-affinity mRNA-cap binding and associates with the CTD of RNA polymerase II. The CBC promotes pre-mRNA splicing, 3'-end processing, RNA nuclear export, and nonsense-mediated mRNA decay. [provided by RefSeq, Jul 2008]

NCBP2 Gene